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Abstract

Epithelial-mesenchymal transition (EMT) describes the global process by which stationary 

epithelial cells undergo phenotypic changes, including loss of cell-cell adhesion and apical-basal 

polarity, and acquire mesenchymal characteristics which confer migratory capacity. EMT and its 

converse, MET (mesenchymal-to-epithelial transition), are integral stages of many physiologic 

processes, and as such are tightly coordinated by a host of molecular regulators. Converging lines 

of evidence have identified EMT as a component of cutaneous wound healing, during which 

otherwise stationary keratinocytes - the resident skin epithelial cells - migrate across the wound 

bed to restore the epidermal barrier. Moreover, EMT also plays a role in the development of 

scarring and fibrosis, as the matrix-producing myofibroblast arises from cells of epithelial lineage 

in response to injury but is pathologically sustained instead of undergoing MET or apoptosis. In 

this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues 

and organs. We conclude that further investigation into the contribution of EMT to the impaired 

repair of fibrotic wounds may identify components of EMT signaling as common therapeutic 

targets for impaired healing in many tissues.

INTRODUCTION

Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells 

gradually transform into mesenchymal-like cells and lose their epithelial functionality and 

characteristics. Converging lines of evidence suggest that EMT plays a role in both 

physiologic and pathologic healing. In this Review, we summarize findings from animal and 

human wound healing models that support the importance of proper execution of EMT in 

achieving successful tissue repair following injury. For instance, during cutaneous wound 

healing epidermal keratinocytes undergo EMT by losing their adherent epithelial phenotype 

to become motile cells with a mesenchymal phenotype which migrate across the wound bed 

(Yan, et al., 2010). We discuss several growth factors common to both wound healing and 
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EMT, such as fibroblast growth factor (FGF), hepatocyte growth factor (HGF), epidermal 

growth factor (EGF) and transforming growth factor-beta (TGFβ), and highlight shared 

signaling pathways.

While EMT is necessary for proper re-epithelialization and extracellular matrix deposition, 

uncontrolled continued transition from epithelial cells to myofibroblasts may result in 

fibrosis. We discuss the role of EMT in generating myofibroblasts from resident epithelial 

cells during the maturation phase of wound healing. We summarize evidence that sustained 

EMT is a key mechanism underlying the fibrotic pathology of multiple organs including the 

skin. The role of EMT in pathophysiology of renal, pulmonary, cardiac and liver fibrosis, 

cutaneous scleroderma, and impaired wound healing are also discussed.

GLOBAL FEATURES OF EMT

EMT is often divided by biological context into three subtypes: Type I, which occurs during 

embryogenesis; Type II, occurring during tissue repair; and Type III, which occurs during 

the metastatic spread of cancer. The three types of EMT have a shared outcome: the 

production of motile cells with a mesenchymal phenotype from otherwise classically 

adherent epithelial cells with apical-basal polarity (Kalluri and Neilson, 2003). However, in 

contrast to Types I and III, Type II EMT is instigated exclusively by damage and 

inflammation (Volk, et al., 2013).

The first step of EMT is the loss of epithelial cell markers, one of the most notable of which 

is decreased expression of E-cadherin (Whiteman, et al., 2008). E-cadherin is responsible for 

maintaining the epithelial cells’ lateral contacts via adherens junctions, as well as cell 

adhesion and relative immobility in the tissue (Huang, et al., 2012, Moreno-Bueno, et al., 

2008, Qin, et al., 2005). E-cadherin downregulation is also mediated through upregulation of 

vimentin, an intermediate filament that decreases E-cadherin trafficking to the cell surface 

(Mendez, et al., 2010). The cell then progresses towards a mesenchymal phenotype by 

gaining mesenchymal markers and capabilities (Lee, et al., 2006). This change is 

orchestrated by temporally regulated expression of proteins including neural cadherin (N-

cadherin), vimentin, integrin, fibronectin, and matrix metalloproteinases (MMPs) (Huang, 

Guilford and Thiery, 2012, Thiery and Sleeman, 2006, Wheelock, et al., 2008). Integrins that 

\ interact with extracellular matrix (ECM) components such as fibronectin are then 

upregulated to increase motility (Maschler, et al., 2005, Yang, et al., 2009). A driving force 

behind this motility is the loss of the polarized cytoskeleton in epithelial cells, and the 

development of lamellipodia in the advancing edge of the transitioning mesenchymal cells 

(Takenawa and Suetsugu, 2007). It is noteworthy that EMT process may not always be a 

complete. In some instances, cells may exist along a gradient where incomplete transition 

occurs, and both epithelial and mesenchymal characteristics are exhibited by the same cell 

(Jordan, et al., 2011).
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EMT IN PHYSIOLOGIC TISSUE REPAIR

Wound healing exhibits EMT-like features

Converging lines of evidence indicate that EMT is an essential component of physiologic 

tissue repair. The majority of studies have been conducted in models of cutaneous wound 

healing. Wound healing consists of several overlapping phases that involve an injury-

induced inflammatory response which is associated with cellular proliferation, migration, 

and ECM remodeling (Eming, et al., 2014, Martin, 1997). Of these processes, the one most 

reminiscent of EMT is the process of re-epithelialization, which has been termed “partial 

EMT” (Arnoux, et al., 2005). As discussed above, a hallmark of EMT is cell-cell 

dissociation and acquisition of motility, and during re-epithelialization keratinocytes at the 

wound edge lose their intercellular adhesions and migrate across the wound (Coulombe, 

2003). Specifically, these keratinocytes undergo changes in junctional complexes including 

reduction in desmosomes and adherens junctions, disruption of intermediate filaments, and 

cytoskeletal reorganization which results in the creation of intercellular gaps (Baum and 

Arpey, 2005, Santoro and Gaudino, 2005). These changes enable the keratinocytes to shift 

morphologically from cuboidal and stationary to flattened and migratory, with extended 

lamellipodia (Baum and Arpey, 2005, Santoro and Gaudino, 2005). There is also evidence 

that myofibroblasts, the key players in the remodeling and maturation phase of wound 

healing, are derived from resident epithelial cells that have transformed through EMT to 

synthesize ECM components and to contract the wound bed, enabling approximation of the 

injured edges (Iwano, et al., 2002, Radisky, et al., 2007, Wynn and Ramalingam, 2012).

EMT is implicated in animal and human models of cutaneous wound healing

Evidence from in vitro, in vivo, and ex vivo animal and human models support the 

importance of proper execution of EMT in achieving successful wound repair following 

cutaneous injury. To start with, the EMT transcription factor Slug has been implicated in the 

process of re-epithelialization in numerous studies. Healing of excisional wounds is 

impaired in Slug knockout mice almost twofold in comparison to wild-type controls 

(Hudson, et al., 2009), and epidermal keratinocytes from these mice display defects in 

migration (Savagner, et al., 2005). In ex vivo skin explants from Slug null mice, epithelial 

cell outgrowth is also severely impaired, again indicating compromised motility (Savagner, 

Kusewitt, Carver, Magnino, Choi, Gridley and Hudson, 2005) (Kusewitt, et al., 2009). 

Indeed, Slug expression is elevated in wild-type keratinocytes at the edges of murine wounds 

in vivo (Shirley, et al., 2010) (Savagner, Kusewitt, Carver, Magnino, Choi, Gridley and 

Hudson, 2005), and its expression specifically increases in the actively migrating mouse 

keratinocytes (Savagner, Kusewitt, Carver, Magnino, Choi, Gridley and Hudson, 2005).

Mechanistically, Slug regulates keratinocyte motility during re-epithelialization by 

repressing E-cadherin, leading to decreased cell-cell adhesion (Savagner, 2001). It also 

drives intercellular desmosomal disruption at the wound edge (Savagner, Kusewitt, Carver, 

Magnino, Choi, Gridley and Hudson, 2005). Finally, the epidermal growth factor receptor 

(EGFR) signaling pathway that is integral to re-epithelialization in physiologic wound 

healing may be the master regulator of EMT/Slug-mediated effects, since EGFR ligands 

stimulate the expression of Slug as well as subsequent migration in keratinocytes (Kusewitt, 
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Choi, Newkirk, Leroy, Li, Chavez and Hudson, 2009) in a process that is mediated by Erk5 

(Arnoux, et al., 2008). Indeed, in the absence of Slug, EGFR ligands are unable to stimulate 

migration of skin explants in the ex vivo model of physiologic re-epithelialization (Kusewitt, 

Choi, Newkirk, Leroy, Li, Chavez and Hudson, 2009).

Work in additional mammalian models provides further evidence for EMT involvement in 

skin repair. Treatment of rat mucosal keratinocytes with EGFR ligands as well as 

inflammatory cytokines TGFβ or interleukin 1 beta (IL1β) induces EMT-associated 

metalloproteinases MMP9 and MMP13 as well as EMT-like changes in cell morphology 

(Lyons, et al., 1993). The N-acetylglucosaminyltransferase V transgenic (GnT-V Tg) mouse, 

which features aberrant structural modifications of oligosaccharides, carries an enhanced 

EMT-like phenotype which culminates in rapid re-epithelialization in vivo, in part due to 

differential glycosylation of EGFR and subsequent amplification of signaling which leads to 

increased migration (Terao, et al., 2011). Specifically, wounded GnT-V keratinocytes exhibit 

spindle-like morphology, increased expression of EMT factors N-cadherin, Snail and Twist, 

and enhanced migration (Terao, Ishikawa, Nakahara, Kimura, Kato, Moriwaki, Kamada, 

Murota, Taniguchi, Katayama and Miyoshi, 2011). Foxn1, a potent mammalian wound 

healing factor, also appears to be involved in EMT-driven re-epithelialization during repair, 

as evidenced by studies in Foxn1 transgenic mice. In these mice, the induction of EMT post-

wounding was demonstrated though the upregulation of EMT transcriptional regulator 

Snail1, increased MMP9 expression, presence of vimentin+/E-cadherin+ cells, and 

migratory keratinocytes at the wound edge expressed Foxn1 which co-localized with Snail 

(Gawronska-Kozak, et al., 2016). Finally, zebrafish keratocytes in explant culture, which 

serve as a well-studied model of epithelial wound healing, display evidence of EMT 

(McDonald, et al., 2013). During injury-triggered migration, keratocytes feature loss of 

epithelial keratins and E-cadherin accompanied by gain of mesenchymal markers vimentin 

and N-cadherin. Moreover, explanted zebrafish keratocytes exhibit EMT-like morphologic 

changes including actin cytoskeletal rearrangements, disassembly of cellular sheets, and 

flattened cells. Interestingly, cell motility in this model appears to be driven in part by 

TGFβ1 (Tan, et al., 2011) which is a known trigger of EMT.

In in vitro models of human wound healing, immortalized HaCaT keratinocytes with forced 

overexpression of the EMT transcription factor Slug feature enhanced migration and 

disruption of desmosomes at the wound margin, recapitulating its effects in wounded skin of 

animal models in vivo (Savagner, Kusewitt, Carver, Magnino, Choi, Gridley and Hudson, 

2005). Similarly, antimicrobial peptides shown to enhance wound healing concurrently 

induce Slug at the edge of wounded HaCaTs (Carretero, et al., 2008). Heparin-binding EGF 

(HB-EGF), a keratinocyte-expressed ligand which activates EGFR during human wound 

healing (Mathay, et al., 2008, McCarthy, et al., 1996, Stoll, et al., 1997), triggers a migratory 

phenotype that is reminiscent of EMT. Specifically, expression of HB-EGF in human 

keratinocytes decreases epithelial keratins and E-cadherin, increases vimentin expression, 

and increases EMT factors SNAIL1 and ZEB1. HB-EGF also increases COX2 and MMP1, 

which are additional markers of cellular motility (Stoll, et al., 2012). But perhaps the most 

compelling evidence for the involvement of EMT in human cutaneous wound healing 

originates from a study by Yan et al (Yan, Grimm, Garner, Qin, Travis, Tan and Han, 2010) 

which demonstrated what the authors termed “partial EMT” in wound healing in vitro, ex 
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vivo and in vivo. Basal keratinocytes in the migrating tongue of re-epithelializing human 

acute wounds gained expression of mesenchymal markers fibroblast-specific protein 1 

(FSP1) and/or vimentin, while the basement membrane zone displayed collagen 

disassembly, reflecting EMT-associated degradation of the ECM. Furthermore, treatment of 

ex vivo human skin with inflammatory cytokines tumor necrosis factor- alpha (TNFα) and 

TGFβ induced an EMT-positive cell population. Primary keratinocytes treated similarly 

displayed morphologic cellular elongation as well as an enhanced migratory phenotype 

which was reversible following removal of cytokine stimuli. As such, injury-inducible 

mobilization of epithelial cells involving TNFα and bone morphogenetic protein (BMP)-2 

produced a mesenchymal phenotype in migrating keratinocytes (Yan, Grimm, Garner, Qin, 

Travis, Tan and Han, 2010).

Role of EMT in extra-cutaneous organ repair

There is additional evidence for EMT occurring during repair of organs other than the skin. 

During in vitro healing of a breast (mammary) epithelial cell line, time-lapse microscopy 

indicated that EMT-associated vimentin was expressed in a migration-dependent fashion, 

such that vimentin was exclusively induced in actively migrating cells at the leading wound 

edge, which was accompanied by actin filament reorganization. Vimentin expression 

subsequently disappeared once wound closure was achieved (Gilles, et al., 1999). Similarly, 

in a murine model of lacrimal gland injury, inflammation induced by interleukin-1 (IL-1) 

injection triggered the generation and migration of cells with mesenchymal features to the 

site of injury, which subsequently reverted to an epithelial phenotype once repair was 

complete (You, et al., 2012). These cells initially expressed EMT markers Snail1 and 

vimentin during the repair phase, the levels of which decreased after injury resolution, 

indicating a reversible or “partial” EMT. Finally, EMT is a key feature of cardiac 

development during embryogenesis, and accumulating evidence in zebrafish and other 

models of myocardial injury indicates that a subpopulation of epicardial cells undergo EMT 

to regenerate the damaged epithelial cover and help establish new vasculature (Lepilina, et 

al., 2006) (Krainock, et al., 2016).

Wound healing and EMT share central signaling pathways

It is noteworthy that a complex signaling network involving numerous growth factors 

activated during wound healing are also involved in the initiation and regulation of the EMT, 

supporting a global role for EMT in epithelial barrier restoration following injury (Figure 1). 

The common growth factors indispensable for both processes include FGF, EGF, HGF and 

TGFβ (Akhurst and Derynck, 2001, Camenisch, et al., 2002, Jechlinger, et al., 2006, Kim, et 

al., 2007, Murillo, et al., 2005, Nawshad and Hay, 2003). FGF, EGF, and HGF function as 

ligands for the corresponding receptors, tyrosine kinase transmembrane proteins, resulting in 

their dimerization and autophosphorylation, phosphorylation of the downstream target 

proteins, and activation of the signaling cascades (Lemmon and Schlessinger, 2010, Tsai and 

Yang, 2013). Thus, ERK MAPK, p38 MAPK, and JNK are among the activated pathways 

that ultimately upregulate EMT transcription factors such as SNAIL, Slug, and ZEB (Tsai 

and Yang, 2013) on one hand, while triggering wound healing processes on the other 

(Castilho, et al., 2013, Zhang, et al., 2015).
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FGF signaling

The FGF family comprises 23 members, while the three crucial FGFs for the wound healing 

process include FGF-2, FGF-7, and FGF-10 (Golinko, et al., 2009). FGF-2, or basic FGF, is 

increased in the acute wound and plays a role in granulation tissue formation, 

epithelialization, and tissue remodeling (Powers, et al., 2000). In vitro studies have shown 

that activation of the FGF receptor by FGF-2 increases keratinocyte and fibroblast motility 

(Di Vita, et al., 2006, Sogabe, et al., 2006), and stimulates fibroblasts to produce collagenase 

(Sasaki, 1992). The FGF family is also induced during EMT (Smith and Bhowmick, 2016), 

with the role to ensure that epithelial cells adopt a mesenchymal phenotype through classic 

effects such as down-regulation of E-cadherin and catenins and induction of mesenchymal 

MMPs (Ciruna, et al., 1997, Strutz, et al., 2002). In particular, FGF-2 is important in repair-

associated EMT (Ciruna, Schwartz, Harpal, Yamaguchi and Rossant, 1997, Sun, et al., 

1999). . Other FGF family members (e.g. FGF-1) instigate EMT in carcinomas, prompting 

an increase in the EMT transcription factor Slug, downregulation of desmosomal 

components and upregulation of MMPs and integrins, all of which are essential for cell 

motility (Billottet, et al., 2008, Savagner, et al., 1997, Valles, et al., 1996).

EGF signaling

The EGF family represents the best-characterized growth factor family in wound healing 

and includes a wide variety of ligands such as EGF, HB-EGF, transforming growth factor-

alpha (TGFα), Cripto-1, epiregulin, amphiregulin, betacellulin, epigen, and neuregulins 

(NRG) 1–6 (Barrientos, et al., 2014, Barrientos, et al., 2008). Ultimately, EGF signaling 

leads to the activation of a number of converging signaling pathways promoting keratinocyte 

migration and proliferation (Omenetti, et al., 2008). EGF also aids to accomplish EMT by 

down- regulating E-cadherin via E-cadherin internalization, upregulating SNAIL1 and/or 

TWIST, and increasing cell motility through MMP-directed ECM degradation (Ahmed, et 

al., 2006, Lo, et al., 2007, Lu, et al., 2003). In murine mammary epithelial cell tumors, 

upregulation of Cripto1, an EGF family member, results in enhanced mesenchymal 

characteristics, such as increased expression of N-cadherin, vimentin, and Snail1 expression 

(Rangel, et al., 2012, Strizzi, et al., 2004, Tao, et al., 2005).

HGF signaling

HGF signaling is an additional example of the wound healing – EMT crosstalk. HGF, 

mainly produced by fibroblasts, exerts its function by binding to its tyrosine kinase receptor 

c-Met (mesenchymal epithelial transition factor, or HGFR), which is expressed on the 

surface of keratinocytes (Toyoda, et al., 2001). Both HGF and c-Met are upregulated during 

wound healing and promote granulation tissue formation and neoangiogenesis (Toyoda, 

Takayama, Horiguchi, Otsuka, Fukusato, Merlino, Takagi and Mori, 2001, Wang, et al., 

2009, Yoshida, et al., 2003). Furthermore, c-Met plays an important role in re-

epithelialization through activation of PI3K/AKT, ERK1/2, Gab1 (Grb2-associated-binding 

protein 1) and PAK1/2 (p21-activated protein kinase) signaling (Chmielowiec, et al., 2007). 

HGF and its receptor also clearly induce various changes in the EMT process, depending on 

the specific cell type expressing c-Met (Grotegut, et al., 2006, Savagner, Yamada and Thiery, 

1997). To begin with, HGF can regulate master EMT transcription factor SNAIL1 (which 
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decreases E-cadherin)and Slug (which decreases desmoplakins) aiding in the breakdown of 

intercellular adhesions (Grotegut, von Schweinitz, Christofori and Lehembre, 2006, 

Savagner, Yamada and Thiery, 1997). Additionally, the c-Met-PI3K/AKT pathway 

influences cell cycle, proliferation and quiescence (King, et al., 2015), and PI3K-activated 

mTORC2 is one of the driving factors for the phenotypic transition in EMT, while mTORC1 

encourages cell growth and movement (Lamouille, et al., 2012, Lamouille and Derynck, 

2007). Since one of AKT’s roles is to phosphorylate and inactivate GSK3β, which itself is 

an inhibitor of SNAIL1 expression, inhibition of AKT can cause down regulation of SNAIL 

activity in the cell and impede EMT (Lamouille, Connolly, Smyth, Akhurst and Derynck, 

2012, Zhou, et al., 2004). The resultant decrease in MMP production and non-inhibited 

production of E-cadherin makes EMT and subsequent movement difficult for the cell to 

achieve (Lamouille, Connolly, Smyth, Akhurst and Derynck, 2012).

TGFβ signaling in wound healing, EMT, and fibrosis

The TGFβ pathway is well studied not only in wound healing (Ramirez, et al., 2014) but 

also in all three types of EMT (Akhurst and Derynck, 2001, Camenisch, Molin, Person, 

Runyan, Gittenberger-de Groot, McDonald and Klewer, 2002, Nawshad and Hay, 2003). 

TGFβ progresses via two pathways, SMAD-dependent and SMAD-independent (Xu, et al., 

2000). In SMAD dependent pathways, the TGFβ cell surface receptors (known as TGFβ 
receptors type II) are activated by ligand and phosphorylate the transmembrane kinases 

(TGFβ receptor type I), which then forms a SMAD complex; this complex can enter the 

nucleus, subsequently activating or inhibiting transcription factors important for either 

wound healing or EMT (Derynck and Zhang, 2003, Ramirez, Patel and Pastar, 2014). In 

wound healing, TGFβ1 play important roles in inflammation, angiogenesis, re-

epithelialization, and connective tissue regeneration (Ramirez, Patel and Pastar, 2014). 

TGFβ and SMAD complexes induce SNAIL1 expression, and themselves are potent 

downregulators of E-cadherin, occludin, and other epithelial phenotypic markers, while 

promoting mesenchymal markers such as vimentin and N-cadherin (Vincent, et al., 2009). 

SMAD3-SMAD4 complexes can also activate TWIST and ZEB transcription factors, via the 

MAPK signaling route, one of the SMAD-independent pathways (Javelaud and Mauviel, 

2005). Another major SMAD-independent pathway is the PI3K/AKT pathway, whose 

importance in both EMT and wound healing is discussed previously.

EMT IN SCARRING AND FIBROSIS

EMT-derived myofibroblasts, TGFβ, and fibrosis

During physiologic repair, tissue integrity must be restored not only through re-

epithelialization but also through formation of a stress-resistant scar. The cellular 

orchestrator of this remodeling process is the contractile myofibroblast, which secretes large 

amounts of ECM proteins and aids in the mechanical closure of the wound (Gabbiani, et al., 

1971, Hinz and Gabbiani, 2003). In normal wound healing, many myofibroblasts undergo 

apoptosis and disappear once re-epithelialization is complete (Desmouliere, et al., 1995, 

Gabbiani, 2003). However, pathologically prolonged myofibroblast activity results in 

fibrogenesis. Indeed, persistent myofibroblast activation is a shared feature of fibrotic 
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diseases. As such, the dysregulation of injury-triggered EMT is believed to contribute to 

fibrosis of multiple organs.

Though the myofibroblast can be derived from a variety of sources (Abe, et al., 2001, 

Direkze, et al., 2003, Ebihara, et al., 2006, Frid, et al., 2002, Higashiyama, et al., 2011, 

Wynn and Ramalingam, 2012), a large body of evidence supports that a proportion of them 

arise through EMT during organ fibrosis. Moreover, TGFβ1, a critical regulator of EMT 

signaling as well as physiologic wound healing (as discussed above), is also the major driver 

of fibrosis (Border and Noble, 1994, Roberts, et al., 1986), in part through its role in 

sustaining myofibroblast activation (Desmouliere, et al., 1993, Gabbiani, 2003, Hong, et al., 

2007, Ronnov-Jessen and Petersen, 1993, Serini and Gabbiani, 1999). This section focuses 

on evidence implicating EMT in fibrogenesis of different tissues, which arise as a 

pathological response to injury.

Renal fibrosis

Progressive chronic kidney disease characterized by interstitial fibrosis can lead to tubular 

atrophy, loss of kidney function and end-stage renal failure (Liu, 2011). Numerous studies 

have provided evidence that EMT-derived myofibroblasts originating from tubular epithelia 

contribute to renal fibrosis. These studies have used animal models, human kidney biopsies, 

staining techniques for epithelial and fibroblast cell lineage markers, lineage tags and 

activation of various transcriptional signals known to activate the EMT program (Higgins, et 

al., 2007, Humphreys, et al., 2010, Inoue, et al., 2009, Iwano, Plieth, Danoff, Xue, Okada 

and Neilson, 2002, Nishitani, et al., 2005, Rastaldi, et al., 2002, Strutz, Zeisberg, Ziyadeh, 

Yang, Kalluri, Muller and Neilson, 2002, Zeisberg, et al., 2003). Though conflicting at 

times, a series of genetic-lineage tracking and fate-mapping studies have provided support 

for existence of EMT-derived myofibroblasts in renal fibrosis (Humphreys, Lin, Kobayashi, 

Hudson, Nowlin, Bonventre, Valerius, McMahon and Duffield, 2010). In one experimental 

murine model, fibroblasts expressing the mesenchymal EMT marker FSP1 were shown to 

derive from both the bone marrow and local EMT during renal fibrogenesis (Iwano, Plieth, 

Danoff, Xue, Okada and Neilson, 2002). In vivo evidence for EMT in renal fibrosis has also 

been reported in human biopsy studies (Inoue, Okada, Takenaka, Watanabe and Suzuki, 

2009, Nishitani, Iwano, Yamaguchi, Harada, Nakatani, Akai, Nishino, Shiiki, Kanauchi, 

Saito and Neilson, 2005, Rastaldi, Ferrario, Giardino, Dell’Antonio, Grillo, Grillo, Strutz, 

Muller, Colasanti and D’Amico, 2002). In a patient with fibrosis-inducing obstructive 

nephropathy, obstructed tubular epithelial cells expressed FSP1 (Okada, et al., 1997), and 

some adopted an EMT-like fibroblast morphology (Inoue, Okada, Takenaka, Watanabe and 

Suzuki, 2009, Nishitani, Iwano, Yamaguchi, Harada, Nakatani, Akai, Nishino, Shiiki, 

Kanauchi, Saito and Neilson, 2005). FSP1 has also been shown to be a prognostic marker in 

renal fibrosis in humans (Nishitani, Iwano, Yamaguchi, Harada, Nakatani, Akai, Nishino, 

Shiiki, Kanauchi, Saito and Neilson, 2005). Another study of 133 biopsies from various 

renal fibrosis conditions demonstrated that tubular epithelia cells produced a variety of ECM 

proteins characteristic of a mesenchymal phenotype, the levels of which correlated clinically 

with elevated serum creatinine levels and indices of renal dysfunction as well as histologic 

extent of interstitial fibrotic damage (Rastaldi, Ferrario, Giardino, Dell’Antonio, Grillo, 

Grillo, Strutz, Muller, Colasanti and D’Amico, 2002).
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TGFβ1 is the main inducer of EMT in renal tubular epithelial cells (Fan, et al., 1999, Strutz, 

Zeisberg, Ziyadeh, Yang, Kalluri, Muller and Neilson, 2002). The expression of FSP1 in 

transitioning tubular epithelium is induced by TGFβ (Okada, et al., 2000), and tubular 

basement membrane disintegration leads to TGFβ1 upregulation by mouse proximal tubular 

epithelial cells contributing to EMT during renal fibrosis (Zeisberg, et al., 2001). 

Interestingly, TGFβ1-induced EMT in tubular epithelial cells can be reversed by BMP7 by 

inducing E-cadherin in a SMAD-dependent manner in vitro, and the systemic administration 

of recombinant human BMP-7 led to repair of damaged renal tubular epithelial cells in a 

murine model of fibrotic chronic renal injury (Zeisberg, Hanai, Sugimoto, Mammoto, 

Charytan, Strutz and Kalluri, 2003), indicating that the TGFβ-EMT axis represents a 

therapeutic target for injury-induced fibrosis.

Pulmonary fibrosis

Lung epithelial cells responding to repeated injury experience persistent inflammation and 

sustained EMT, leading to fibrosis (Chapman, 2011, Crosby and Waters, 2010). Although 

the origin of myofibroblasts in lung fibrosis is not certain, some studies have reported the 

occurrence of EMT in lung fibrosis, partly mediated through TGFβ signaling (Chen, et al., 

2015, Kim, et al., 2006, Mubarak, et al., 2012, Willis, et al., 2005, Zhou, et al., 2009, Zolak, 

et al., 2013). Alveolar epithelial cells (AECs) undergo EMT and contribute to pulmonary 

fibrosis pathology induced by TGFβ (Kim, Kugler, Wolters, Robillard, Galvez, Brumwell, 

Sheppard and Chapman, 2006, Willis, Liebler, Luby-Phelps, Nicholson, Crandall, du Bois 

and Borok, 2005, Zhou, Dada, Wu, Kelly, Trejo, Zhou, Varga and Sznajder, 2009). 

Moreover, in a TGFβ1 murine model of pulmonary fibrosis, the beta-galactosidase (β-gal)-

expressing epithelial cells also expressed mesenchymal markers within injured lungs, 

indicating epithelial cells as the progenitors for the fibroblasts. Primary AECs cultured on 

provisional matrix components, fibronectin or fibrin, undergo EMT via integrin-dependent 

activation of endogenous latent TGFβ1 indicating that the ECM acts as a regulator in the 

EMT process during fibrogenesis (Kim, Kugler, Wolters, Robillard, Galvez, Brumwell, 

Sheppard and Chapman, 2006). Exposure of TGFβ to rat primary AECs increased 

expression of mesenchymal cell markers and a fibroblastic-phenotype, an effect accelerated 

by TNFα. In vivo, AECs co-expressed epithelial markers and α-smooth muscle actin in lung 

tissue samples from patients with idiopathic pulmonary fibrosis (IPF) (Willis, Liebler, Luby-

Phelps, Nicholson, Crandall, du Bois and Borok, 2005). Studies have also demonstrated that 

pleural mesothelial cells (PMC) are capable of transitioning into myofibroblasts, a process 

thought to be driven by TGFβ (Chen, Ye, Zhang, Li, Song, Yang, Mu, Rao, Cai, Xiang, 

Zhang, Su, Xin and Ma, 2015, Zolak, Jagirdar, Surolia, Karki, Oliva, Hock, Guroji, Ding, 

Liu, Bolisetty, Agarwal, Thannickal and Antony, 2013). PMC is seen in lung tissue of IPF 

patients, and labelled PMCs injected into mice traveled to IPF lungs and displayed 

myofibroblast phenotypic markers in response to TGFβ, the numbers of which correlated 

with the degree of fibrosis and IPF disease severity (Mubarak, Montes-Worboys, Regev, 

Nasreen, Mohammed, Faruqi, Hensel, Baz, Akindipe, Fernandez-Bussy, Nathan and Antony, 

2012). Increased production of type I collagen, mesenchymal phenotypic markers, and 

decreased epithelial phenotypic markers are features of PMCs in the bleomycin animal 

model of injury-triggered pulmonary fibrosis, which is phenotypically similar to human IPF. 

Moreover, in this model, PMC migration was mediated sboth in vivo and in vitro by TGFβ1-
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SMAD2/3 signaling (Chen, Ye, Zhang, Li, Song, Yang, Mu, Rao, Cai, Xiang, Zhang, Su, 

Xin and Ma, 2015).

Cardiac fibrosis

Following cardiac injury, EMT appears to play a role in regeneration or fibrosis to produce 

mesenchymal cells with both stem cell and myofibroblast characteristics (Limana, et al., 

2007). Adult epicardium-derived cells have been shown to reactivate post myocardial injury, 

undergo EMT and migrate into the injured myocardium where they produce different cell 

types in vivo, including cardiac interstitial fibroblasts and coronary smooth muscle cells that 

aid in the cardiac repair process (Limana, Zacheo, Mocini, Mangoni, Borsellino, Diamantini, 

De Mori, Battistini, Vigna, Santini, Loiaconi, Pompilio, Germani and Capogrossi, 2007, 

Mikawa and Fischman, 1992, Mikawa and Gourdie, 1996, Poelmann, et al., 1993, Smart, et 

al., 2013, Winter, et al., 2007). There is also evidence to support the positive regulation of 

epicardial cell transformation and smooth muscle differentiation by TGFβ, as human adult 

epicardial cells with an epithelial-like phenotype expressing the cell surface marker vascular 

cell adhesion marker (VCAM-1) spontaneously underwent EMT and adopted a smooth 

muscle-like phenotype in vitro activated by TGFβ1 receptor signaling and inhibited by 

VCAM-1 (Moore, et al., 1999). Furthermore, in epicardium explant studies, both TGFβ1 

and TGFβ2 induced loss of epithelial cell markers cytokeratin and membrane-associated 

Zonula Occludens-1 from epicardial cells, and triggered gain of smooth muscle markers 

calponin and caldesmon and this was dependent on ALK5 kinase activity, culminating in the 

induction of epicardial cell EMT and invasion (Compton, et al., 2006).

Hepatic fibrosis

Chronic liver disease gives rise to hepatic fibrosis, but the origin of the activated 

myofibroblasts is still under debate, and various epithelial cells undergoing EMT may serve 

as the sources. Hepatic stellate cells (HSCs) are one cellular candidate for activated 

myofibroblasts (Friedman, et al., 1985), adopting a spindle-shaped phenotype and 

expressing α-smooth muscle actin and type I collagen (Gressner and Weiskirchen, 2006, 

Lee, et al., 1995). Lineage tracing experiments in mice have demonstrated that HSCs 

contribute to 82–96% of myofibroblasts mediating fibrogenesis (Mederacke, et al., 2013). 

Epithelial hepatocytes and cholangiocytes are also likely candidates for contributing to the 

myofibroblast population in liver fibrosis. Interestingly, mouse cholangiocytes, co-cultured 

with myofibroblastic HSCs undergo EMT in vitro, exhibiting increased cell migration, 

reduced epithelial markers, and induction of mesenchymal markers (Omenetti, Porrello, 

Jung, Yang, Popov, Choi, Witek, Alpini, Venter, Vandongen, Syn, Baroni, Benedetti, 

Schuppan and Diehl, 2008).

As in the kidney and lung, TGFβ may be involved in the induction of the EMT phenotype in 

liver fibrosis. In one study, EMT was induced in hepatocytes in vitro via activation of the 

TGFβ1/SMAD pathway (Kaimori, et al., 2007). Additional lineage-tracing experiments 

using transgenic mice demonstrated that TGFβ1 induced hepatocytes to undergo EMT and 

contributed to the population of FSP1-positive fibroblasts in CCL4-induced model of liver 

fibrosis, an effect that could be blocked by BMP-7 administration. Also, human cultured 

intrahepatic epithelial cells treated with TGFβ were shown to undergo EMT-like changes, 
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adopting an invasive fibroblast-type phenotype with loss of cytokeratin-7 and gain of 

SMAD2/3, S100A4 and α-smooth muscle actin expression. In the same study, TGFβ mRNA 

and nuclear phospho-SMAD2/3 were highly expressed in damaged ducts of chronic diseased 

liver tissue that also expressed S100A4, vimentin and MMP-2. Finally, co-expression of 

epithelial and mesenchymal markers in biliary epithelial cells and cholangiocytes of chronic 

liver disease patients also supports an in vivo role for TGFβ-induced EMT in human hepatic 

fibrosis (Diaz, et al., 2008, Rygiel, et al., 2008).

Scleroderma and skin fibrosis

Scleroderma (Sc) is a systemic disorder characterized by autoimmunity, chronic 

inflammation, vasculopathy and extensive skin and organ fibrosis of unknown etiology 

(Gazi, et al., 2007). In Sc, early vascular injury precedes fibrosis, and as with renal fibrosis, 

the persistently activated myofibroblast drives TGFβ-induced gene expression and increases 

pro-fibrotic cytokine and protease production (Postlethwaite, et al., 2004). Although the 

origin of the myofibroblasts in Sc fibrotic skin is unknown, studies have once again 

indicated that the EMT process is one possible source (Postlethwaite, Shigemitsu and 

Kanangat, 2004). Indeed, increased nuclear translocation of myocardin related transcription 

factor-A (MRTF-A), a key mechano-responsive transcription factor that signals EMT, has 

been observed in Sc epidermis (O’Connor and Gomez, 2013, Shiwen, et al., 2015).

Increased levels of TGFβ1, TGFβ receptors, and enhanced TGFβ signaling has been 

reported in Sc (Dong, et al., 2002, Leask, et al., 2002) thus supporting a role for this 

cytokine in myofibroblast activation and in the pathogenesis in the fibrosis observed in Sc 

(Xu, et al., 2009). In one murine model, active TGFβ signaling was enhanced, leading to 

skin fibrosis that resembled the biochemical, clinical and histologic features of human Sc 

(Sonnylal, et al., 2007).

In Sc epidermis, keratinocytes have been shown to adopt an activated phenotype associated 

with active SMAD/TGFβ signaling and display increased expression of pro-fibrotic factors 

connective tissue growth factor (CTGF) and SNAIL1 expression (Nikitorowicz-Buniak, et 

al., 2015). Sc keratinocytes stimulated fibroblasts to increase ECM contractility and growth 

factor expression, the effects of which were dependent on elevated levels of IL-1α 
expression by epidermal cells and induction of endothelin-1 (ET-1) and TGFβ in fibroblasts 

(Aden, et al., 2010). In vitro, Sc fibroblasts display enhanced collagen deposition and ECM 

contraction and remodeling (Jimenez, et al., 1986).

Less is known regarding the contribution of EMT processes to fibrotic skin conditions other 

than scleroderma. High expression of the mesenchymal marker FSP1 was found in the 

epidermis and dermis of human hypertrophic scars, which was accompanied by increased 

levels of inflammatory cytokines, fibrotic markers and EMT-related Slug and TWIST. In this 

way, a link was demonstrated between unresolved inflammation and the development EMT 

characteristics during fibrogenesis in hypertrophic scar tissue in vivo (Yan, Grimm, Garner, 

Qin, Travis, Tan and Han, 2010).
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CONCLUSIONS AND FUTURE DIRECTIONS

Injury triggers the inflammatory wound healing cascade, and pathologically sustained 

inflammation is tightly associated with fibrogenesis. This review has summarized evidence 

that EMT plays a role in physiologic tissue repair, and that sustained EMT is a key 

mechanism underlying the fibrotic pathology of multiple organs. Given the fundamental 

parallels between the regulation and signaling of EMT and critical wound-healing processes, 

it is quite conceivable that early and prolonged activation of EMT in the context of the 

response to injury promotes inflammation and fibrogenesis that culminates in non-healing 

wounds of many epithelial tissues (Figure 2). In investigating this hypothesis further, it will 

be important to keep in mind that EMT is a dynamic and reversible process and cells cannot 

always be classified as purely epithelial or mesenchymal, especially in vivo, as they may 

carry features of each. Loss-of epithelial and gain-of-mesenchymal features can also occur 

simultaneously. Nevertheless, assessing the presence of the classic EMT biomarkers in non-

healing tissues and organs in vivo will be critical to define the role for EMT in initiating and 

sustaining a poor healing response, and may represent a way forward to potential targeting 

of EMT as a novel and global therapeutic approach for difficult-to-treat wounds.
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Fig. 1. 
Common growth factor signals initiate and regulate essential EMT and wound-healing 

processes. Please refer to text for supporting references. FGF, fibroblast growth factor; EGF, 

epidermal growth factor; TGFβ, transforming growth factor beta; HGF, hepatocyte growth 

factor.

Stone et al. Page 21

Cell Tissue Res. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic 

wound healing (right).
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