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The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-

generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively

confirming these variants, as well as the underlyingmolecular mechanisms explaining the diseases, are often lacking. Here, we report on

an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON. The syndrome is characterized by ID and/or

DD, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations.

Knockdown of son in zebrafish resulted in severe malformation of the spine, brain, and eyes. Importantly, analyses of RNA from affected

individuals revealed that genes critical for neuronal migration and cortex organization (TUBG1, FLNA, PNKP, WDR62, PSMD3,

and HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA) are significantly downregulated because of the accumulation of

mis-spliced transcripts resulting from erroneous SON-mediated RNA splicing. Our data highlight SON as a master regulator governing

neurodevelopment and demonstrate the importance of SON-mediated RNA splicing in human development.
Recent advances in whole-exome and whole-genome

sequencing have accelerated the identification of the

genetic etiologies of intellectual disability (ID) and devel-

opmental delay (DD), facilitating appropriate care and

therapy for affected individuals and their families. So far,

mutations in more than 1,500 genes have been implicated

in ID and DD disorders,1–9 and de novo single-nucleotide

variants and copy-number variations (CNVs) have been

identified as a major cause of severe ID and/or DD.5,7

Recently, two independent studies reported on a single in-

dividual with ID and/or DD and a de novo mutation in

SON (SON DNA binding protein [MIM: 182465]), which

encodes a protein required for proper RNA splicing. How-

ever, the level of evidence required for securely implicating

mutations in this gene as disease causing was lacking.5,10,11

Including these two individuals, we recruited a total of 20

unrelated individuals with mild to severe ID and/or DD
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(Figure 1A and Table S1) and report on the delineation of

an ID syndrome caused by de novo LoF mutations in

SON. This study was approved by the local institutes under

the realm of diagnostic testing.

We compared in detail the phenotypic characteristics of

all 20 individuals with SON LoF mutations. Clinical exami-

nation showed that all affected individuals had mild to

moderate facial dysmorphisms, including facial asymmetry,

midface retraction, low-set ears, downslanting palpebral

fissures, deep-set eyes, horizontal eyebrows, a broad and/

or depressed nasal bridge, and a short philtrum (Figures

1B and Figure S1). Interestingly, brain MRI, available for

19 affected individuals, revealed that 17 of them had

significant abnormalities, including abnormal gyration

patterns (polymicrogyria, simplified gyria, and periven-

tricular nodular heterotopia), ventriculomegaly, Arnold-

Chiari malformations, arachnoid cysts, hypoplasia of the
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corpus callosum, hypoplasia of the cerebellar hemispheres,

and loss of periventricular white matter (Figures 1C–1E). 11

of 20 individuals developed seizures and/or epilepsy with

an age of onset ranging from 1 to 6 years. 17 of 20

individuals presented with musculoskeletal abnormalities,

comprising hemivertebrae, scoliosis or kyphosis, contrac-

tures, hypotonia, and hypermobility of the joints. Vision

problems, including cerebral visual impairment, hyperme-

tropia, optic atrophy, and strabismus, were present in 15

of 20 individuals. In addition, the vast majority of individ-

uals showed congenital malformations consisting of

urogenital malformations (6/20), heart defects (5/20), gut

malformations (3/20), and a high and/or cleft palate

(2/20). Short stature was present in ten individuals, and cra-

niosynostosis involving both the metopic (n ¼ 1) and the

sagittal sutures (n ¼ 2) was noted in 3 of 20 individuals.

Metabolic screening was performed in 9 of 20 individuals,

confirming mitochondrial dysfunction in individuals 2

and 11 and an O-glycosylation defect in individual 20 (a

clinical summary is provided in Table 1, and details are

listed in Table S2). Apart from individuals 13 (II-1 in family

13; Figure 1A), 15 (II-3 in family 15), and 20 (II-1 in family

20), none of the individuals had additional coding-

sequence mutations that explained (part of) the phenotype

(Table S2). Individual 13 was clinically diagnosed with dys-

keratosis congenita, for which a maternally inherited path-

ogenic TERT (MIM: 187270) mutation was identified (Table

S2). Individual 13 was, however, more severely affected

than could be explained by a TERT mutation alone. Simi-
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larly, none of the other coding variants identified in indi-

vidual 15 or the additional genes deleted by the 384 kb dele-

tion CNV in individual 20 were likely to explain the

phenotype of these individuals (Table S2).

SON (GenBank: NM_138927.2) is composed of 12

exons (Figure 2A) and encodes a protein (GenBank:

NP_620305.2) containing an arginine/serine (RS)-rich

domain and two RNA-binding motifs (a G-patch and a

double-stranded RNA binding motif) (Figure 2A).12–14 17

of 20 mutations are frameshift mutations, including a

recurrent 4-bp deletion (c.5753_5756del) in four inde-

pendent individuals (Table S1 and Figures 2A and 2B).

The remaining mutations include a nonsense mutation,

an in-frame deletion of eight amino acids, and a complete

gene deletion (Table S1). Importantly, parental DNA was

available for testing in 19 of 20 individuals and indicated

that all mutations had occurred de novo (Figure S2 and

Table S1). Interestingly, de novo truncating mutations in

SON have not been observed in over 2,000 control in-

dividuals,4,15–18 and SON, with a Residual Variation Intol-

erance Score of �1.88, belongs to the 2% most intolerant

human protein-coding genes.19 Furthermore, interroga-

tion of large databases (such as the Exome Aggregation

Consortium [ExAC] Browser) has shown that, after

sequence context and mutability are considered, SON is

significantly depleted of LoF variants according tomultiple

LoF metrics (pLI ¼ 1.00, and the false-discovery rate of the

LoF depletion score is p ¼ 1.68 3 10�6).20,21 Although

these population genetic signatures of intolerance cannot
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Figure 1. Pedigree Structures, Photos, and Brain MRI of Individuals with SON Mutations
(A) Family pedigrees of individuals carrying mutations in SON.
(B) Top row from left to right: photos of individuals 2 (at age 5 years), 4 (age 19 years), 5 (age 2 years), 6 (age 6 years), 8 (age 34 years), and
10 (age 6 years). Bottom row from left to right: photos of individuals 11 (age 21 years), 13 (age 14 years), 15 (age 15 months), 16 (age 5
years), 18 (age 6 years), and 19 (age 10 years). Shared facial dysmorphisms include facial asymmetry, midface retraction, low-set ears,
downslanting palpebral fissures, deep-set eyes, horizontal eyebrows, a broad and/or depressed nasal bridge, and a short philtrum.
(C) Axial T2-weighted fast spin-echo MRI of the brain of individual 1 at age 3 years. Three panels show ascending images (left to right)
revealing that the individual’s insular cortex on the right is thickened and featureless. Less impressive areas of similar change were noted
in the posterior aspect of the left insular cortex, which revealed bilateral perisylvian and parietal polymicrogyria (yellow arrowhead).

(legend continued on next page)
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Table 1. Clinical Features of Individuals with SON
Haploinsufficiency

Percentage

Number of
Affected
Individuals

Intellectual disability 100% 20/20

Brain malformation 89% 17/19

Ventricular enlargement 74% 14/19

Corpus callosum abnormality 53% 10/19

Cortex malformation 37% 7/19

White-matter abnormalities 21% 4/19

Cerebellar abnormalities 21% 4/19

Other 11% 2/19

Neurological features 85% 17/20

Seizures 55% 11/20

Hypotonia 75% 15/20

Musculoskeletal abnormalities 85% 17/20

Hypermobility 40% 8/20

Scoliosis or kyphosis 20% 4/20

Hemivertebrae 10% 2/20

Contractures 10% 2/20

Other 85% 17/20

Eye and/or vision abnormality 75% 15/20

Strabismus 55% 11/20

Suspicion of CVI 20% 4/20

Hypermetropia 30% 6/20

Heart defect 25% 5/20

Gastrointestinal malformation 15% 3/20

Urogenital malformation 30% 6/20

Horseshoe kidney 10% 2/20

Other 20% 4/20

Facial dysmorphism 100% 20/20

Short stature 50% 10/20

Craniosynostosis 15% 3/20

The following abbreviation is used: CVI, cortical visual impairment.
be considered sufficient evidence of causality on their own,

they support the hypothesis that SON LoF mutations are

under strong purifying selection in the human population
(D) Sagittal T1-weighted and axial T2-weighted MRI of the brain of in
34 þ 6 weeks) reveal enlarged lateral ventricles, cavum septum pelluc
a small fourth ventricle, and a thin corpus callosum. The cortex show
poral areas are suspect for polymicrogyria (yellow arrowheads). The tw
abnormal cortical border, an Arnold Chiari malformation, and hydr
(E) Frontal T2-weighted, sagittal T1-weighted, axial T2-weighted, and
ily 7) at the age of 2 months. The cortex shows deep sulci and perisylv
discrete heterotopic nodules (orange arrowheads). A thin corpus callo
ventricles, and cavum septum pellucidum are present.
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and that their occurrence most likely contributes to severe

clinical phenotypes.

Transcripts bearing a premature stop codon are likely to

be degraded by nonsense-mediated mRNA decay. To

confirm that LoF mutations result in reduced dosage of

SON, we used three different PCR primer sets (Table S3)

to perform qRT-PCR to determine the amounts of the

SON transcript in peripheral-blood mononuclear cells

(PBMCs) isolated from trio 1 (I-1, I-2, and II-2 in family 1),

trio 3 (I-1, I-2, and II-1 in family 3), individual 5 (II-1 in

family 5; Figure 1A), and an unrelated healthy donor

(Figure 2C). All three primer sets showed that compared

to mRNA from the parental samples and the unrelated

healthy donor, SON mRNA in the affected individuals

was significantly downregulated (Figure 2C). Subsequent

western blotting using PBMC lysates from trio 1 and

two different SON antibodies consistently showed the

reduction of SON in individual 1 (Figures 2D and 2E), indi-

cating that de novo SON LoF mutations result in SON

haploinsufficiency.

To examine the effect of SON haploinsufficiency on em-

bryonic development, we utilized Danio rerio (zebrafish),

which has a well-conserved homolog of human SON (NCBI

Gene:LOC565999;Figures S3andS4).Weassessed thedevel-

opmental effects of SON haploinsufficiency in vivo with

morpholino (MO)-mediated knockdown of son in zebrafish

embryos. Interestingly, embryos injected with a son MO

had a host of developmental defects that ranged from bent

tails (63.6%) to eye malformations and microcephaly

(17.1%) and shortened or gnarled tails, deformed body

axes, and massive body curvatures (2.1%) 24 hr post-injec-

tion (hpi) (Figure 3A and Figure S5). Embryos that survived

72 hpi progressed to more severe phenotypes including

extremespinalmalformations (22.2%),headandeyemalfor-

mations with brain edema (37.2%), and profound develop-

mental abnormalities (10.1%;Figure3B),mimicking features

observed in the affected individuals.

SON is a nuclear speckle protein able to bind to

both DNA and RNA, and its cellular functions include

regulation of RNA splicing and gene transcription, as

well as proper cell-cycle and embryonic stem cell

maintenance.13,22–25 To identify molecular mechanisms

underlying the clinical features of individuals with

SON haploinsufficiency, we examined global expression

patterns upon SON knockdown in cellular systems.

Hereto, we re-analyzed microarray-based RNA-expression

profiling and RNA-sequencing datasets generated upon

SON knockdown in HeLa cells13,22 and human embryonic
dividual 2. The two images on the left (age 1 day; gestational age
idum, a hypoplastic cerebellar hemisphere, a broad cistern magna,
s a simplified gyration pattern, and the perisylvian and frontotem-
o panels on the right (age 2 years) show the fissure Sylvie with an

ocephalus.
sagittal T1-weighted MRI of the brain of individual 7 (II-1 in fam-
ian areas suspect for polymicrogyria (yellow arrowheads), as well as
sum, a small fourth ventricle, enlarged frontal horns of the lateral

er 1, 2016



Figure 2. SON Mutations and Their Functional Effect at the RNA and Protein Levels
(A and B) Schematic representation of SON (A) and SON (B) shows the position of the mutations identified in the 20 affected individuals
with color-coded arrowheads. The locations of the PCR primer sets are indicated by black arrows.
(C) Real-time qPCRwith three different primer pairs showed that SONmRNA from the affected individuals was overall downregulated in
comparison to mRNA from the parents and unrelated normal individual. Error bars represent mean 5 SD. *p < 0.001.
(D and E) Western blotting demonstrated reduced expression of SON. SON-N antibody (1:1,000) was generated against amino acids
74–88 of the human SON (amino acid sequence DTELRYKPDLKEGSR). The cocktail of WU SON antibodies was a mixture of three
different SON antibodies (WU09 [1:100], WU14 [1:2,000], and WU21 [1:200]). The epitopes of WU SON antibodies were as follows:
MDSQMLATSS for WU09, CEESESKTKSH for WU14, and SMMSAYERS for WU21. SON-N antibody (D) and the cocktail of SON WU
antibodies (E) showed similar results. The bands indicated by the black arrow represent full-length SON. Other bands, which could re-
present potential isoforms, were also detected. Besides the bands present in samples from both normal and affected individuals, no other
specific bands were detected in the affected individuals.
stem cells.25 Surprisingly, from these previous datasets, we

noticed that a group of genes playing pivotal roles in

neuronal cell migration, embryonic survival, metabolism,

and mitochondrial function, including TUBG1 (MIM:

191135), FLNA (MIM: 300017), PNKP (MIM: 605610),

WDR62 (MIM: 613583), PSMD3, HDAC6 (MIM: 300272),

PCK2 (MIM: 614095), PFKL (MIM: 171860), IDH2 (MIM:

147650), ACY1 (MIM: 104620), and ADA (MIM: 608958),

showed significantly decreased expression upon SON

knockdown (Tables S4 and S5).13,22,25 To investigate

whether genes involved in regulating brain development

and in metabolism are also downregulated in individuals
The American
with SON LoF mutations, we measured the levels of RNA

expression of these genes in PBMCs from trio 1, trio 3,

and individual 5, as well as from an unrelated healthy

donor (primers are listed in Table S3). Using qPCR analysis,

we confirmed that all 11 genes were indeed significantly

downregulated in individuals with SON haploinsufficiency

(Figures 4A and 4B).

SON functions as a splicing co-factor that promotes

correct and efficient RNA splicing of weak splice sites and

alternative splice sites by facilitating spliceosome recruit-

ment to the elongatingRNApolymerase II complex.13 Prom-

inent features observed upon SON knockdown in HeLa cells
Journal of Human Genetics 99, 711–719, September 1, 2016 715



Figure 3. Targeted son Knockdown in Developing Zebrafish Causes Impaired Head Development and Spinal Malformations
(A) Zebrafish injected with a splice-blocking sonmorpholino (MO; 50-TGGTCCTGGATATAACAGACAGATT-30, 6.25 ng) that targeted the
junction between intron 9 and exon 10, a control MO (50-CCTCTTACCTCAGTTACAATTTATA-30, 6.25 ng), or no MO showed a normal
phenotype, a bent spine or tail, a head or eye defect, or a severe phenotype at 24 and 72 hpi. The percentages of embryos with each
phenotype are shown in the bar graphs, and the number of embryos examined is listed next to each bar.
(B) Representative images of the phenotype observed 72 hr after MO injection (red arrow, bent spine or tail; white arrow, eye defects; and
yellow arrow, brain edema).
and human embryonic stem cells have included intron

retention and exon skipping, which have been shown at

the gene level for TUBG1, HDAC6, and ADA.13,22,25 We

next sought to determine whether RNA splicing of these

11 genes is also impaired in our individuals with SON

haploinsufficiency. To this end, we analyzed the pre-mRNA

sequences of the remaining eight genes to predict weak

splice sites that could be potential targets of SON-mediated

RNA splicing (Table S6). We performed RT-PCR by using

DNase-treated RNA samples isolated from trio 1, trio 3, indi-

vidual 5, and an unrelated healthy donor and using primers

designed to detect intron retention and exon skipping

(Tables S6 and S7). We not only confirmed that these sites

were indeedmis-spliced inHeLa cells upon SON knockdown

(Figure S6) but also found that all three affected individuals

showed significant intron retention (TUBG1, FLNA, PNKP,

WDR62, PSMD3, PCK2, PFKL, IDH2, and ACY1) and exon

skipping (HDAC6 and ADA) at the predicted sites of the

target pre-mRNAs and that this resulted in the accumulation

ofmis-splicedproducts (Figures4Cand4D). Incontrast,mis-

spliced RNA products were absent in the parents and

unrelated donor (Figures 4C and 4D). Together, these results

indicate that SON-mediated RNA splicing is severely

compromised in individuals with SON haploinsufficiency.

Our data have revealed that the complex neurodevelop-

mental disorder observed in these affected individuals is

due to compromised SON function, which causes insuffi-

cient production of downstream targets as a result of erro-

neous SON-mediated RNA splicing. Moreover, the roles of
716 The American Journal of Human Genetics 99, 711–719, Septemb
several downregulated genes are well-known causes of ID

and/or DD in humans (Tables S4 and S5).4,6,26–35 For

instance, FLNA haploinsufficiency is the most common

cause of periventricular nodular heterotopia (MIM:

300049),35 a rare brain malformation that we also found

among our cohort with SON LoF mutations. Similarly, de

novoLoFmutations inTUBG1 are known to result in cortical

malformations (MIM:615412),32 also frequentlyobserved in

our cohort of affected individuals. Because we have shown

that a substantial number of essential developmental genes

are significantly downregulated upon SON haploinsuffi-

ciency, SON thus represents a master regulator of genes

essential for human neurodevelopmental processes.

In summary, we have identified de novo LoF mutations

in SON as a cause of a complex neurodevelopmental disor-

der associated with ID and/or DD and severe brain malfor-

mations. In addition, we have revealed the underlying

molecular mechanism by showing that SON haploinsuffi-

ciency leads to defective RNA splicing of multiple genes

critical for brain development, neuronal migration, and

metabolism. Our findings thus greatly contribute to our

understanding of how defective RNA splicing leads to

human neurodevelopmental disorders.
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Figure 4. Individuals Carrying Heterozygous SON LoF Mutations Have Defective RNA Splicing of Genes Associated with the
Pathophysiology of ID and/or DD and Metabolic Disorders, Resulting in Their Reduced Expression
(A and B)Multiple genes associated with the pathophysiology of ID and/or DD (A) andmetabolic disorders (B) in the affected individuals
were downregulated in comparison to genes fromparents and unrelated healthy individuals. TUBA1AmRNA served as a negative control
(unaffected transcript). Error bars represent mean 5 SD. *p < 0.001.
(C and D) Intron retention and exon skipping of genes involved in ID and/or DD when mutated (C) and genes involved in metabolic
disorders whenmutated (D) in the individuals with SONmutations. The locations of the primers used for PCR are marked by gray arrows
above the exons. Analysis of TUBA1A pre-mRNA, which served as a negative control, demonstrated that splicing of this transcript is not
impaired in the affected individuals. *, intron-retained products; #, exon-skipped products.
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