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INTRODUCTION

Neural stem cells (NSCs) maintain multipotency and are ca-
pable of self-renewal;1 and it has been demonstrated that di-
viding NSCs in the subventricular and subgranular zone2 can 
become neurons.3 NSCs have been studied extensively as 
promising novel treatments for central nervous system (CNS) 
disorders.4 Several studies have demonstrated that prolifera-
tion of endogenous NSCs is enhanced after brain injury, as is 
migration of neural progenitor cells to the brain lesion.5 In ad-
dition, NSCs migrate toward injured brain regions, differenti-
ate into neurons, and then facilitate injury healing.6 Thus, NSC 

self-renewal and proliferation are important characteristics 
for the enhanced therapeutic efficiency of NSCs in the brain.7

Agmatine is an endogenous amine produced by decarbox-
ylation of L-arginine by arginine decarboxylase present in glia 
and neurons,8 and it has been reported to affect various cellu-
lar processes, such as antioxidative pathways,9 and also has a 
role in CNS injuries including neurotrauma and animal mod-
els of ischemia.10,11 Moreover, agmatine initiates early neuro-
genesis and cell proliferation.12

MicroRNAs can regulate target mRNAs via translational in-
hibition or mRNA degradation.13 Recent studies have focused 
on the mechanisms of microRNA action on NSCs, in order to 
discover potential treatments for CNS diseases.14 MicroRNA 
let-7 (let-7) is a family of microRNAs present in multiple ge-
nomic locations,15 and consists of 9 members.16 let-7 targets 
cyclin D1, and its overexpression promotes cell cycle exit and 
differentiation.17 Furthermore, let-7 suppresses differentiation 
of human embryonic stem cell derived neural progenitor cells,18 
and influences self-renewal of NSCs.19 Recent studies have sug-
gested a function of let-7 in cell fate mechanisms in neurons.20,21 
In addition, overexpression of let-7a, one of the members of 
let-7 family, influences NSC proliferation and differentiation.22,23 
However, the mechanisms of action of the let-7 family on NSC 
proliferation or neuronal differentiation are poorly under-
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stood and are debatable. Agmatine has been shown to block 
neuronal nitric oxide synthase,10,24 inducible nitric oxide syn-
thase25 and N-methyl-D-aspartate receptor channels.26 Fur-
thermore, the nitric oxide synthase inhibitor asymmetric di-
methylarginine increased the levels of microRNAs such as mi-
croRNA-21.27 Taken together, therefore, it is quite possible that 
there exists a relationship between agmatine and let-7a in the 
regulation of NSC differentiation. Accordingly, the aim of the 
present study was to investigate the effects of agmatine on 
NSCs by controlling let-7a levels. 

MATERIALS AND METHODS

NSC primary culture
Cortical NSCs were obtained from pregnant imprinting con-
trol region mice (E13.5). The cortices were dissected and 
washed 1–2 times with Hank’s Balanced Salt Solution (HBSS; 
HyClone Laboratories, South Logan, UT, USA). To each piece 
of washed tissue, 5 mL of HBSS were added, and the tissue was 
dissociated by pipetting up and down. Tissues were triturated 
by repeated passages through a fire-polished constricted Pas-
teur pipette. Dissociated tissues were allowed to settle for 3 
min. Supernatants were transferred to a fresh tube, and were 
centrifuged at 1200 g for 3 min. Pellets were resuspended in 
NSC basal media with a proliferation supplement (Stem Cell 
Technologies, Vancouver, Canada), and 20 ng/mL epidermal 
growth factor (EGF, Invitrogen, Carlsbad, CA, USA). NSCs were 
plated on poly-D-ornithine (Sigma-Aldrich, St. Louis, MO, 
USA) treated dishes at a density of 2.5×104 cells/mL. Cultures 
were maintained in a humidified atmosphere of 95% air and 
5% CO2 at 37°C. Culture medium was replaced every 3 days. 
NSCs were used for experiments after 2–3 passages.

let-7a and siRNA TLX experiment 
let-7a mimics, inhibitors, and siTLX were purchased from Am-
bion (Austin, TX, USA); they were mmu-let-7a-5p (let-7a 
mimic) (cat. #4464066) and let-7a inhibitor (cat. #4464066; as-
say ID MH10050). For RNA duplex transfection, 20 nM solu-
tions in Opti-MEM (Sigma, St. Louis, MO, USA) were combined 
with Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). After 
15 min, the mixtures were added to the cells incubated for 72 h. 

Measurement of neurosphere size
Images of neurosphere cultures were taken using an inverted 
microscope (Olympus microscopy BH3, Tokyo, Japan). The 
magnification (10×) ensured coverage of a significant area of 
each well of the 24-well plates. Image analysis software (Image 
J) was used to evaluate the size of neurospheres. 

Reverse-transcription PCR 
To examine the expression of TLX, DCX, and c-Myc in NSCs, 
RT-PCR was performed using specific primers. Briefly, the cell 

pellets were lysed with TRIzol reagent (Invitrogen, Carlsbad, 
CA, USA). PCR was conducted by the following manual’s con-
ditions, and the following primers (5' to 3'): TLX, forward (F): 
GGC TCT CTA CTT CCG TGG ACA, reverse (R): GTC AGT 
ATT CAT GCC AGA TAC AGC CAG TG; DCX, (F): AAT CCC 
AAC TGG TCT GTC AAC, (R): GTT TCC CTT CAT GAC TCG 
GCA; c-Myc, (F): TCA AGA GGC GAA CAC ACA AC, (R): GGC 
CTT TTC ATT GTT TTC CA, and GAPDH, (F): ACA GTC CAT 
GCC ATC ACT GCC, (R): GCC TGC TTC ACC ACC TTC TTG. 
GAPDH was used as an internal control.

Real-time quantitative-PCR (SYBR and TaqMan assays) 
For quantitative analysis of let-7a, reverse transcription was 
first performed using the TaqMan Micro RNA Reverse Tran-
scription Kit (Takara, Otsu, Shiga, Japan) with total RNA sam-
ples of 10 ng. PCR was then performed according to the man-
ufacturer’s instructions using the TaqMan Universal PCR 
Master Mix, No Amp Erase UNG (Applied Biosystems, Foster 
City, CA, USA); PCR amplification was carried out in an ABI 
7500 Real-Time PCR cycler (Bio-Rad, Philadelphia, PA, USA). 
We used the following primers (5' to 3'): let-7a, (F): GCG CCT 
GAG GTA GTA GGT TG, (R): CAG TGC AGG GTC CGA GGT; 
and U6, (F): CTC GCT TCG GCA GCA CAT ATA CT, (R): ACG 
CTT CAC GAA TTT GCG TGT C. The let-7a levels were nor-
malized to the internal control U6. 

Western blotting 
The NSCs were homogenized in lysis buffer and centrifuged 
(12000 g at 4°C) for 15 min. Equal amounts of protein (30 µg) 
from the supernatants were separated on a 10% acrylamide gel, 
and the proteins were electrotransferred onto nitrocellulose 
membranes. After blocking, the membranes were incubated 
with primary antibody at 4°C. The primary antibodies includ-
ed anti-DCX (1:2000, Millipore, Billerica, MA, USA), anti-NeuN 
(1:1000, Santa Cruz Biotechnology, Santa Cruz, CA, USA), and 
anti-β-actin (1:2000, Santa Cruz Biotechnology) antibodies. The 
membranes were then incubated with secondary antibodies. 
The blots were rinsed, and protein bands were visualized using 
an enhanced chemiluminescence detection system (Amersh-
am, Pittsburgh, PA, USA).

Immunocytochemical analysis
The NSCs were incubated with primary antibody overnight at 
4°C (goat anti-DCX; 1:200; Millipore). Cell samples were then 
incubated with a rhodamine-conjugated donkey anti-goat an-
tibody (1:200, Jackson ImmunoResearch, West Grove, PA, USA) 
for 2 h at room temperature (RT). The NSCs were washed 3 
times again, for 3 min each with PBS. The cells were then coun-
terstained with 1 μg/mL 4', 6-diamidino-2-phenylindole (DAPI; 
1:100; Invitrogen, Carlsbad, CA, USA) for 10 min at RT and were 
photographed using a confocal microscope (Carl Zeiss, Thorn-
wood, NY, USA).
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Statistical analysis
All calculations were conducted using SPSS 18.0 software (IBM 
Corp., Armonk, NY, USA). Data are expressed as mean±SEM. 
Significance of intergroup differences was determined by 
one-way analysis of variance followed by Bonferroni post hoc 
multiple-comparison tests. Each experiment included at least 
three repeats per condition. Differences with a p value less than 
0.05 were considered statistically significant.
 

RESULTS

Alterations of NeuN and DCX expression in NSCs after 
agmatine treatment
We conducted western blot analyses of the expression of neuro-
nal markers (NeuN28 and DCX29) in NSCs after agmatine treat-
ment (Fig. 1). Treatment with agmatine (100, 200 µM) increased 
expression of NeuN (Fig. 1A) and DCX (Fig. 1B), while 50 µM ag-
matine treatment showed a small decrease of DCX protein level 
(Fig. 1B). Specifically, 100 µM agmatine treatment visibly in-
creased the protein levels of NeuN (Fig. 1A) and DCX (Fig. 1B). 
On the basis of these findings, we chose 100 µM agmatine for 
the following experiments with an assumption that 100 µM ag-
matine would promote neuronal differentiation in NSCs. 

let-7a levels in NSCs after agmatine treatment
In NSCs, we confirmed let-7a expression by a TaqMan assay 
(Fig. 2). Agmatine treatment decreased let-7a expression in 
NSCs compared with the normal control group. Although a few 
differences were observed between agmatine treatment and 

Fig. 1. Alterations in NeuN and DCX protein levels in NSCs by agmatine treatment. (A) The protein levels of NeuN increased in the agmatine treatment 
group. In particular, the 100 µM agmatine treatment significantly increased NeuN protein levels in NSCs. (B) DCX protein levels increased in the agmatine 
treatment group. Similar to NeuN, 100 µM agmatine significantly increased DCX protein levels in NSCs. β-actin was used as an internal control. Data are 
expressed as mean±SEM. *p<0.05, †p<0.001 compared to agmatine 0 uM group. Agm, agmatine treatment; NSCs, neural stem cells.
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agmatine treatment along with let-7a overexpression (the 
same with let-7a mimic treatment), we found that agmatine 
dramatically reduced let-7a levels in spite of let-7a mimic 
treatment (Fig. 2), indicating that agmatine negatively regu-
lates let-7a expression in NSCs.

Changes in DCX expression in NSCs after agmatine 
treatment during let-7a overexpression
Immunochemical images of DCX indicated that let-7a overex-
pression inhibited the expression of DCX (Fig. 3A). Agmatine 
treatment increased the number of DCX-positive cells in both 
the let-7a overexpression state (let-7a mimic treatment) and 
the normal state (Fig. 3A). Fig. 3B demonstrates that let-7a 
overexpression (let-7a mimic treatment) in NSCs decreased 

DCX mRNA levels compared with the normal control group 
(Fig. 3B). Agmatine treatment group shows DCX mRNA induc-
tion that occurred with let-7a overexpression (Fig. 3B). Our re-
sults suggest that DCX, a marker for immature neurons, was 
downregulated under let-7a overexpression, whereas DCX 
expression was increased under let-7a overexpression in ag-
matine treatment group (Fig. 3).

Relationship between TLX expression and let-7a 
levels in NSCs 
TLX mRNA levels are associated with self-renewal and prolif-
eration30 of NSCs. We found that let-7a overexpression (let-7a 
mimic treatment) increased TLX expression (Fig. 3C). Although 
the expression of TLX was increased by agmatine in NSCs, it 

Fig. 3. The expression of DCX and TLX mRNA levels in neural stem cells. (A) Immunochemical images indicated that DCX-positive cells decreased in the 
let-7a mimic group. Scale bar: 200 µm. NC: the normal control group, 4', 6-diamidino-2-phenylindole (DAPI): blue, DCX: red. (B) Under agmatine treatment, 
the let-7a suppression group (let-7a inhibitor group) expressed lower DCX mRNA levels. GAPDH was used as an internal control. (C) The let-7a mimic 
group with agmatine had decreased TLX mRNA expression compared to the let-7a mimic group. GAPDH was used as an internal control. (D) Inhibition of 
TLX expression by agmatine decreased let-7a levels. U6 was used as an internal control. Data are expressed as mean±SEM. *p<0.05, †p<0.001 compared 
to normal control group, ‡p<0.001 compared to let-7a mimic group. let-7a mimic, let-7a mimic treatment/let-7a overexpression group; let-7a inhibitor, let-7a 
inhibitor treatment/let-7a suppression group; Normal, normal control group/no treatment; Agm, 100 µM agmatine treatment group; siTLX, TLX silencing 
group; siTLX+Agm, TLX silencing with agmatine treatment group.
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was noticeably reduced in agmatine treatment group under 
let-7a mimic treatment in comparison with the let-7a overex-
pression group (Fig. 3C). In addition, we observed a slight in-
crease in TLX mRNA expression after the let-7a inhibitor treat-
ment, in comparison with the let-7a overexpression group 
under agmatine treatment conditions (Fig. 3C). In the TLX 
knockdown group, let-7a expression increased slightly, whereas 
the agmatine co-treatment group showed a marked decrease 
in let-7a expression (Fig. 3D). 

Change of c-Myc expression in NSCs 
Expression of c-Myc mRNA in NSCs was measured using real-
time quantitative RT-PCR (Fig. 4A), since c-Myc plays a crucial 
role in proliferation and self-renewal31 of NSCs. We observed 
increased expression of c-Myc in the let-7a overexpression 
group (let-7a mimic treatment) (Fig. 4A). After agmatine treat-
ment, c-Myc mRNA expression was slightly increased. How-
ever, the let-7a overexpression with agmatine treatment re-
duced the expression of c-Myc (Fig. 4A). 

Change of the ERK pathway of NSCs 
In order to determine signaling pathway affected by agmatine 
and let-7a, we measured ERK phosphorylation which is relat-
ed to NSC proliferation (Fig. 4B).12 Activation of ERK, as indi-
cated by the level of phosphorylated ERK protein, was re-
duced in NSCs after let-7a mimic treatment. Agmatine increased 
the activation of ERK in NSCs, whereas the expression of ERK 

was decreased by let-7a overexpression (Fig. 4B). Given the 
fact that ERK activation is important for proliferation and self-
renewal of NSCs,32 our results indicated that agmatine may re-
verse the decrease of ERK phosphorylation, induced by let-7a.
 

DISCUSSION

Understanding of NSC proliferation, self-renewal, and differ-
entiation is necessary to enhance the therapeutic efficacy of 
NSCs.33 Agmatine has multiple roles in several biological pro-
cesses.34,35 In the present study, we found several lines of evi-
dence indicating that agmatine can enhance NSC differentia-
tion into neurons by modulating expression of let-7a. 100 µM 
agmatine was found to promote differentiation by upregula-
tion of NeuN28 and DCX.29 Since let-7a was reduced in NSCs 
when treated with agmatine, our results suggest that agmatine 
may negatively regulate let-7a in NSCs. DCX is regarded as a 
marker of neurogenesis,36 the findings therefore suggest that 
agmatine promotes NSC differentiation into neurons: it is 
quite possible that agmatine may boost neuronal differentia-
tion by inhibiting let-7a expression.

Previous studies have demonstrated that underexpression of 
let-7a attenuates the proliferation and self-renewal of NSCs.18 
TLX is necessary for maintaining the proliferative potential of 
NSCs and neurogenesis.37 In the present study, we suggest 
that agmatine may enhance neurogenesis by negatively regu-

Fig. 4. Assessment of c-Myc mRNA and ERK phosphorylation in neural stem cells. (A) c-Myc mRNA expression was reduced in the let-7a mimic treat-
ment with agmatine group in comparison with let-7a mimic group. β-actin was used as an internal control. (B) ERK phosphorylation significantly in-
creased in the let-7a mimic treatment with agmatine group compared to let-7a mimic group. GAPDH was used as an internal control. Data are expressed 
as mean±SEM. *p<0.05, †p<0.001 compared to normal control group, ‡p<0.05 compared to let-7a mimic group. let-7a mimic, let-7a mimic treatment/let-7a 
overexpression group; let-7a inhibitor, let-7a inhibitor treatment/let-7a suppression group; Agm, 100 µM agmatine treatment group; Veh, Lipofectamine 
treatment group; p-ERK, ERK phosphorylation.
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lating expression of let-7a and TLX, and it may inhibit NSC pro-
liferation by attenuating the increased TLX level in let-7a 
overexpression conditions.38

c-Myc regulates the genes involved in self-renewal, and 
proliferation39 of NSCs, and the let-7 family is known to regulate 
cell proliferation by targeting c-Myc.40 In our present study, 
overexpression of let-7a upregulated the expression of c-Myc, 
which is known to sustain the stemness of stem cells targeted 
by the let-7 family.41 These findings imply that agmatine may 
reduce c-Myc via controlling let-7a, thereby influencing self-
renewal and proliferation of NSCs. 

It has been demonstrated that agmatine regulates neuropro-
tection and increases neuronal differentiation in NSCs by ac-
tivating ERK1/2.12 In our present study, we demonstrated that 
let-7a overexpression in NSCs decreases ERK phosphoryla-
tion, thus indicating that agmatine promotes ERK activation 
by negatively regulating let-7a, which is involved in neuronal 
differentiation and cell survival of NSCs. 

In conclusion, we found four main findings in the present 
study. 1) Agmatine increased the expression of DCX and NeuN 
in NSCs. 2) Agmatine decreased the expression of let-7a in 
NSCs. 3) Agmatine attenuated the let-7a-induced upregula-
tion of TLX and c-Myc. 4) Agmatine ameliorated the let-7a-in-
duced ERK inactivation in NSCs. Therefore, we suggest that 
agmatine manipulates the mechanism linking let-7a, and in-
duce neuronal differentiation for treatment of CNS disorders.
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