Table 4.
Test | p KS | R 1 | R 5 | Sensitivity | Specificity | AUC |
---|---|---|---|---|---|---|
NEAT | 0.343 | 0.62 | 0.98 | 79 % | 95 % | 0.925 |
NEA | 0.024 | 0 | 0.82 | 73 % | 96 % | 0.912 |
LP | 0 | 1.33 | 1.51 | 78 % | 92 % | 0.904 |
LA | 0.111 | 1.16 | 1.33 | 73 % | 93 % | 0.908 |
LA+S | 0.024 | 1.16 | 1.13 | 76 % | 94 % | 0.910 |
NP | 0.323 | 1.42 | 1.16 | 70 % | 94 % | 0.908 |
The best results for each indicator are in bold. p KS denotes the p-value of the Kolmogorov-Smirnov test for uniform distribution, AUC is an abbreviation for “area under the ROC curve”. The distribution of p-values under H 0 can be considered uniform for NEAT, LA and NP, and is questionable for LA+S. NEAT shows the highest values of sensitivity and AUC, and its specificity is exactly equal to the target value (95 %)