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De Novo Truncating Variants in SON Cause
Intellectual Disability, Congenital Malformations,
and Failure to Thrive

Mari J. Tokita,1,2 Alicia A. Braxton,1,2 Yunru Shao,1,3 Andrea M. Lewis,1,3 Marie Vincent,4

Sébastien Küry,4 Thomas Besnard,4 Bertrand Isidor,4,5 Xénia Latypova,4 Stéphane Bézieau,4

Pengfei Liu,1,2 Connie S. Motter,6 Catherine Ward Melver,6 Nathaniel H. Robin,7 Elena M. Infante,8

Marianne McGuire,2,8 Areeg El-Gharbawy,8 Rebecca O. Littlejohn,9 Scott D. McLean,9 Weimin Bi,1,2

Carlos A. Bacino,1,3 Seema R. Lalani,1,3 Daryl A. Scott,1,3,10 Christine M. Eng,1,2,3 Yaping Yang,1,2,12

Christian P. Schaaf,1,3,11,12,* and Magdalena A. Walkiewicz1,2,12,*

SON is a key component of the spliceosomal complex and a critical mediator of constitutive and alternative splicing. Additionally, SON

has been shown to influence cell-cycle progression, genomic integrity, and maintenance of pluripotency in stem cell populations. The

clear functional relevance of SON in coordinating essential cellular processes and its presence in diverse human tissues suggests that

intact SON might be crucial for normal growth and development. However, the phenotypic effects of deleterious germline variants

in SON have not been clearly defined. Herein, we describe seven unrelated individuals with de novo variants in SON and propose

that deleterious variants in SON are associated with a severe multisystem disorder characterized by developmental delay, persistent

feeding difficulties, and congenital malformations, including brain anomalies.
Whole-exome sequencing (WES) is an essential tool in the

diagnostic evaluation of individuals with suspected ge-

netic disorders for which a genetic etiology has not been

established by conventional approaches. Studies of large

cohorts of individuals have demonstrated a diagnostic

yield of 25%–30% when WES is applied to otherwise per-

plexing cases.1–3 The additional benefit of the unbiased

sequencing approach of WES is the ability to ascertain

genes in which variants have not been previously reported

to cause disease. In our clinical WES cohort of over 6,000

unrelated individuals—the majority of whom have neuro-

logicmanifestations and are of pediatric age—we identified

six individuals (subjects 1–6) with truncating variants in

SON (SON DNA binding protein [MIM: 182465]) and over-

lapping clinical features. We analyzed parental samples by

Sanger sequencing orWES and confirmed de novo status of

all six variants. Subsequently, we ascertained one addi-

tional individual (subject 7) with two de novo missense

variants in SON and similar features. Herein, we compre-

hensively phenotype all seven individuals and propose

that deleterious variants in SON are associated with severe

developmental outcomes.

This study was performed in accordance with a protocol

that was prospectively reviewed and approved by the

Baylor College of Medicine Institutional Review Board.

Written informed consent was obtained from all study par-
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ticipants. The key clinical features of our cohort are sum-

marized in Table 1. Detailed clinical summaries for all

subjects are provided in the Supplemental Data, and pho-

tographs are included in Figure 1. All subjects had dys-

morphic features including, for example, mild midface

retrusion with apparently deep-set eyes (n ¼ 6), frontal

bossing and bitemporal narrowing (n ¼ 2), downslanting

palpebral fissures (n ¼ 5), and epicanthal folds (n ¼ 3).

All subjects had either a smooth or short philtrum

(n ¼ 7), and a subset had thin lips (n ¼ 5) and/or a short

mouth (n¼ 3). All subjects exhibited developmental delay,

which appeared to progress with age into moderate to

severe intellectual disability. All but one individual

had additional neurological features including regression

(n ¼ 3), epilepsy or other electroencephalography (EEG)

abnormalities (n ¼ 4), autism spectrum disorder (n ¼ 3),

and hyper- or hypotonia (n ¼ 5). Additionally, five of six

subjects evaluated had abnormalities detected on brain

imaging; features suggestive of volume loss specifically

were seen in all five. Five subjects had congenital malfor-

mations. An atrial septal defect, ventricular septal defect,

patent ductus arteriosus, left lung agenesis, single kidney,

dysplastic kidney, and agenesis of the gallbladder were

each seen in a single individual; several subjects had

more than one malformation. All subjects had a history

of feeding difficulties, which were evident as early as the
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Table 1. Clinical Features of Subjects with De Novo SON Variants

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7

Current age 6 years 23 years 9 years 3 years 15 years 9 years 3 years

Sex female male female female female female female

Pregnancy IUGR, placenta previa maternal
hypertension

IUGR IUGR, maternal
borderline diabetes,
factor V deficiency

maternal
hypertension

IUGR,
oligohydramnios, pre-
eclampsia, fetal
anomalies

IUGR, fetal anomalies

Age at birth 32 weeks full term full term 33 weeks 35 weeks 36 weeks 36 weeks

Delivery C-section for fetal
distress

C-section for fetal
distress

wrapped cord,
variable heart rate,
failure to progress

C-section for fetal
distress

C-section for maternal
hypertension

vaginal delivery C-section for fetal
distress

Postnatal course respiratory failure,
feeding difficulties

feeding difficulties feeding difficulties,
hypoglycemia

respiratory failure,
feeding difficulties

feeding difficulties,
respiratory issues

feeding difficulties,
respiratory issues

respiratory distress,
feeding difficulties

Height 2nd percentile 40th percentile 25th percentile 75th percentile 3rd percentile �3 (Z score) 1st percentile

Weight 3rd percentile 1st percentile �2.29 (Z score) 85th percentile 12th percentile 2nd percentile �3 (Z score)

OFC 2nd percentile 50th percentile �4 (Z score) 60th percentile 72nd percentile 12th percentile �2.5 (Z score)

Distinctive features frontal bossing,
bitemporal
narrowing, epicanthal
folds, thin lip, smooth
philtrum

downslanting
palpebral fissures,
bifid uvula,
submucous cleft
palate, short philtrum

downslanting
palpebral fissures,
downturned mouth,
short philtrum, thin
lip, thin limbs

submucous and
laryngeal cleft, frontal
bossing, bitemporal
narrowing, epicanthal
folds, thin lip, smooth
philtrum

downslanting
palpebral fissures,
laterally flared
eyebrows, short
philtrum

downslanting
palpebral fissures,
long face, full cheeks,
short philtrum, thin
lips

downslanting
palpebral fissures,
epicanthal folds,
smooth philtrum,
thin lips

Developmental delay yes yes yes yes yes yes yes

Regression yes yes no yes no no no

ASD yes yes yes NA NA no no

Seizures yes yes no (abnormal EEG) staring spells NA no (abnormal EEG) no

Tone hypotonia NA hypotonia and
spasticity

hypotonia normal hypotonia hypotonia

Brain imaging global volume loss,
thin corpus callosum,
mild periventricular
gliosis

progressive
ventricular and
subarachnoid space
dilatation, arachnoid
cyst

unremarkable periventricular
leukomalacia with
mild dilation of the
lateral ventricle

prominent extra-axial
spaces, dysgenesis of
corpus callosum

evidence of prior MCA
stroke, prominent
ventricles

not done

Congenital
malformation

atrial septal defect
(resolved)

NA NA abnormal placement
of carotid arteries in
the neck

single kidney dysplastic kidney,
congenital lobar
emphysema

VSD, PDA, agenesis
of the left lung,
gallbladder agenesis

Vision exotropia, nystagmus progressive vision
loss, myopia,
exotropia

NA esotropia, CVI, blue
sclera, segmental optic
nerve hypoplasia

history of bilateral eye
surgery

strabismus no concerns

(Continued on next page)
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neonatal period and associated with growth failure inmost

cases. Several subjects required a gastrostomy feeding tube.

Most subjects also had ophthalmologic concerns including

strabismus (n ¼ 4) and vision loss (n ¼ 2). Six subjects had

skeletal abnormalities including joint laxity (n ¼ 3), cervi-

cal ribs (n ¼ 2), scoliosis (n ¼ 1), and thumb agenesis

(n ¼ 1). Pregnancy and delivery complications were

common in the cohort. Five of the seven subjects had

intrauterine growth restriction, at least four had significant

fetal distress requiring delivery via cesarean section, and

five were born prematurely. Three subjects had a history

of borderline low or frankly deficient immunoglobulin

levels, and two subjects had episodes of suspected

abnormal clotting, including unprovoked deep-vein

thrombosis in subject 1 and a history of a right middle

cerebral artery infarct and multiple transient ischemic at-

tacks in subject 6.

Sequencing results are summarized in Table 2. Variant

nomenclature is consistent with SON transcript GenBank:

NM_138927.2 (UCSC Genome Browser hg19). All trun-

cating and missense variants were confirmed by Sanger

sequencingand foundtobedenovobyparental testing. Sub-

jects 1–6 had truncating variants including one premature

stop variant in exon 3 (c.286C>T [p.Gln96*]), three frame-

shift variants in exon 3 (c.3073dupA [p.Met1025Asnfs*6],

c.3852_3856delGGTAT [p.Met1284Ilefs*2], and c.5753_

5756delTTAG [p.Val1918Glufs*87]), and one frameshift

variant in exon 4 (c.6233delC [p.Pro2078Hisfs*4]) (Figure 2).

Of note, the c.5753_5756delTTAG (p.Val1918Glufs*87)

variant was observed in two unrelated subjects. Subject 7

had two de novo missense changes in cis configuration in

exon 3 (Figure S1). SIFT and PolyPhen-2 predicted the

c.4909A>T (p.Thr1637Ser) missense variant to be de-

leterious and benign, respectively, and the c.5528C>A

(p.Ser1843Tyr) variant to be deleterious and damaging,

respectively. It is unclear whether this is a complex allele or

whether an individual variant contributes to the disease

phenotype.

SON is located in human chromosomal region 21q22.11

and consists of 12 exons.5 A striking feature of the gene’s

structure is the size of exon 3, which accounts for 82% of

the entire coding region (GenBank: NM_138927.2). Ac-

cording to the Exome Aggregation Consortium (ExAC)

Browser, SON is predicted to be intolerant to loss-of-func-

tion mutations given that 49.1 loss-of-function variants

are expected but only one loss-of-function variant is

observed (pLI ¼ 1.00).6 SON does not appear to be intol-

erant to missense variation,6 however, suggesting that

cautious interpretation of the missense changes detected

in subject 7 is warranted.

The canonical SON isoform (GenBank: NP_620305.2,

isoform F) encoded by GenBank: NM_138927.2 is a 2,426

amino acid protein that is ubiquitously present in human

tissues and highly conserved7,8 and has an estimated 84%

sequence homology between human SON andmouse Son.9

SON contains several recognizable domains implicating

it as a modulator of RNA processing; these include an
er 1, 2016



Figure 1. Photographs and Pedigrees of Subjects with SON Variants
Photographs show subjects reported in this article, and pedigrees illustrate the de novo status of all detected SON variants. Shaded sym-
bols represent affected individuals.
arginine/serine (RS)-rich domain, a G-patch domain, and a

double-stranded RNA-bindingmotif (Figure 2).4,9,10 The RS

domain is involved in protein-protein interactions and

RNA processing.11–14 Interestingly, the c.5528C>A substi-

tution affects the serine at amino acid 1,843 within the

RS region (Figure 2), thus altering the composition of a

crucial functional domain of SON.

Previous analyses of murine and human cells have

shown nuclear staining of SON in a stippled

pattern consistent with localization to the nuclear

speckle.9,10,15,16 The nuclear speckle is a subcellular

intranuclear compartment that is enriched with pre-

mRNA splicing factors, including small nuclear ribo-

nucleoprotein particles17 and SR protein family members

known to be involved in RNA splicing.4 SON’s functional

domains and its localization in the nuclear speckle sug-

gest that it plays a role in pre-mRNA processing. Func-

tional studies have confirmed that SON is an impor-

tant mediator of both constitutive and alternative

splicing4,18 and that it is specifically involved in splicing

short introns with suboptimal or weak splice sites.8,19

Known targets of SON-mediated splicing include cell-

cycle and microtubule genes, as well as genes involved

in DNA repair.4,19 Indeed, depletion of SON by RNAi

leads to an array of adverse cellular consequences,

including mitotic arrest, disordered spindle architecture

with abnormal chromosomal alignment, aneuploidy in

cells that continue to divide,16,19 and loss of genomic

integrity, as evidenced by increased double-stranded

DNA breaks and micronuclei formation in cells lacking
The American
functional SON.19 In addition, the regulatory effect of

SON on splicing has been shown to be essential for the

maintenance of pluripotency and self-renewal in human

embryonic stem cells.8

In spite of extensive work showing a critical functional

role for SON in coordinating splicing and evidence that

aberrant splicing contributes to human disease,20,21 muta-

tions in SON have not yet been definitively linked to a

phenotype in humans. The first de novo truncating variant

in SON was identified in a large cohort of individuals with

severe intellectual disability.22 Zhu et al. later described

another individual with a de novo truncating variant in

SON.23 This individual had developmental delay, epilepsy,

minor dysmorphic features, macrocephaly, brain white-

matter abnormalities, intestinal atresia, and a ventricular

septal defect. However, this individual also had a de novo

missense change in a second candidate gene, C5AR1

(MIM: 113995), confounding the clinical relevance of the

SON change. This published individual and the seven sub-

jects in our cohort exhibit many of the same features, sug-

gesting that deleterious variants in SON cause a consistent

phenotype. Moreover, two of our subjects (1 and 5) share

the same frameshift variant as the individual described

by Zhu et al., indicating that this is a recurrent pathogenic

change.

Variants in genes encoding other components of the

spliceosomal machinery have been implicated in several

developmental disorders, including Guion-Almeida type

mandibulofacial dysostosis (MFDGA [MIM: 610536]) and

Nager syndrome (MIM: 154400), among others (recently
Journal of Human Genetics 99, 720–727, September 1, 2016 723



Table 2. Putative Pathogenic Variants in SON

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7a Subject 7a

DNA variant c.5753_
5756delTTAG

c.6233delC c.3852_
3856delGGTAT

c.286C>T c.5753_
5756delTTAG

c.3073dupA c.4909A>T c.5528C>A

Protein
change

p.Val1918Glufs*87 p.Pro2078Hisfs*4 p.Met1284Ilefs*2 p.Gln96* p.Val1918Glufs*87 p.Met1025Asnfs*6 p.Thr1637Ser p.Ser1843Tyr

Inheritance de novo de novo de novo de novo de novo de novo de novo de novo

ExAC
Browser

novel novel novel novel novel novel novel novel

SIFT – – – – – – deleterious deleterious

PolyPhen-2 – – – – – – benign damaging

CADD – – – – – – 15.19 15.67

Variant nomenclature is based on GenBank: NM_138927.2.
aThese variants are in cis configuration, and both are confirmed de novo changes.
reviewed by Lehalle et al.24). MFDGA is caused by muta-

tions in EFTUD2 (MIM: 603892), which encodes a highly

conserved spliceosomal GTPase.24 The phenotype associ-

ated with MFDGA mirrors both in breadth and severity

the features common to our cohort, including psychomo-

tor delay, growth retardation, musculoskeletal anomalies,

and cardiac, brain, and visceral malformations.24 Nager

syndrome, which is caused by mutations in SF3B4 (MIM:

605593), is characterized by midface retrusion, downslant-

ing palpebral fissures, and thumb anomalies.25 All of these

features were present in one or more of our subjects with

SON variants. This phenotypic overlap with established

spliceosomal disorders confers plausibility to the hypothe-

sis that defects in SON cause the features seen in our

cohort.
Figure 2. Intragenic Location of SON Variants and Key Protein Fun
(A) All but one of the SON variants in the described individuals loca
(B) Approximate location of amino acid changes in relation to SON
repetitive region, an RS-rich domain, a G-patch domain, and a do
from GenBank: NP_620305.2. This panel was adapted from Hickey e

724 The American Journal of Human Genetics 99, 720–727, Septemb
Orthogonal evidence of the potential clinical relevance

of SON haploinsufficiency derives from reports of indi-

viduals with copy-number variants (CNVs) involving

this gene. Non-recurrent microdeletions encompassing

21q22.11, the locus harboring SON, have been extensively

described in the literature.26–36 Roberson et al. performed

genotype-phenotype correlations for 46 individuals with

partial 21q monosomy and, consistent with other re-

ports,27,36 found that individuals with deletions encom-

passing the 21q22.11 locus manifest severe pheno-

types.35 Lindstrand et al. compared 26 individuals who

had partial 21q monosomy and for whom reliable molecu-

lar data were available.34 Alignment of the deleted regions

and comparison of phenotypes showed a narrow 159 kb

region of overlap in 21q22.11 among individuals with
ctional Domains
lize to exon 3 of SON (GenBank: NM_138927.2).
’s key functional domains, which include a unique central highly
uble-stranded RNA-binding motif (DSRM). Data were extracted
t al.4
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The Amer
ican
intellectual disability.34 This region contains only five

genes and encompasses the entirety of all isoforms of

SON, suggesting that loss of SON might contribute specif-

ically to the intellectual disability in these individuals.34

To further explore the potential implications of SON

copy-number loss, we queried our internal clinical data-

base of chromosomalmicroarrays (n¼ ~70,000 affected in-

dividuals) and identified an individual (subject 8; Table 3)

with a ~825 kb deletion encompassing SON and ten addi-

tional RefSeq genes. This individual was reported to have

global developmental delay, seizures, and a congenital

heart defect—features also seen in the described subjects

with SON sequence variants. We then selectively reviewed

published reports of phenotypically characterized indi-

viduals with <5 Mb 21q22.11 deletions that partially or

completely involve SON (Figure S2)26–33 and found sub-

stantial phenotypic overlap between individuals with dele-

tions encompassing SON and the seven subjects with SON

variants reported herein (Table 3). The individuals withmi-

crodeletions included both male and female probands,

which is notable given the clear predominance of female

subjects in our cohort. Seven of eight individuals with de-

letions of SON had developmental delay; all eight individ-

uals had growth failure with short stature, seven of eight

had brain anomalies, and six of eight had a history of intra-

uterine growth restriction and/or low birth weight. Four

individuals were reported to have feeding difficulties,

which required G-tube placement in three. Table 3 also

includes a single individual with a small 341 kb de novo

deletion reported in ClinVar (ClinVar: SCV000080160.5;

dbVar: nssv577822). This individual is reported to have

global developmental delay, seizures, and short stature—

all features seen in our subjects with SON variants. Thus,

although we cannot exclude the possibility that other

genes in this region (e.g., GART [MIM: 138440], DONSON

[MIM: 611428], CRYZL1 [MIM: 603920], and ITSN1

[MIM: 602442]) contribute to the phenotype in individ-

uals with large deletions, the existing CNV data on this

well-studied region strengthens the supposition that SON

haploinsufficiency is in fact pathogenic.

In summary, we have characterized a clinical phenotype

associated with pathogenic variants involving SON. The

similarity in phenotype between subjects with truncating

variants and those with CNVs suggests that haploinsuffi-

ciency of SON could be the underlying disease mechanism.

Although additional studies will be necessary to confirm

the functional relevance of heterozygous loss of SON and

to capture the full phenotypic spectrum, the available

human data compellingly support the assertion that

deleterious variants in SON are associated with a severe

human phenotype.
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