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Determinants of Power in Gene-Based
Burden Testing for Monogenic Disorders

Michael H. Guo,1,2,3,4 Andrew Dauber,5 Margaret F. Lippincott,6 Yee-Ming Chan,1,6 Rany M. Salem,1,2,3,4

and Joel N. Hirschhorn1,2,3,4,*

Whole-exome sequencing has enabled new approaches for discovering genes associated with monogenic disorders. One such approach

is gene-based burden testing, in which the aggregate frequency of ‘‘qualifying variants’’ is compared between case and control subjects

for each gene. Despite substantial successes of this approach, the genetic causes for manymonogenic disorders remain unknown or only

partially known. It is possible that particular genetic architectures lower rates of discovery, but the influence of these factors on power has

not been rigorously evaluated. Here, we leverage large-scale exome-sequencing data to create an empirically based simulation framework

to evaluate the impact of key parameters (background variation rates, locus heterogeneity, mode of inheritance, penetrance) on power in

gene-based burden tests in the context ofmonogenic disorders. Our results demonstrate that across genes, there is a wide range in sample

sizes needed to achieve power due to differences in the background rate of rare variants in each gene. Increasing locus heterogeneity

results in rapid increases in sample sizes needed to achieve adequate power, particularly when individual genes contribute to less

than 5% of cases under a dominant model. Interestingly, incomplete penetrance as low as 10% had little effect on power due to the

low prevalence of monogenic disorders. Our results suggest that moderate incomplete penetrance is not an obstacle in this gene-based

burden testing approach but that dominant disorders with high locus heterogeneity will require large sample sizes. Our simulations also

provide guidance on sample size needs and inform study design under various genetic architectures.
Introduction

Many diseases are monogenic, meaning that in affected

individuals within a family, a single gene contains patho-

genic variation that has a predominant influence on their

disease status. Monogenic disorders are commonly referred

to as Mendelian disorders, although many monogenic dis-

orders may not show strictly Mendelian patterns of in-

heritance, especially in the presence of incomplete pene-

trance. Traditionally, genes associated with monogenic

disorders have been mapped by linkage approaches in

families. The advent of whole-exome sequencing (and

increasingly whole-genome sequencing) has motivated

new approaches to mapping genes associated with disease

and has spurred rapid discovery of genes underlying hun-

dreds of monogenic disorders.1 However, for many mono-

genic disorders, the genetic causes have not yet been found

or have been found for only a subset of cases.

Aspects of genetic architecture (such as frequency and

penetrance of disease alleles) exist along a spectrum from

rare monogenic disorders (e.g., cystic fibrosis) to polygenic

disorders (e.g., type 2 diabetes). Even among monogenic

diseases, there is variability in genetic architecture. How-

ever, individuals with monogenic disease can be distin-

guished from those with polygenic disease by requiring

that pathogenic variants have penetrance substantially

greater than disease prevalence. If this condition is satis-

fied, affected relatives are likely to have inherited the
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same pathogenic variant(s) (see Supplemental Note).2

Linkage analysis has been most successful at this mono-

genic end of this spectrum, because the excess sharing of

alleles between affected relatives can be quite low for poly-

genic disorders.2,3 However, there are several important

limitations to linkage analysis even for monogenic dis-

eases. Incomplete penetrance can greatly reduce power in

linkage analyses, even at levels of penetrance much higher

than typically seen for variants influencing polygenic dis-

ease.2,4,5 Critically, incomplete penetrance can greatly

reduce the number of affected individuals in any given

family, making large families difficult to ascertain and

thereby requiring aggregation of evidence across multiple

families with small numbers of affected individuals. In

the presence of locus heterogeneity, the effects of incom-

plete penetrance will be magnified, because reduced pene-

trance will necessitate combining linkage evidence across

families that mostly have different genes associated with

disease.

With the advent of exome sequencing, gene-based

burden tests have been increasingly applied to try to over-

come these limitations, particularly for diseases where

linkage analysis is not feasible or has been ineffective.

Gene-based burden testing approaches are typically applied

to cohorts of unrelated probands. In this approach, the

burden of variants in each gene is compared between dis-

ease-affected case subjects and suitable control subjects.

Various filters, such as allele frequency thresholds and
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predictions of functional consequence, are applied to

enrich for variants that are more likely to be pathogenic

from the otherwise high background of benign variants.

In accordance with Cirulli et al., we refer to variants that

meet these filters as ‘‘qualifying variants.’’6 Once these

filters are applied, the aggregate frequency (burden) of qual-

ifying variants is compared between case and control sub-

jects. This approach is highly comparable to gene-based

burden testing strategies frequently applied in rare variant

association studies in polygenic traits,7,8 and so is in theory

applicable across a range of genetic architectures. Although

the power of this strategy iswell characterized for polygenic

disorders,9–11 the power under different genetic architec-

tures for monogenic disorders has not been systematically

characterized. Because there are wide differences across

even monogenic diseases in terms of genetic architecture

(i.e., rate of background variation in disease-associated

genes, mode of inheritance, penetrance, locus heterogene-

ity), we hypothesized that the genetic architecture or the

nature of thedisease-associated genesmakes somedisorders

less amenable to these exome-sequencing-based gene dis-

covery approaches.

We sought to determine the power to detect genes asso-

ciated with monogenic disorders under various genetic

architectures and to examine whether certain genetic ar-

chitectures are less amenable to gene-based burden ap-

proaches. Estimating the sample sizes needed to find

genetic causes of disease is important, especially since indi-

viduals with rare monogenic disorders are often difficult to

ascertain in large numbers. Previous studies have begun to

address this question but have not been comprehensive

in their analyses of power and have not utilized actual

exome-sequencing data to guide simulations.12,13 To

more comprehensively evaluate power and sample size

requirements, we created a simulation framework that

leverages empirical large-scale exome-sequencing data to

determine the effect of relevant parameters on power to

detect disease-associated genes. Our simulation framework

can also be used to help place bounds on genetic architec-

tures of ongoing projects and to inform which genetic ar-

chitectures are amenable to this gene-based burden testing

approach.
Material and Methods

Framework
In our framework, we consider raremonogenic disorders for which

the genetic causes are unknown. Each monogenic disorder can be

caused by mutations in any number of disease-associated genes.

We consider a simple two-class model, where variants are either

pathogenic (they can cause disease) or benign (no effect on disease

risk). We define a monogenic disorder to be a disorder in which

pathogenic mutations in a single disease-associated gene are

largely responsible for disease in any given individual with disease;

specifically, we require that the penetrance of causal mutations be

substantially greater than the prevalence of disease. When this is

true, any two related individuals with a given disorder will have
528 The American Journal of Human Genetics 99, 527–539, Septemb
co-inherited the same underlying pathogenic variant(s), meaning

that the pathogenic variants are the predominant genetic influ-

ence on individuals with disease (Supplemental Note).

In the typical study design, a cohort of individuals with a mono-

genic disorder and a suitable control cohort undergo exome

sequencing. To improve power, criteria are set for enriching for

pathogenic variants. Criteria usually include a minor allele fre-

quency (MAF) threshold and a threshold for the predicted effect

of the variant on protein function, under the assumption that

rarer variants and variants with a greater effect at the protein level

are more likely to be pathogenic for a monogenic disorder.14–16

We refer to variants that pass these thresholds as ‘‘qualifying

variants.’’6 For each gene, the frequency of qualifying variants

is compared between case and control subjects using a typical

2 3 2 contingency table test or other applicable statistical test.

In an ideal situation, pathogenic variants could be readily distin-

guished from benign variants, but in most cases, some proportion

of qualifying variants are actually benign and some proportion of

non-qualifying variants are actually pathogenic. Furthermore, if

there is incomplete penetrance, unaffected control individuals

may in fact harbor pathogenic variants. Qualifying variants pre-

sent in disease-free controls are therefore comprised of: (1) benign

variants that are difficult to distinguish from pathogenic variants

and (2) incompletely penetrant pathogenic variants. These quali-

fying variants in control subjects represent a background rate of

variation for each gene. If one were able to perfectly distinguish

between pathogenic and benign variants, then all qualifying var-

iants in disease-free control subjects would represent incompletely

penetrant variants. Conversely, if all pathogenic variants are fully

penetrant, then all qualifying variants in disease-free control

subjects would represent benign variants that are misclassified.

Similar arguments hold for qualifying variants present in case

subjects, except that the qualifying variants also include disease-

manifesting pathogenic variants. We assume that for each gene,

the background rate of variation not contributing to disease

(comprised of incompletely penetrant pathogenic variants not

manifesting as disease and benign variants that are misclassified)

is the same between case and control subjects.
Parameters
In this framework, we consider two groups of parameters that in-

fluence the case sample sizes needed for power to detect genes

associated with monogenic disorders. The first group of parame-

ters encompasses aspects of the genetic architecture, which are

intrinsic to a given disorder. These include the background rate

of variation in disease-associated genes (b), the mode of inheri-

tance (autosomal-dominant or -recessive), locus heterogeneity

(modeled by fcase, or proportion of disease cases attributable to

pathogenic variants in each disease-associated gene), and pene-

trance (p). Throughout, we use a bolded fcase to represent a sum-

mary parameter for the average contributions of genes to a given

disorder, and unbolded fcase to represent the contribution of any

given disease-associated gene. The second group of parameters is

related to study design and analytical methods. These include

the ability to distinguish pathogenic from benign variants and

characteristics of the control cohort. Additional descriptions of

these parameters are provided in the Supplemental Note.
Estimating Background Rate of Variation
In this study, we estimated the background rate of variation (b) in

each gene based on a set of 2,597 exome-sequencing samples
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obtained from dbGaP under accession numbers phs000007,

phs000179, phs000200, phs000209, phs000280, phs000286,

phs000287, and phs000285 (see Supplemental Note for dbGaP ac-

knowledgments). Ethical approval for the use of cohorts from

dbGaP was obtained from the Institutional Review Board of both

Boston Children’s Hospital and the Broad Institute of Harvard

and MIT.

These exome-sequencing samples were jointly called by the

ExAC Consortium along with approximately 85,000 additional

exomes.17,18 Samples were pruned to remove related individuals

(IBS > 0.25). PCA outlier analyses were performed by projec-

ting exome-sequencing samples onto HapMap3 samples using

SMARTPCA.19,20 A subset of 2,597 individuals of European

ancestry as determined by the PCA analysis was used in all ana-

lyses. Effects of variants were annotated with Ensembl Variant

Effect Predictor (VEP) v.77.21 Only variants within canonical tran-

scripts of protein coding genes were analyzed. MAF filtering

was based on the population maximum allele frequency from

ExAC.18 To prevent circularity in calculating the MAF from

ExAC, we excluded the subset of individuals in our samples for

the MAF calculation (since some of the samples used are a part

of ExAC).

This cohort is comprised of samples not ascertained on a specific

monogenic disorder; thus, for any single rare monogenic disorder,

the number of individuals in this cohort with that disorder is likely

to be minimal. We estimate b as the proportion of individuals

in the cohort who carry a qualifying variant (defined as below)

in each gene.

To model thresholds for distinguishing pathogenic from benign

variants, we used minor allele frequency (MAF) thresholds and

predicted effect on protein function. MAF thresholds were set at

1%, 0.1%, 0.01%, or private (not seen elsewhere in ExAC). We

set three levels of stringency for predicted effect on protein func-

tion. The least stringent threshold we evaluated included all non-

synonymous variants as qualifying variants. The most stringent

level included only loss-of-function (LOF) variants: essential splice

site, nonsense, and frameshift. We also set an intermediate

threshold where we included LOF variants and missense variants

predicted to be damaging by three of three different protein-pre-

diction algorithms: PolyPhen-2, SIFT, and MutationTaster.22–24
Construction of Contingency Table
For any given set of parameters, we can construct a 2 3 2 contin-

gency table for that gene, where the columns are case and control

subjects and the rows are presence or absence of a qualifying

variant for that gene (Figure S1).

We use the background rate of variation (b) for each gene

(observed from our sample of exome-sequencing data from

2,597 individuals) to simulate the number of control subjects car-

rying (CONTROLQV) or not carrying (CONTROLNQV) a qualifying

variant in that gene:

CONTROLQV ¼ b3 CONTROLTOTAL

CONTROLNQV ¼ ð1� bÞ3 CONTROLTOTAL

Qualifying variants in case subjects (CASEQV) represent the back-

ground rate of variation plus disease-manifesting pathogenic var-

iants. For any given gene, the number of case subjects carrying

disease-manifesting pathogenic variants is a function of locus

heterogeneity (fcase for that gene) and the sensitivity (S) to detect

pathogenic variants given the thresholds. At a given observed
The American
background rate of variation (b) and an assigned CASETOTAL, fcase,

and S, we can calculate the expected number of case subjects car-

rying (CASEQV) and not carrying (CASENQV) qualifying variants for

that gene.

CASEQV ¼ CASETOTAL 3 fcase 3 S þ CASETOTAL 3
�
1� fcase

�
3 b

CASENQV ¼ CASETOTAL � CASEQV

In calculating CASEQV, the term CASETOTAL 3 fcase 3 S represents

the number of case subjects who carry pathogenic variants that

met the filters. The term (1� fcase)3 b represents background vari-

ation in the case subjects who do not carry pathogenic variants.

Simulating Sample Size Needs for Each Gene
To determine power to detect a specific gene, we used the back-

ground rate of variation for that gene (b, observed from the

exome-sequencing data of 2,597 individuals) and specified the fcase
and the sensitivity to detect pathogenic variants given the thresh-

olds (S). At a given total case cohort size (CASETOTAL), we then

perform 1,000 simulations. In each simulation, we simulate the

number of pathogenic disease mutations observed in the case sub-

jects (CASEPATH), where CASEPATH is distributed binomially as:

CASEPATH ¼ Bin
�
n ¼ CASETOTAL; p ¼ fcase 3 S

�
:

The number of case subjects carrying (CASEQV) and not carrying

(CASENQV) qualifying mutations in cases for that simulation is

then:

CASEQV ¼ CASEPATH þ Binðn ¼ CASETOTAL � CASEPATH ; p ¼ bÞ

CASENQV ¼ CASETOTAL � CASEQV :

The number of control subjects carrying qualifying variants

(CONTROLQV) is calculated based on the background variation b

(see above). The number of case and control subjects carrying

and not carrying qualifying variations are then compared using

a two-sided Fisher’s exact test (non-integer values were rounded

to integers for the Fisher’s exact test). p values less than 2.5 3

10�6 (a ¼ 0.05 corrected for testing of approximately 20,000

genes) are considered to be significant (see Supplemental Note

for additional information on p values). 80% power is determined

as the minimum CASETOTAL that results in 80% of simulations

achieving statistical significance.

Simulating Power to Detect Any Gene
To determine power to find at least one gene associated with a

given disease (as opposed to a single, specified gene), we first

model gene sets (sets of fractional contributions of disease-associ-

ated genes to disease cases) where each disease-associated gene

contributes an equal proportion (fcase) to disease cases and there

are 1/fcase genes. We iterate a total case sample size (CASETOTAL)

upward with step size of 1. At each CASETOTAL, we perform

1,000 simulations. For each of these simulations, we draw a set

of 1/fcase random genes, where the genes are selected randomly

from the genome. For each gene in the set of disease-associated

genes, the number of case subjects carrying pathogenic variants

is simulated as described above.

For each set of random genes, using the simulated CASEQV and

CONTROLQV, we calculate a p value for each gene in the set. At

each CASETOTAL, we can then calculate the number of random

sets of genes (out of 1,000 simulated sets) where at least one
Journal of Human Genetics 99, 527–539, September 1, 2016 529



gene in the set resulted in a significant p value. The number of

samples needed for 80% power is the minimum CASETOTAL for

which more than 80% simulations had at least one gene reach

statistical significance (p % 2.5 3 10�6).

Power under Recessive Model
Simulations to calculate the samples needed for each gene and the

samples needed for a gene set under the recessive model were per-

formed similarly as above. The background rate of variation (b) in

control subjects for the recessive model is based on the number of

individuals carrying two or more qualifying variants in a given

gene. It is important to note that individuals carrying two or

more variants in a gene can be homozygous recessive, compound

heterozygous, or carry two variants on the same haplotype (since

we cannot readily resolve phase in our samples). Since some

proportion of the individuals who carry two variants in a gene

actually represent two variants on the same haplotype, the back-

ground rate under the recessive model is inflated, which would

have the effect of slightly deflating power. Because phase is also

unknown for most actual studies, our simulations should corre-

spond closely to actual studies.

Simulation of Unequal Contributions of Disease-

Associated Genes
Whereas throughout the majority of the manuscript, we modeled

gene sets where there are 1/fcase genes, each of which contributes

to fcase proportion of disease cases, in simulations related to Fig-

ures S9A–S9C, we modeled unequal contributions of disease-asso-

ciated genes. We created three sample disease-associated gene sets.

In set 1, there are 10 genes, each contributing to 10% of cases. In

set 2, there are 6 genes: one gene contributing to 50% of cases and

5 genes each contributing to 10% of cases. In set 3, there are 51

genes: one gene contributing to 50% of cases and 50 genes each

contributing to 1% of cases. For these simulations, we observe

the number of gene sets (out of 1,000) that resulted in at least 1,

2, 3, 4, and 5 genes, and no genes reach statistical significance at

increasing sample sizes. Simulations were performed as described

above.

Simulation of Phenocopies
To simulate the effect of phenocopies or disease cases that have

disease due to polygenic or non-genetic causes, we introduce

a phenocopy rate parameter: f. f represents the proportion of

case subjects who do not manifest disease due to a pathogenicmu-

tation in one of the monogenic disease-associated genes, but

rather due to a different cause. The fcase of the disease-associated

genes sum to 1 � f. We simulated power for f ranging from 0.1

to 1.0. Simulations were performed as described above.

Effect of Penetrance
To examine the effect of penetrance, we make the simplifying

assumption that the background rate of variation observed from

the 2,597 individuals entirely represents benign variants. To simu-

late the effect of penetrance, we then add to this background rate

of benign variants an additional factor to reflect incompletely

penetrant pathogenic variants not manifesting as disease present

in a disease-free control cohort. We represent this rate of these

incompletely penetrant pathogenic variants as bh, which can be

modeled given the penetrance (p), disease prevalence (P), sensi-

tivity to detect pathogenic variants given a set of thresholds (S),

and the locus heterogeneity parameter, fcase.
530 The American Journal of Human Genetics 99, 527–539, Septemb
bh ¼
�
P 3 fCASE 3 S

p

�
3 ð1� pÞ

In this formula, the term ðP 3 fCASE3 SÞ=p represents the propor-

tion of the population who would carry a detectable pathogenic

variant in a given disease-associated gene. Since we are simulating

a healthy control population, we must multiply by 1 � p to obtain

the proportion of healthy individuals in the control population

who carry a pathogenic variant not manifesting as disease in

a given disease-associated gene. To then calculate a total back-

ground rate of variation for each gene, we add bh to the

background rate of qualifying variants observed from the 2,597 in-

dividuals. The number of control subjects carrying (CONTROLQV)

and not carrying (CONTROLNQV) can then be calculated as above.

For case subjects, we again assumed that the background rate

(representing benign variants and incompletely penetrant patho-

genic variants not manifesting as disease) is the same in case

subjects and in control subjects. We again spike in pathogenic var-

iants and calculate the number of case subjects (CASEQV) carrying

andnot carrying (CASENQV) qualifying variants as described above.

Effect of Control Size and Population-Based Controls
To simulate the effect of control size, we used the same back-

ground rate of variation as above but scaled the CONTROLTOTAL

to 1,000, 10,000, 100,000, and 1,000,000 total control subjects.

To simulate the effect of using population-based control subjects

rather than disease-free control subjects, we used the same simula-

tion framework but modeled the additional effect of having

disease-affected individuals in the control cohort as a function

of the prevalence (P) of disease (modeled at 1%, 0.1%, 0.01%,

and 0.001%). In this situation, there is additional background vari-

ation resulting from disease-manifesting individuals in the control

subjects which equals P 3 fcase 3 S3 CONTROLTOTAL. The back-

ground variation resulting from disease-manifesting individuals

in the control cohort is added to the background variation

observed from the data to generate a modified control background

rate that was then used in the simulations.

Comparison of Known and Constrained Genes
For Gene Damaging Index (GDI) scores, we considered con-

strained genes to be those marked as ‘‘Low’’ for ‘‘Gene damage

prediction (all disease-causing genes).’’25 For Residual Variation

Intolerance Scores (RVIS), we considered constrained genes to be

genes in the lowest 25th percentile according to the ‘‘OEratio-

percentile[ExAC]’’ metric.26 For analyses related to Figure S16, we

used a set of 631 OMIM genes that reportedly act in a dominant

fashion. Coding gene lengths were obtained from Gencode v.19;

for each gene, the length of the longest transcript was used. Power

calculations were performed as described above.

Software
All simulations were performed with R v.3.1.27 Code used for the

simulations is available upon request. Processing of vcf files was

performed with bcftools v.1.228 and custom Python scripts (v.2.7).
Results

In this study, we developed a simulation framework to

understand how multiple factors can influence power

to detect genes underlying a monogenic disorder in an
er 1, 2016



Figure 1. Determinants of Power in Exome-Sequencing Studies
for Monogenic Disorders
The black box (center) lists the values for each parameter under the
‘‘base model’’ monogenic disorder we consider. On the left (blue)
are the parameters that are intrinsic to a given disorder (back-
ground rate of variation of disease-associated genes, mode of
inheritance, locus heterogeneity, and penetrance). On the right
(red) are parameters that are determined by the researcher (sensi-
tivity to detect pathogenic variants and characteristics of control
cohort). The values used in the paper are listed in Table S1.
exome-sequencing gene-based burden testing strategy. We

broadly classify these factors into: (1) components of the

genetic architecture (background rate of variation

in disease-associated genes, locus heterogeneity, mode of

inheritance, and penetrance of causal variants) and (2) as-

pects of the study design and analytical methods (ability to

distinguish pathogenic from benign variants and charac-

teristics of the control cohort) (Figure 1A). Our simulation

framework is based on empirically determined rates of

background genetic variation (Figure S1). First, we use

large-scale exome-sequencing data to tabulate the back-

ground rates of qualifying variants in each gene in the

genome. Using these empirically derived background rates,

we simulate power under a base model and then system-

atically alter each factor to evaluate its effect on power.

Additional details regarding the framework and simula-

tions are provided in the Material and Methods and the

Supplemental Note. A listing and description of all the

parameters used can be found in Table S1.

Background Rate of Variation across Genes

In a typical study design, filters such as minor allele fre-

quency (MAF) and computational predictions of whether

a variant is damaging are applied to enrich for variants

that are more likely to be pathogenic. We refer to the var-

iants that pass these filters as ‘‘qualifying variants’’6 and

define the background rate of variation to be the propor-

tion of individuals in a disease-free control cohort who

carry qualifying variants.

We first examined the distribution of background rate

of variation across all genes, utilizing exome-sequencing

data from 2,597 individuals (see Material and Methods).

Because we are simulating an arbitrary rare disease, we

for now make the assumption that the cohort under study

is free of the disease. In this control cohort, we observed a

wide range of background variation across genes. For
The American
example, if we define qualifying variants as all nonsynon-

ymous variants with MAF % 0.1%, then 1,744 genes have

no individuals who carry a qualifying variant, whereas for

the most variable gene (TTN), 38.2% of individuals carry at

least one variant that meets these criteria (Figure 2A).

Distribution of Sample Sizes Needed across Genes

Having observed a wide range of background rates across

gene, we next used these data to determine sample sizes

needed for power to detect each gene, if it were a disease-

associated gene. We first modeled a moderately favorable

architecture, hereafter referred to as the ‘‘base model,’’

where each gene contributes a dominant, completely

penetrant, rare (MAF % 0.1%) nonsynonymous variant

to 10% of disease-affected case subjects (Figure 1, Table

S1). Note that the assumption of complete penetrance im-

plies that all qualifying variants present in control subjects

represent benign variants ‘‘misclassified’’ by using insuffi-

ciently stringent filters (see Material and Methods). Using

this base model, for each gene in the genome, we deter-

mined sample sizes needed for 80% power to detect that

specific gene at p % 2.5 3 10�6 (see Supplemental Note

for details on p value thresholds). We found a wide range

of sample sizes needed to achieve 80% power (Figure 2B),

which was linearly related to the background rate of varia-

tion in each gene (Figure 2C). As expected, genes with

the most background variation are the most difficult to

discover and may require intractably large numbers of

case samples. For example, TTN, which has the highest

background rate of variation, would require approximately

3,740 case subjects to achieve 80% power even under this

moderately favorable scenario. At the other extreme, a

gene with no observed background variation requires

approximately 54 cases to achieve 80% power under the

same scenario. The background rate of variation also influ-

ences power across a wide range of other criteria for

defining qualifying variants (Figures S2–S7).

To further illustrate the relationship between back-

ground rate and power, we chose five representative genes:

the least variable gene, genes at the 25th, 50th, and 75th per-

centiles of variability, and the most variable gene in the

genome based on nonsynonymous variants with MAF %

0.1%. Background rates of qualifying variants for these

five genes were 0%, 0.23%, 0.50%, 0.90%, and 38.2%,

respectively. For each of these five genes, we then deter-

mined power at increasing sample sizes if the gene con-

tributes to 10% of disease-affected case subjects under a

dominantmodel.We observed a sigmoidal relationship be-

tween power and sample sizes (Figure 2D); there is a ‘‘lag’’

in power gain before reaching a sample size at which power

increases rapidly. At some point, the gains in power begin

to level off with increasing sample size. For themost highly

variable gene, there were no significant power gains even

after 200 case samples are sequenced. These analyses

demonstrate that differences in the rate of background var-

iants across genes strongly influence the power to detect

different genes for a given genetic architecture.
Journal of Human Genetics 99, 527–539, September 1, 2016 531
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Figure 2. Background Rate of Variation
and Power to Detect Specific Genes
(A) Background rate of variation (propor-
tion of control subjects carrying qualifying
variants) in each gene considering all non-
synonymous variants at MAF % 0.1%.
Genes are ranked on the horizontal axis
from the least variable to themost variable.
Each point on the plot represents a single
gene. Not shown: MUC16 (0.209) and
TTN (0.382).
(B) Sample size needed to have 80% power
to detect each gene in the genome under
the base model (see Figure 1 for details of
the base model). Genes are ranked from
least to most samples needed for 80%
power. Not shown: SYNE1 (502 samples),
FLG (548), OBSCN (692), MUC16 (1,058),
and TTN (3,740).
(C) Sample size needed to have 80% power
to detect each gene in the genome as a
function of background rate of variation.
Simulations were performed under base
model. Not shown: SYNE1 (0.113 back-
ground rate; 502 samples), FLG (0.119;
548), OBSCN (0.149; 692), MUC16 (0.209;
1,058), and TTN (0.382; 3,740).
(D) Power to detect a gene at increasing
sample sizes, for the least variable gene
(green), genes at 25th (orange), 50th (blue),
75th (purple) percentiles of variability,
and most variable gene (red). Simulations
performed under the base model. Curves
were smoothed using smooth.spline func-
tion in R.
Power to Detect at Least One of a Set of Disease-

Associated Genes

Having determined the sample size needed to detect

a single disease-associated gene, we next evaluated

the power of exome sequencing to detect at least one of

any genes, given a set of genes that underlie a disease.

We make the simplifying assumption that the disease-

associated genes have background rates of variation

equivalent to a random sample of genes drawn from

the entire genome. We calculated the power to detect

at least one gene using the base model described above.

In this scenario, 25 samples provide 80% power to

detect at least one of the ten disease-associated genes

(Figure 3A).

In the analyses that follow, we continue to explore the

sample sizes needed to achieve 80% power to detect at least

one gene, varying each parameter in the base model indi-
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vidually and assessing the impact

of each parameter on power under

different scenarios.

Power under Recessive Model

The base model assumes a dominant

model, in which only one qualifying

variant is needed to manifest disease.

To examine the impact of a recessive
model on power, we consider only genes with two quali-

fying variants. As expected, using the same MAF threshold

for defining a qualifying variant, the background rate of

variation for each gene was smaller under the recessive

model than under a dominant model (Figure S8A). For

example, for nonsynonymous variants at MAF % 0.1%,

none of the 2,597 individuals carried qualifying variants

for 15,311 genes under a recessive model (by comparison,

none of the individuals carried qualifying variants for only

1,744 genes under the dominant model). This decreased

background rate of variation under the recessive model

results in a corresponding decrease in the sample sizes

needed to achieve 80% power to detect each gene

(Figure S8B). In later analyses, we determine the effect of

changing the MAF threshold, which might often be appro-

priately higher for recessive disorders than for dominant

disorders.
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Impact of Locus Heterogeneity

To model locus heterogeneity, we assign a parameter fcase
to represent the fraction of disease cases caused by quali-

fying variants in each disease-associated gene; this param-

eter is inversely related to degree of locus heterogeneity.

We first analyzed power in scenarios where each disease-

associated gene contributes equal proportions to disease

cases, for values of fcase ranging from 0.01 to 1.0 (in the

base model, fcase is 0.1). We found that locus heterogeneity

had a strong effect on power (Figure 3B). Starting from the

base model, as fcase increases from 0.1 to 1.0, typical sam-

ple sizes needed for 80% power decrease from 23 to 3 case

subjects. Conversely, as fcase decreases, the sample sizes

needed to detect a disease-associated gene rise sharply;

this effect is particularly striking when fcase falls below

0.05, with 318 case subjects needed to detect at least one

disease-associated gene under the base model when fcase
is 0.01. As expected from the lower rate of background vari-

ation, the recessive model performs better at the sameMAF

threshold; when fcase is 0.01, 95 case samples are needed

for 80% power for the recessive model.

For actual diseases, the contributions of each disease-

associated gene probably differ across the genes. To simu-

late the impact of variable contributions of individual

genes, we simulated three different sets of contributions

to disease cases, all under a dominant model. In set 1,

each of ten disease-associated genes contributes to 10%

of cases (base model); in set 2, one gene contributes to

50% of cases and five genes each contribute to 10% of

cases; in set 3, one gene contributes to 50% of cases and

50 additional genes each contribute to 1% of cases. We

observed similar patterns of power across each of these

three gene sets (Figures S9A–S9C) and that the power to

detect at least N disease-associated genes is driven primar-

ily by the genes with the ~Nth largest fcase values. Specif-

ically, the power to detect at least one gene is higher

with larger maximum values of fcase for a given disease.

Finally, we note that in some situations, the contribu-

tions of the disease-associated genes might not sum to

100%. This may be due to phenocopies from other disor-

ders, non-genetic causes, or polygenic causes of disease.

We encapsulate these possibilities as a ‘‘phenocopy rate’’
The American
and simulate scenarios where values of fcase sum to less

than 1 due to this phenocopy rate. As expected, higher

phenocopy rates increase the required sample sizes with

sample sizes doubling at a 40% phenocopy rate (i.e., a

genetic architecture in which exonic, monogenic variants

contribute to 60% of disease cases) (Figure S10).

Effect of Penetrance

We next sought to evaluate the effect of incomplete pene-

trance on the power to detect disease-associated genes.

Elsewhere in the manuscript we have assumed complete

penetrance so that all qualifying variants present in dis-

ease-free control subjects are benign variants that are mis-

classified. To examine the effect of incomplete penetrance,

we nowmodify our assumptions such that the background

rate of variation observed in the 2,597 individuals repre-

sent benign variants and then add to this observed rate

of background variation an additional factor representing

the rate of incompletely pathogenic variants not manifest-

ing as disease in a disease-free control cohort (see Material

and Methods).

We simulate penetrance with the parameter p (probabil-

ity of a variant causing disease in an individual) and

assessed the impact of variable penetrance on power (p

ranging from 10% to 100%). Importantly, in contrast to

other analyses in this manuscript, the prevalence of disease

now becomes an important consideration: the background

rate of variation due to incomplete penetrance is related to

the prevalence of disease, while the background rate of

variation due to misclassification is independent of preva-

lence. We note that our working definition of a monogenic

disorder is disease due to variants whose penetrance is

substantially greater than the disease prevalence (see Sup-

plemental Note); we therefore focus our analyses on sce-

narios where penetrance is at least 10-fold greater than

prevalence.

Starting from the base model and evaluating a range of

disease prevalence from 1% to 0.001%, we found that

the effect of penetrance was relatively small, especially at

low disease prevalence. For example, decreasing pene-

trance from 100% to 10% only substantially increased

sample sizes when disease prevalence was 1% (Figures
Journal of Human Genetics 99, 527–539, September 1, 2016 533
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Figure 4. Effect of Penetrance
Effect of penetrance on sample sizes
needed for 80% power to detect at least
one gene associated with disease. Simula-
tions were performed at varying disease
prevalence of 1% (A), 0.1% (B), 0.01%
(C), or 0.001% (D). Values of penetrance
range from 0.1 to 1.0. Simulations were
performed assuming a dominant disorder
with ten disease-associated genes, each
of which contributes to 10% of cases
(fcase ¼ 0.1).
4A–4D). These patterns hold at other values of locus

heterogeneity (Figures S11 and S12). These simulations

demonstrate that incomplete penetrance, in isolation,

has little impact on power for this gene-based burden

testing approach, especially if disease prevalence is low.

Intuitively, the effect of moderately low penetrance (in

the range of 10% or even lower) is small for rare mono-

genic diseases because the low disease prevalence, relative

to penetrance, means that few disease-free control subjects

will carry pathogenic mutations. This low rate of patho-

genic variants in healthy control subjects corresponds to

a small effect on background variation and limited dilution

of power in the gene-based burden test. Moreover, because

this strategy ascertains case subjects on affected status,

reduced penetrance will have almost no effect on the var-

iants observed in the case subjects.

Effect of Ability to Distinguish Pathogenic from

Benign Variants

The analyses above assessed the impact of genetic architec-

ture (background rate of variation, locus heterogeneity,

mode of inheritance, and penetrance) on power to detect

genes associated with a disease. We next analyzed the

impact of aspects of study design on power. We first exam-

ined the choice of filters for selecting qualifying variants.

For most genes and diseases, these filters are currently

imperfect at distinguishing pathogenic from benign vari-

ants and thus have an associated sensitivity and specificity

for each gene. The sensitivity is the proportion of truly

pathogenic variants that are correctly classified as quali-
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fying variants, whereas specificity is

the proportion of benign variants

that are correctly classified as non-

qualifying variants.

To model the effect of increasing

specificity (that is, decreasing in the

number of truly benign mutations

that are misclassified as qualifying),

we examined the effect of increas-

ingly stringent filters on power. Two

commonly used filters are MAF and

predicted effect of variant on protein

function, with the assumption that

rare variants and variants with a

greater effect on protein function are
more likely to be pathogenic for rare monogenic disorders.

Different values of the MAF filter—1%, 0.1%, 0.01%, or

private (notpresent elsewhere in cohort or in reference pop-

ulations)—affected the observed background rate of varia-

tion (Figure S2), which led to a corresponding change in

power (Figure S3). Likewise, varying the stringency of filters

for the predicted effect of the variant on protein function

(LOF only, LOF plus missense predicted to be damaging,

or all nonsynonymous variants) affected the background

rate of variation (Figure S4) and power (Figure S5).

Although applying more stringent filters to increase

specificity can improve power by decreasing the back-

ground variation rate, theremay also be detrimental effects

on power due to decreased sensitivity. For example, a MAF

filter that is too stringent can decrease sensitivity if some

truly pathogenic variants are more common than the

MAF threshold being applied. To evaluate this trade-off

between sensitivity and specificity, we determined power

using filters with different stringency and modeling values

of sensitivity (Figures 5A and 5B). For example, under our

base model and MAF % 1%, 26 samples are needed to

obtain 80% power at 100% sensitivity to detect any gene

associated with a given disease (Figure 5A). Tightening

theMAF filter from 1% to considering only private variants

would decrease sample sizes for 80% power from 26 to 13,

assuming sensitivity of 100% is maintained. However, if

this more stringent filter reduced sensitivity to 60% or

below, then there would actually be a loss of power as

compared to applying a MAF filter of 1% and retaining

100% sensitivity.
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Figure 5. Effect of Ability to Distinguish
Pathogenic from Benign Variants
(A) Sample sizes needed to achieve 80%po-
wer to detect at least one disease-associated
gene at varying MAF cutoffs (1%, 0.1%,
0.01%, or private) and sensitivities (0.3 to
1.0) to detect pathogenic variants. Simula-
tions were performed assuming a domi-
nant disorder with ten disease-associated
genes, each of which contributes to 10%
of cases (fcase ¼ 0.1). Background rates of
variation were calculated based on all non-
synonymous variants.
(B) Sample sizes needed to achieve 80% po-
wer to detect at least one disease-associated
gene at varying protein-deleteriousness
cutoffs and sensitivities (ranging from
0.3 to 1.0) to detect pathogenic variants.
Protein-deleteriousness cutoffs include all

nonynonymous (blue), LOF plus damagingmissense (green), or LOF only (purple). Damagingmissense assignments were based on three
protein-prediction algorithms (see Material and Methods). LOF only includes only nonsense, splice site, and frameshift. Simulations
were performed assuming a dominant disorder with ten disease-associated genes, each of which contributes to 10% of cases (fcase ¼
0.1). Background rates of variation were calculated based on MAF % 0.1%
For both MAF threshold and protein-deleteriousness fil-

ters, we found that the sample sizes needed to achieve 80%

power to detect at least one disease-associated gene rise

exponentially with decreased sensitivity; every 30% reduc-

tion in sensitivity results in approximately a 2-fold in-

crease in sample sizes needed (Figures 5A and 5B).

Impact of Control Cohort

We next considered the effect of changing parameters of

the control cohort. We found that increasing control sam-

ple size has little effect on power to detect genes associated

with disease as control cohort size increased past 10,000

control subjects (Figure S13A). There was also little impact

of using a population-based control cohort rather than a

disease-free control cohort at various disease prevalences,

especially as the disease becomes increasingly rare (preva-

lence less than 0.1%; Figure S13B).

Bounds on Genetic Architecture

In most situations, the genetic architecture of a disease un-

der study is not known a priori. Having determined that lo-

cus heterogeneity and mode of inheritance are the two

most important drivers of power in a gene-based burden

test for a monogenic disorder, we asked whether our simu-

lation framework could be used to place bounds on the ge-

netic architecture after a given number of case subjects

have been sequenced and no gene has emerged as being

associated with disease. We analyzed the probability of

not detecting any gene at increasing sample sizes under

different hypothesized values of locus heterogeneity (fcase
ranging from 0.01 to 1.0) and modes of inheritance (domi-

nant or recessive) (Figures 6A and 6B). As expected, there

were rapid decreases in the likelihood of not finding any

disease-associated genes with increasing sample sizes, espe-

cially when fcase was high or for recessive diseases. At a

given case sample size where no gene has been implicated

for a disease, a low likelihood of not detecting a disease-
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associated gene for a particular hypothesized fcase and

mode of inheritance indicates that the genetic architecture

is less favorable than hypothesized. For example, if 80 sam-

ples have been sequenced for a disease and no gene has

reached statistical significance, the probability of any dis-

ease-associated gene contributing pathogenic variants to

at least 5% to disease cases (fcase of 0.05) and acting in a

dominant fashion is less than 1% (Figure 6A). This nega-

tive result would indicate that qualifying variants in any

of the genes associated with disease most likely contribute

to less than 5% of disease case subjects, suggesting either

high locus heterogeneity, a large fraction of pathogenic

variants that are not being captured as qualifying variants

(such as noncoding variants or more common variants

filtered out by the thresholds), or a substantial influence

of phenocopies.

Power for Known and Predicted Disease-Associated

Genes

Genes associated with disease may differ from the rest of

the genome in characteristics such as background rates of

variation. To assess how this would affect power, we first

examined genes that have been demonstrated to display

genic constraint by two metrics: GDI and RVIS.25,26 As

expected, genes showing constraint by either metric had

lower background rates of variation as compared to the

rest of the genome (Figures S14A and S15A) and required

fewer samples to achieve power (Figures S14B, S14C,

S15B, and S15C). However, genes associated with disease

may not necessarily be easier to detect by this gene-based

burden testing approach. In fact, known disease-associated

genes cataloged by OMIM and reported to be dominant

actually have higher background rates as compared to

the rest of the genome (Figure S16A). This effect appears

to be due to the correlation between gene length and back-

ground rate and the observation that these genes previ-

ously implicated in disease are systematically longer as
Journal of Human Genetics 99, 527–539, September 1, 2016 535
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Figure 6. BoundsonGeneticArchitecture
Probability of not detecting any genes asso-
ciated with a given disorder at increasing
sample sizes. Analyses were performed at
different hypothesized fcase ranging from
0.01 to 1.0 under a dominant model (A) or
a recessive model (B). All nonsynonymous
variants with MAF % 0.1% were used in
calculating background variation rates.
compared to the rest of the genome (Figures S16B and

S16C). Accordingly, the sample size needed to detect genes

associated with disease was slightly higher (Figures S16D

and S16E).
Discussion

We have applied a simulation framework to determine po-

wer in exome-sequencing studies that apply gene-based

burden tests for discovery of genes associated with mono-

genic disorders. Our framework utilizes actual exome-

sequencing data to understand how differences across a

wide range of genetic architectures and realistic study de-

signs affect power. To our knowledge, our work is the

most comprehensive examination to date of the parame-

ters that drive power in gene-based burden tests for mono-

genic disorders and is the first to incorporate empirical

exome-sequencing data.

We demonstrated that background variation, which

varies across genes, directly affects sample sizes needed to

detect associations for that gene. The need for large sample

size is particularly pronounced for genes such as TTN,

where a large proportion of individuals in the population

carry qualifying variants (Figures 2A and 2B). The number

of case subjects needed to find associations for such genes

can easily reach the hundreds or thousands depending on

disease genetic architecture. These sample sizes may often

exceed practical limits and implicating these genes in dis-

eases will probably rely on additional lines of evidence,

such as functional assays, analysis of specific subdomains

(as has been done for TTN [MIM: 188840]), or segregation

data in large pedigrees.29,30

Our simulations demonstrated that locus heterogeneity

and mode of inheritance are primary drivers of sample

size needs for discovery of genes associated with mono-

genic disorders. As the contribution of any gene to a dis-

ease decreases (reflecting increased locus heterogeneity

and/or ‘‘contamination’’ with phenocopies), the sample

sizes needed to detect that gene rise rapidly; in a situation

where any gene contributes to only a small fraction (e.g.,

1%) of cases, hundreds of case subjects are needed to pro-
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vide reasonable power to detect at

least one gene associated with a dis-

ease under a dominant model. How-

ever, under a recessive model, the

sample size needs are much smaller,
even in the presence of high locus heterogeneity. A recent

study illustrated the challenges that locus heterogeneity

places in implicating genes associated asmonogenic causes

of rare disorders.6 After screening for genes known to

be associated with amyotrophic lateral sclerosis (MIM:

105400), no gene was found to contribute more than 1%

to disease case subjects. This study required 4,161 case sub-

jects to implicate 2 new genes—TBK1 (MIM: 604834) and

NEK1 (MIM: 604588)—which contributed to 0.9% and

0.7% of disease cases, respectively. Even known genes

such as CHCHD10 (MIM: 615903) and ALS2 (MIM:

205100), which were originally implicated in segrega-

tion/linkage analyses in large kindreds,31,32 had p values

greater than 0.05 in a discovery cohort of 2,843 case sub-

jects because the fractional contributions of these two

genes were very small (estimated at 0.07% and 0.007%,

respectively).

To our initial surprise, we found that decreased pene-

trance had a relatively small effect on power, at least for

monogenic disorders with low prevalence. However, intu-

itively, this result is sensible in light of the high degree of

penetrance relative to prevalence for monogenic disorders.

For example, even if all pathogenic variants had a rela-

tively low penetrance of 10% for a dominant disorder

with a prevalence of 0.1%, only ~1% of a disease-free con-

trol cohort would carry pathogenic variants. This low back-

ground rate of pathogenic mutations in control subjects

has limited effect on power. Additionally, because the

case cohort is ascertained on affected status, incomplete

penetrance will have almost no effect on the number of

variants observed in case subjects. By contrast, incomplete

penetrance has strong negative effects on approaches

relying on linkage in large multiplex families. Incomplete

penetrance will obscure Mendelian patterns of inheri-

tance, hindering the ascertainment of large families with

multiple affected individuals that provide the power

for an affecteds-only linkage approach. Moreover, in

the presence of incomplete penetrance, linkage analysis

incorporating unaffected family members into the analysis

is unlikely to be effective. Thus, linkage analysis with

low penetrance alleles will typically require aggregation

of linkage evidence across multiple families, which is



particularly problematic in the presence of significant lo-

cus heterogeneity.

Our study also evaluated the complex relationship be-

tween power and the filters used to enrich for variants

that are more likely to be pathogenic. The precise nature

of the trade-off between sensitivity and specificity is chal-

lenging to characterize empirically. This is because the

true sensitivity or specificity of various filters at any given

threshold is not known for any gene, and existing assign-

ments of pathogenicity (e.g., ClinVar) can depend on

MAF thresholds and protein predictions, introducing an

inherent circularity to the pathogenicity assignments.

Nonetheless, our simulations showed that the samples

sizes needed to achieve power to detect a gene associated

with disease rise exponentially with decreased sensitivity,

suggesting that in some scenarios, application of less strin-

gent filters might be advantageous. However, less stringent

filters may also decrease the aggregate penetrance of qual-

ifying variants. This decreased penetrance of qualifying

variants would result in higher background rates and corre-

sponding dilution of power. However, because pene-

trance has a limited effect on power, the adverse effect of

decreased penetrance with increased sensitivity is likely

to be minimal. Nonetheless, this relationship between

choice of thresholds and power merits further study.

Under the wide range of genetic architectures we tested,

our simulations demonstrated that the current size of pub-

licly available control cohorts (such as the Exome Aggrega-

tion Consortium)18 is probably sufficient to maximize

power (Figure S13A), although for populations with ances-

tries that are not yet as well represented in publicly avail-

able sequencing projects, additional sequencing data will

be beneficial. Using population-based control subjects

rather than disease-free control subjects also had negligible

effects on power (Figure S13B). These data suggest that us-

ing large databases of shared control subjects is likely to be

a resource-efficient approach to finding genes associated

with rare monogenic disorders. Of course, to avoid false

positives, the control cohort needs to be matched to the

case samples for ancestry and for technical factors such

as depth of coverage in each gene/region.

There are several important limitations of our study.

First, we chose a simple gene-based burden testing

approach, although there are more sophisticated methods

that have been applied to both monogenic and polygenic

diseases.7,33 Second, our study focused on the use of

unrelated individuals with the disease in the case cohort.

Addition of linkage and segregation data can improve

power in gene discovery efforts, as will be discussed

below.33,34 Third, we focused our analyses on whole-

exome sequencing rather than whole-genome sequencing.

However, the relative effects of each of the parameters we

studied are applicable to a whole-genome sequencing proj-

ect, although the filters to assess pathogenicity for noncod-

ing variants are even less well established. As compared to

exome sequencing, whole-genome sequencing will have

gains in greater ability to ascertain all genes as well as
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potentially greater sensitivity to detect even coding patho-

genic variants.35

In our study, we demonstrated that monogenic disorders

with high locus heterogeneity and dominant modes of in-

heritance are less amenable to a gene-based burden testing

approach. There are several potential ways to mitigate

these limitations. First, although we assumed a simple

model in which pathogenic variants in different genes

each cause a form of disease that is indistinguishable at

the phenotypic level, there may be clinically recognizable

subgroups that are associated with distinct genes and/or

that may help to distinguish monogenic from non-mono-

genic forms of disease. In this situation, examining each

subgroup in isolation would increase power because the

genes associated with that clinical subgroup will account

for a larger fraction of disease cases, reducing the effective

locus heterogeneity.

Second, although the gene-based burden approach is

typically applied to unrelated probands, segregation data

can be immensely useful. For example, for a dominant

disorder, analyzing only variants that are shared among

affected individuals in a family will greatly reduce the

number of qualifying variants (assuming, as we have

here, that penetrance is high enough relative to disease

prevalence to greatly reduce the chance of phenocopy

within a family). Emerging methods aim to calibrate

this segregation data within families to properly compare

with control subjects and incorporate into a burden-

testing framework.33,34 These methods will face challenges

in the presence of incomplete penetrance and using both

unaffected and affected family members in the analyses.

Family data can also be immensely helpful in the context

of de novo mutations, which can be identified with only

one affected individual and their parents (rather than a

larger pedigree). For a dominant disorder that is caused

by moderately or highly penetrant mutations and greatly

decreases reproductive fitness, it can be presumed that

many pathogenic mutations will be de novo. As the rate

of de novo mutations is very low in the exome (on average

less than one nonsynonymous variant per individual

exome), the background rate of variation across genes

will be extremely low, greatly enhancing the power to

detect a gene associated with disease.36

We demonstrated that power in these studies is highly

dependent on the choice of thresholds for enriching for

likely pathogenic variants and that the best threshold is

usually not apparent a priori. Strategies that test multiple

thresholds and select the best-performing threshold for

each gene can help overcome this limitation, as demon-

strated by Cirulli et al.6 However, this strategy incurs a

penalty for multiple hypothesis testing.37 Emerging tech-

niques in functional genomics may be able to assess a

priori the functional consequences of each variant in a

gene;38,39 if the functional assay aligns well with pathoge-

nicity, this information can dramatically improve the

sensitivity and specificity of filters used to distinguish

pathogenic from benign variants.
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Our study on gene-based burden testing, in the context

of much previous work on power in linkage analyses,

suggest which situations are more amenable to each

approach. In the setting of locus heterogeneity but high

penetrance, large kindreds with multiple affected individ-

uals should be available for ascertainment. In this circum-

stance, the traditional pedigree-based linkage approach

should be feasible as an initial discovery phase and

can be combined with evidence from burden testing in

unrelated individuals. However, with incomplete pene-

trance, large recognizable pedigrees with multiple

affected individuals will be infrequent and difficult to

recognize and ascertain. Here, gene-based burden testing

may represent the only feasible approach and is likely to

remain a successful approach, whereas linkage/segrega-

tion approaches utilizing evidence from both affected

and unaffected individuals within a family will be largely

ineffective. We also note that gene-based burden testing,

unlike linkage, is highly sensitive to the ability to distin-

guish pathogenic from benign variants, so this approach

will benefit from a better understanding of which types

of variants have phenotypically relevant functional

consequences.

In actual study designs, the genetic architecture parame-

ters are generally not known a priori, making it difficult to

estimate power. However, our simulations can help place

bounds on genetic architectures—in a study where no

gene association has emerged after sequencing a given

number of samples, our simulations can bound the likely

modes of inheritance and locus heterogeneity of genes

associated with disease, assuming that the filters used to

define qualifying variants capture a reasonable fraction of

the actual causal variants. This could in turn inform

the minimum number of additional samples needed to

discover genes associated with disease via this gene-based

burden testing approach.
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