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Abstract

The current view of neuroplasticity depicts the changes in the strength and number of synaptic connections as the
main physical substrate for behavioral adaptation to new experiences in a changing environment. Although
transcriptional regulation is known to play a role in these synaptic changes, the specific contribution of activity-
induced changes to both the structure of the nucleus and the organization of the genome remains insufficiently
characterized. Increasing evidence indicates that plasticity-related genes may work in coordination and share
architectural and transcriptional machinery within discrete genomic foci. Here we review the molecular and cellular
mechanisms through which neuronal nuclei structurally adapt to stimuli and discuss how the perturbation of these
mechanisms can trigger behavioral malfunction.
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Introduction
In the search for mechanisms that underlie behavioral
plasticity, functional and structural changes at synapses
are at the core of the theoretical framework. Processes
such as long-term potentiation (LTP) or synaptogenesis
are thought to be crucial for the adaptation of neuronal
circuits to changing environmental conditions [1]. Both
stimulus-driven transcriptional responses [2] and differ-
ent forms of epigenetic regulation [3] are known to
participate in these processes. However, only recently
high-order chromatin architecture has been implicated
in the neurobiology of behavior [4]. Cell biology studies
have revealed that the compartmentalization of chroma-
tin dictates the location of specific genes within the
neuronal nucleus, thereby conditioning the mechanisms
controlling their transcription [5]. The complexity and
cellular heterogeneity of neuronal tissue make technic-
ally difficult the investigation of the contribution of
activity-induced changes in chromatin architecture to
neuronal plasticity. However, as technological advances

enable deeper insight into the genomic landscape of
neurons, increasing evidence indicates that individual
genes do not work in isolation; instead, they share niches
and machinery within the cell nucleus that sustain coor-
dinated regulation. The levels of regulation include
changes in nuclear geometry and subnuclear structures,
dynamic interactions of structural proteins and the
transcription machinery with chromatin, the relocation
of genes into transcriptionally active or repressive areas,
and chromatin loopings that activate regulatory se-
quences. In the following sections, we review recent
studies that have begun to unveil the contribution of
these novel mechanisms to neuronal plasticity, and high-
light how their malfunction can contribute to the on-set
or further development of neuropsychiatric disorders.

Neuronal nuclear structure and its regulation by
neuronal activity
In eukaryotic nuclei, DNA is wrapped around an octa-
meric histone core comprising of two copies of each of
the canonical histones H2A, H2B, H3 and H4. This basic
structure, known as a nucleosome, is repeated along the
double-stranded DNA, with a fifth type of histone (the
linker histone H1) bridging together consecutive
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nucleosomes. In this fashion, long DNA strands con-
dense with architectural proteins to form chromatin.
Based on the level of compaction we can distinguish
three main forms of chromatin. These forms differ bio-
chemically with respect to the presence of specific post-
translational modifications (PTMs) at the histone tails
and to the binding of structural proteins. Euchromatin, a
transcriptionally active form is characterized by permis-
sive marks such as the trimethylation of histone 3 at
lysine 4 (H3K4me3), and the acetylation of different
lysine residues at the histone tails. In contrast, hetero-
chromatin is a transcriptionally silent form, and is deco-
rated by repressive epigenetic marks. It can be found in
two different functional states: constitutive heterochro-
matin that is characterized by DNA methylation at CpGs
and histone H3 trimethylation at lysine 9 (H3K9me3),
and facultative heterochromatin, which, as suggested by
its name, can harbor transcriptional activity and is
marked by H3K27me3 [6].
Although the folding of chromatin fibers during cell

division is very similar among all cells [7], the spatial
organization of the chromatin in the interphasic nucleus
can greatly differ. Thus, during neuronal maturation,

centromeric constitutive heterochromatin foci from dif-
ferent chromosomes are reduced in number, and cluster
in larger foci known as chromocenters [8, 9] (Fig. 1a).
These structures are depleted of the facultative hetero-
chromatin marks H3K27me3 and H3K9me2, and the
active isoforms of RNA Polymerase II (RNAPII), indicat-
ing that they lack the potential to be transcriptionally
active [10]. In parallel to chromocenter formation,
chromosome territories are distributed in the interior of
the nucleus, defining regions with different gene dens-
ities in which gene-poor regions are generally located at
the periphery while gene-rich regions are found in the
interior of the cell nucleus [11]. Recent studies on the
nuclear architecture of chicken neurons have revealed a
more extreme form of radial nuclear organization in
which chromocenters are radially aligned between the
peripheral heterochromatin and DNA-depleted areas in
the central nucleoplasm [10]. Notably, some highly
specialized neurons, such as the retinal rods of nocturnal
mammals, present an inverted distribution of the hetero-
chromatin that could contribute to maximize light trans-
mission trough photoreceptors thereby serving a unique
function in nocturnal vision [12].

Fig. 1 Nuclear structure and sub-compartments. a. Developmental changes as seen with DAPI staining (in yellow). The nucleus of an embryonic stem
cell is euchromatic and relatively homogeneous. Heterochromatin foci (centromeres and telomeres) become more evident in neuronal progenitors.
Mature neurons present fewer and denser chromocenters (adapted from microscopy images in [8]). b. Different types of nuclear bodies can be found
in the nucleus of post-mitotic neurons
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Apart from chromocenters and peripheral heterochro-
matin, the interphasic neuronal nucleus is structurally
complex [13] (Fig. 1b). Based on conventional microscopy
techniques, we can define three major components: the
nuclear lamina and associated heterochromatin, the nu-
cleoplasm that is defined by a fine and relatively homoge-
neous granular matrix, and the different internal
macrostructures that disrupt this granular matrix. In the
following sections we will discuss each of these compo-
nents and their responses to neuronal activation.

Nuclear envelope and lamina
Nuclear architecture and genome organization depend
on the integrity of the nuclear envelope, a boundary that
separates the cytoplasm from the nucleoplasmic
reticulum. This boundary is composed of two phospho-
lipid bilayers spanned at intervals by proteins that act as
nuclear pores. The nuclear envelope is not an inert bar-
rier, it participates in different processes including gene
regulation and the transport of ions and macromolecular
cargos [14]. Its geometry in neurons is rather plastic and
responds to neuronal activity [15]. In the case of hippo-
campal neurons, there are both spherical and highly
infolded nuclei featuring different degrees of complexity,
with nuclear infoldings being antagonistically regulated
by synaptic and extrasynaptic NMDA receptors [16].
Infolded nuclei typically have larger surfaces accompan-
ied by an increase in nuclear pore complexes (NPC) that
facilitates calcium influx and the transport between the
nuclear and cytosolic plasmas.
Internally attached to the nuclear envelope is the nu-

clear lamina, whose main components are the lamin
proteins A/C, B1 and B2 [17]. These proteins form a
scaffold and bind to peripheral chromatin, playing an es-
sential role in transcriptional regulation. Cellular biology
studies have shown that the lamin composition of the
nuclear envelope changes throughout neuronal differen-
tiation. While primary progenitors have lamin A/C, B1
and B2 in equal amounts, neuroblasts have more B1 and
some B2, and mature neurons preferentially express B2,
some A/C, and little B1 [18]. Genetic experiments in
mice have demonstrated that lamins B1 and B2, despite
their great sequence homology, have unique roles in the
developing brain, and that increased production of one
does not compensate for the loss of the other [19, 20].
Lamin-associated chromatin domains (LADs) are

enriched in transcriptional and epigenetic repressors
[21]. Although the attachment of chromatin to the nu-
clear lamina has been found to promote transcriptional
repression [17], this relationship is not strict. In fact,
genes in both the margin and the center can be
expressed, although peripheral genes are less likely to be
transcribed than inactive genes dissociated from the
lamina [22, 23]. Although little is still known about

signal transduction across the nuclear envelope in neu-
rons, a recent study on the role of the calcium signaling
modulator Sigma-1 receptor (Sig-1R) demonstrated that
the translocation of this receptor from the endoplasmic
reticulum into the nuclear envelope upon cocaine ad-
ministration may contribute to the addictive properties
of this drug. Once in the nucleus, Sig-1R recruits
chromatin-remodeling molecules such as lamin A/C,
barrier-to-autointegration factor (BAF) and histone dea-
cetylases (HDAC) to specific loci, shutting down the
expression of monoamine oxidase B (MAOB), an en-
zyme that is dramatically upregulated during withdrawal
and whose inhibition may contribute to the reinforcing
properties of cocaine [24].

Nuclear bodies
Nuclear bodies are subnuclear divisions that lack a
membrane. In addition to the afore discussed chromo-
centers, which are the most prominent type of nuclear
body in mature neurons, one can also typically find (i) a
single nucleolus where rRNA transcription takes place,
(ii) the Cajal bodies (CBs) that are adjacent to the nucle-
olus and are the site for small nuclear ribonucleic pro-
tein (snRNP) assembly, (iii) nuclear speckles that are
highly enriched in splicing factors, and (iv) promyelocy-
tic leukemia (PML) bodies that hold unknown functions
[25] (Fig. 1b). As discussed for the nuclear lamina, these
structures can undergo dramatic changes upon neuronal
activation. For example, the amyloid precursor protein,
intracellular domain–associated protein-1 (AIDA-1d) is
a post-synaptically localized protein that translocates
into the nucleus after synaptic stimulation. This trans-
location increases the number of nucleoli and may even-
tually promote protein synthesis [26]. Notably, nucleolar
integrity has been shown to be necessary for LTP [27].
PML bodies are also sensitive to changes in activity; they
tend to cluster into fewer, but denser and larger foci as a
result of epileptic activity or exposure to behaviorally
stressful conditions such as restraint [28]. In turn, the
disruption of CBs and splicing speckles has been also as-
sociated with pathological states [29, 30], but the mo-
lecular machinery underlying these changes and its
contribution to pathoetiology remains unknown.

The nucleoplasm
The nucleoplasm is not an inert and homogeneous
matrix filled with euchromatin fibers as once thought.
Static electron microscopy images have since been
challenged by the dynamic scenario revealed by mo-
lecular studies that explore short and long-range in-
teractions between DNA sequences that are located
thousands of bases apart or even in different chromo-
somes [31]. The use of super-resolution microscopy
has recently allowed the direct visualization of fibers
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rich in nucleosomes, which can be frequently grouped
into “clutches” and are interspaced with nucleosome-
depleted DNA. The density of these clutches differs
across cell types with stem cells having a lower dens-
ity compared to mature neurons [32].
Fine submegabase 3D interactions are essential for

neuronal commitment and are also likely to contribute
to the regulation of gene expression during neuronal
plasticity processes. We will discuss in the next section
the novel techniques available and the seminal studies
investigating how neuronal activation causes changes in
the fine structure of the nucleoplasm.

Neuronal 3D genome organization and its
regulation by neuronal activity
Given their small scale, transcription-related and activity-
driven dynamic changes in chromatin fibers may escape
structural analyses when employing microscopy tech-
niques, but can be tackled by molecular studies investigat-
ing long and short-range chromosomal interactions [33].
This is the case for chromosome conformation capture
(CCC or 3C) techniques that are used to analyze the
organization of chromosomes in intact cells. Since the in-
vention of this PCR-based technology in 2002 [34], the
emergence of various next-generation sequencing (NGS)-
based techniques has dramatically transformed our under-
stating of genome architecture. For example, Hi-C en-
ables CCC studies to be performed on a genomic
scale, Chromatin Interaction Analysis by Paired-End
Tag Sequencing (ChIA-PET) allows the determination
of de novo long-range chromatin interactions
genome-wide, and DNase I hypersensitive sites se-
quencing (DNase-seq), Formaldehyde-Assisted Isola-
tion of Regulatory Elements (FAIRE)-seq and Assay
for Transposase-Accessible Chromatin (ATAC)-seq
allow the assessment of changes in DNA accessibility
[33]. These novel NGS techniques in parallel with the
aforementioned progress in cell imaging now provide
us with an exceptional opportunity to interrogate
neuronal chromatin dynamics [33, 35]. For example,
FAIRE-seq has revealed major genomic reorganiza-
tions during both differentiation and neuronal stimu-
lation [36], and ulterior Hi-C experiments have
shown that topologically-associated domains (TADs)
are organized into hierarchical domain-within-domain
structures named metaTADs. Some of these meta-
TADs are remodeled during neuronal maturation
while others remain unchanged, thereby supporting
stability and at the same time that enabling the
adaptability of specific loci [37].

Loci relocation
A key level of genome organization is the movement of
genes within the interior of the nucleus. Fundamental

contributions in the eighties demonstrated chromosomal
movements in seizure foci of the human cortex. These
movements were found to affect particularly the X
chromosome although they were independent of the pa-
tient’s sex [38]. Consistently, the induction of LTP in the
hippocampus has been shown to provoke the clustering
of satellite DNA in hippocampal neurons [39]. More re-
cent experiments have further elaborated on the details
of such chromosomal movements. For instance, in the
case of Bdnf, it has been observed that upon kainate-
induced seizures there is both a weakening of its inter-
action with the lamina as well as the relocation of one
allele from the nuclear margin to deeper areas within
the nucleus [40]. This relocation resulted in the colocali-
zation of Bdnf alleles with poised RNAPII. Intriguingly,
the detachment from the lamina persisted beyond the
transient increase in transcription, which leaves open the
possibility that this structural change could contribute to
sensitization of affected neurons for ulterior reactivation
[40]. A similar internalization of the Bdnf locus has also
been reported to occur in neuronal cultures after
depolarization [41]. These movements in the nucleo-
plasm correlate with the wave of active transcription that
follows strong synaptic activation [41]. These gene
movements resemble those reported to occur during
neuronal differentiation. For example, when neural pre-
cursors acquire neuronal commitment, ASCL1 (encod-
ing for the Mash1 protein), along with other proneural
genes, move from the nuclear periphery where they re-
main transcriptionally silent to the central nucleoplasm
where they become transcribed [23, 42].

Architectural proteins involved in chromatin loops, and
long and short-range interactions
Enhancers are defined as regulatory sequences rich in
transcription factor (TF) binding sites that regulate gene
activation and are distal to the transcription start site
(TSS) [43]. They are often located over 10 Kb from their
respective genes, with 22 % of them being found more
than 100 Kb away, and are usually identified by their en-
richment in H3K4me1 and H3K27ac [22].
The expression of cell type-specific and brain region-

specific genes often relies on enhancer sequences that
act specifically only in those cells, while being methyl-
ated and inactive elsewhere [44]. Interestingly, these se-
quences are usually linked to a single promoter [31, 45]
and often participate in intricate chromatin loops [46].
Indeed, promoter-enhancer architecture is essential in
triggering activity-regulated transcriptional programs. In
neurons, about 13,000 enhancers have been identified
within a few Kb from TSSs [47]. Luciferase reporter as-
says have demonstrated productive elongation in these
sequences, and led to the identification of enhancer
RNAs (eRNA), a special kind of non-coding RNA
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(ncRNA) whose transcription is initiated near the center
of the enhancer sequence [47]. Intriguingly, protein-
coding genes associated with eRNAs are highly tran-
scribed, and knocking down the eRNA dampens tran-
scription of the neighboring genes [45]. Indeed, eRNA
transcription is a proxy of 3D promoter-enhancer inter-
actions because the release of nascent protein-coding
RNA from the promoter needs Negative Elongation Fac-
tor (NELF) to bind eRNA and enter into productive
elongation [48]. Recent genomic screens aimed to
characterize enhancers that mediate activity-dependent
transcription in mouse cortical neurons have underscored
the importance of the TF Fos, which is itself subjected to
regulation by neuronal activation, in the regulation of
activity-driven gene programs [49]. In fact, the broad in-
ducibility of Fos in the nervous system seem to rely in the
action of at least five enhancers that surround the locus
and differentially respond to various stimuli (e.g., mem-
brane depolarization, BDNF binding and adenyl cyclase
stimulation) [50].
Another type of regulatory sequence that relies on

chromatin looping are the insulators. Insulators are de-
scribed as chromatin regions that protect against the ac-
tivating influence of distal enhancers associated with
other genes [51]. The proteins CTCF (aka CCCTC-
binding factor), mediator and cohesin are important
components of the insulator complex that appear in dis-
tinct combinations depending on the range of inter-
action. CTCF and cohesin locate together in active
regulatory sequences where they mediate long-range
constitutive interactions. They are fundamental building
blocks behind insulated chromosomal neighborhoods
containing super-enhancers necessary for cell identity
[52]. For instance, the presence of CTCF/cohesin marks
megabase-sized TADs whose boundaries are usually
constant among all cell types, although there can be
cell-type specific subTAD organization [53]. Whereas
cohesin is involved in regulation of tissue-specific tran-
scription [54], CTCF plays a prominent role enabling
chromatin looping through the pairing of sequences that
contain its binding site [53, 55]. In turn, mediator
and cohesin are found in short-range complexes that
bridge enhancers and promoters. While mediator is
necessary for the loading of enhancers with TFs and
the formation of the initiation complex at the pro-
moter [53], cohesin together with the “loader” protein
Nipped-B-like protein (NIPBL) and other factors,
brings DNA sequences together forming a ring struc-
ture that physically promotes their approximation
[56]. The involvement of these proteins in neurodeve-
lopment and cognition is supported by the finding
that mutations in the encoding genes cause intellec-
tual disability and severe neurodevelopmental defects
(see below). Moreover, experiments in mice indicate

that CTCF loss throughout developmental stages has
been shown to cause neuronal death and deregulate
neuronal differentiation [57], while ablation in postmi-
totic neurons caused growth retardation, abnormal
hind-paw clasping, defects in somatosensory cortical
maps, and reduced dendritic arborization and spine
density [58].

Poised RNAPII and transcription factories
The term transcription factory refers to discrete foci in
the eukaryotic nucleus where transcription occurs [59].
These mega-structures promote physical interactions be-
tween genes that share the same regulatory machinery,
which may enable their synchronous expression [60].
Consistent with this notion, genomic analyses indicate
that TF binding can occur in nucleosome-depleted
stretches of DNA lacking their canonical binding motifs
through the interaction with other TFs and cofactors.
Enhancer elements are also thought to form part of
these mega transcription factor complexes [61] that are
enriched in cohesin binding and strongly labeled with
RNAPII antibodies [62]. It has been described in differ-
ent immortalized human cell lines that loci highly
enriched in RNAPII are often associated with looped
chromatin in promoter-promoter interactions (the most
common) or in the interactions between promoters and
distal regulatory elements [61]. Single-gene complexes
show a high intron/exon ratio, include looping confor-
mations between promoters and enhancers, and usually
are developmentally regulated and/or tissue-specific.
Multigene complexes display interactions among several
promoters and often also include enhancers. The genes
found in multigene complexes are shorter (i.e., with
lower intron/exon ratio), more enriched in GC, and are
located in highly transcribed, gene-dense euchromatin
regions that are rich in short interspersed nuclear ele-
ments (SINEs). Recent genomic studies indicate that, on
average, there are more than eight genes per multigene
complex [61], suggesting that promoter-promoter ag-
gregates are a major feature of eukaryotic gene regula-
tion. Such complexes provide the topological basis for
common transcriptional regulation of gene groups. For
instance, the 58 HIST1H genes located on chromosome
6 are organized into three complexes that further inter-
act to form a larger complex [61]. It is tempting to
speculate that poised plasticity-related genes share
common transcription factories enriched in the same
transcriptional regulators. This could occur through
promoter-promoter interactions, which could ultim-
ately synchronize their rapid expression due to higher-
order chromatin structures in which RNAPII acts as a
primary hub.
The activity of these transcription factories is dynamic-

ally regulated by the phosphorylation of specific serine
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(Ser) residues at the C-terminus domain (CTD) of RPB1,
the largest subunit of the RNAPII complex [63]. Al-
though the phosphorylation of the Ser5 is required for
transcription initiation, RNAPII remains incapable of
elongation because NELF binding pauses nascent RNA
synthesis and stalls RNAPII downstream of the TSS. To
unlock stalling and engage in productive elongation, it is
necessary the phosphorylations of RPB1 at Ser2 and the
pausing factors NELF and DRB sensitivity–inducing fac-
tor (DSIF). Both repressors, upon phosphorylation, turn
into positive regulators [64]. Recent Chip-seq experi-
ments have revealed over 8000 gene promoters on which
the RNAPII is stalled [65]. This state is often referred to
as ¨poised polymerase¨ and has been shown to be a
common feature of the TSSs of immediate early genes
(IEGs) in neurons, enabling their rapid transcriptional

recruitment upon neuronal activity [65] (Fig. 2a). A
mechanism reported to contribute to the attachment of
IEGs to transcription factories is the de novo acetylation
of SINEs located around their promoter (Fig. 2b). This
process is controlled by TFIIIC, a general TF that re-
presses IEG transcription in the basal state. As such, the de-
pletion of the TFIIIC subunit Gtf3c5 enhances the
localization of IEGs in transcription factories, and subse-
quently favors their transcription and promotes dendrito-
genesis [41]. How TFIIIC mediates this effect is yet unclear,
although it has been hypothesized that the acetylation of
SINEs could be mediated through either its TFIIIC90 sub-
unit that has intrinsic lysine acetyltransferase (KAT) activity
[66], or by recruiting coactivators such as p300 that have
KAT activity [41]. Another regulatory mechanism of
activity-driven transcription may rely on the appearance of

Fig. 2 Activity-driven promoter/enhancer interactions leading to transcriptional elongation. a. In the basal state, RNAPII appears in transcriptional
factories (an incompletely described proteinaceous body that is depicted in the scheme as a large blue globe) (1). The C-terminus of RPB1 has 52
tandem repeats of the heptapeptide YSPTSPS that contains two Ser residues that are dynamically phosphorylated. S5 phosphorylation (in orange)
and the presence of the transcriptional repressors NELF and DSIF impede transcriptional elongation and stall RNAPII at gene promoters (2). b.
Upon neuronal activity, distal enhancer sequences interact with the promoter thanks to the action of cohesin (3), which together with acetylated
TFIIIC-bound SINEs mediates the relocation of plasticity genes. Enhancer acetylation requires the action of lysine acetyltransferases (4), such as
CBP and p300, subsequently promoting their relocation. Transcriptional machinery (elongating RNAPII, the Mediator complex and TFs) binds to
the enhancer element in order to transcribe eRNAs (5) that in turn bind to NELF and release it from the promoter. Finally, the phosphorylations
of RNAPII (at Ser2), NELF and DSIF (red circles) would trigger productive elongation (6). In addition, it has been recently proposed that
Topo IIB-mediated DSBs (upstream of the TSS) eliminate the loop that separates the promoter from the transcription factory (7)
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DNA double-strand breaks (DSBs). Thus, it has been re-
cently shown that DSBs and the phosphorylation of histone
variant H2AX occur at specific genomic loci, including the
TSSs of several IEGs, after neuronal stimulation (Fig. 2b).
Two hours later, DSBs were repaired and transcription was
back to basal levels [67]. Intriguingly, although the artificial
induction of DSBs mostly caused gene downregulation,
some IEGs exhibited the opposite response suggesting a
physiological role for DSBs in productive elongation.

Chromatin architecture in neuropsychiatric
disease
As introduced in previous sections, the neurons in some
developmental and degenerative disorders often display
gross nuclear aberrations, while psychiatric disorders
have been associated with more subtle changes (Table 1).
We discuss below some additional examples that dem-
onstrate the strong connection between aberrant chro-
matin architecture in neurons and neuropathology.

Neurodevelopmental disorders
Mutations in genes encoding proteins important for nu-
clear architecture (e.g. CTCF, cohesin and many epigen-
etic factors) frequently result in neurodevelopmental
disorders [68]. This is the case of Opitz-Kaveggia syn-
drome and Fryns-Lujan syndrome which are both caused
by mutations in MED12 [69] that encodes a subunit of the
mediator complex. Moreover, mutations in the genes en-
coding either NIPBL or the cohesin subunits SMC1 and
SMC3 cause Cornelia de Lange syndrome [70], whereas
mutations in the CTCF gene have been associated with in-
tellectual disability (ID), microcephaly and growth retard-
ation [71]. Further supporting the link between aberrant
chromatin structure and ID, various genes encoding pro-
teins that interact with heterochromatin, such as ATRX
and MeCP2, are also linked to ID. Thus, mutations in
the gene that encodes ATRX cause Alpha-Thalassemia
X-Linked ID syndrome [72], while the loss of MeCP2
results in Rett syndrome [73] that manifests itself
with ID and autistic traits. Neurons lacking MeCP2
show an abnormal number and size of nucleoli and
chromocenters [74], and an aberrant distribution of
pericentric heterochromatinization [75]. Other syn-
dromes are also characterized by nuclear defects even
though their etiology is not directly linked to nuclear
organizers. For instance, hippocampal neurons with
CGG repeat expansions in the FMR1 gene, which give
rise to fragile X-associated tremor/ataxia syndrome
(FXTAS), accumulate more heterochromatin but in
smaller foci [76].
Another type of genetic disorders associated with ab-

normal nuclear architecture are laminopathies in which
the nuclear lamina is prominently disrupted. This group
of disorders includes Hutchinson–Gilford progeria

syndrome (HGPS) that is caused by mutations in the
gene encoding lamin A [77]. Intriguingly, hippocampal
nuclei of mouse models for this condition show abnor-
mal lobulations and deep infoldings of the nuclear enve-
lope, but gene expression and behavioral assays revealed
no gross impairment [78], which indicates that neuronal
nuclei can adapt to major perturbations in its structure.
In contrast, as we will discuss in further detail for psy-
chiatric conditions, other studies have shown that even
local chromatin looping perturbations might lead to
neurological symptoms. For example, the single nucleo-
tide polymorphism (SNP) rs12469063 associated with
Restless Legs syndrome, a sensorimotor neurological

Table 1 Neuropsychiatric conditions associated with disrupted
nuclear organization and 3D chromatin architecture

Condition Disruption Reference

Alzheimer’s disease Lamin B invaginations [80]

Behavioral stress PML clustering [28]

Cocaine addiction Sig-1R-mediated MaoB
repression

[24]

Epilepsy Chromosomal
movements

[38]

Fragile X–associated tremor/
ataxia syndrome

Heterochromatin
condensation

[76]

Huntington’s disease Super-enhancer
dysfunction

[82]

Neurodegeneration Disrupted CBS and
speckles

[29, 30]

Seizures PML clustering
Bdnf relocation

[28, 40]

Alpha thalassemia/mental
retardation syndrome X

ATRX mutation [72]

Bipolar disorder PCDHα enhancer SNP [88]

Cornelia de Lange syndrome NIPRL, SMC1 and SMC3
mutations

[70]

Fryns-Lujan syndrome MED12 mutation [69]

ID, microcephaly and growth
retardation

CTCF mutation [71]

Impulsive-disinhibited
personality

SIRPB1 intronic deletion [89]

Opitz-Kaveggia syndrome MED12 mutation [69]

Post-traumatic stress disorder/
depression

FK506 intronic SNP [93, 94]

Restless Legs syndrome MEIS1 enhancer SNP [79]

Rett syndrome MECP2 mutation [73]

Schizophrenia GRIN2B enhancer SNP
Microsatellite repeats in
NRG1 intron 1
GAD1 enhancer-
promoter dysfunction

[84, 85, 87]

This list is not exhaustive; it only presents those conditions discussed in the
text. The rows under “Seizures” refer to conditions caused by mutations in
architectural proteins or regulatory elements
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disorder, has been shown to cause looping perturbations
and motor restlessness/hyperactivity in mouse models
for this condition [79].

Neurodegenerative disorders
Large-scale chromatin reorganization is often observed
in neurons undergoing degeneration. Thus, irregularities
in nuclear shape, particularly mediated by B-type lamins,
have been described to precede heterochromatin relax-
ation, DNA damage and neurodegeneration in both
Drosophila models of tauopathy and human samples
from Alzheimer’s patients [80]. Furthermore, dispersion
of the nuclear lamina is known to precede neuronal
death and is a common feature seen in mouse models of
Alzheimer’s disease [81]. Other alterations may not
cause prominent structural changes but still affect func-
tion. For example, mouse models for Huntington’s dis-
ease (HD) exhibit diminished super-enhancer function
of striatum-specific genes governed by Gata2 and display
reduced H3K27ac and paused RNAPII binding [82].

Psychiatric disorders
Aberrant chromatin loopings have been recently impli-
cated in psychiatric disorders. For example, Akbarian
and colleagues first found that overexpression of the his-
tone methyltransferase Setdb1 caused the heterochroma-
tinization of the promoter of Grin2b (encoding for a
subunit of the NMDA receptor) and the loss of a loop
tethering the promoter to a Setdb1 target site positioned
30 kb downstream of the TSS [83]. Further investigation
of the same locus revealed that the SNP rs117578877,
located at the distal arm of another GRIN2B loop, is
often found in schizophrenic patients and correlates
with impaired working memory and schizotypic features.
Notably, isogenic deletions of loop-bound sequences in
mice impaired cognitive performance and decreased
Grin2b expression [84]. The same team has also re-
ported abnormal chromosomal interactions at a second
locus linked to schizophrenia. The formation of a chro-
matin loop between the TSS of GAD1 (encoding an en-
zyme critical for GABA synthesis) and an enhancer
sequence 50 Kb upstream was found reduced in the pre-
frontal cortex of schizophrenic patients [85]. A similar
loop, sensitive to neuronal activation, was also detected
in GABAergic neurons of mice. As a third example, it
was recently demonstrated that a polymorphism affecting
the interaction between the TSS of FKBP5, which encodes
the co-chaperone FK506 binding protein 5, and enhancer
sequences located in introns 2 and 7 is associated with an
increased risk of developing stress-related psychiatric dis-
orders after childhood trauma [86]. Another recent study
has shown that microsatellite repeats in intron 1 of the
gene encoding neuregulin 1 (NRG1), a putative schizo-
phrenia susceptibility gene regulating the excitatory-

inhibitory balance, are associated with an increase in
NRG1 transcripts in the prefrontal cortex, suggesting that
this region could function as a transcriptional enhancer.
Intriguingly, the presence of these repeats correlated with
an earlier age of onset of the symptoms. However, long-
range interactions between the intronic sequence and the
promoter remain to be experimentally proven [87]. There
are additional examples suggesting that abnormalities in
chromatin looping may be associated with conditions such
a bipolar disorder [88] and impulsive-disinhibited person-
ality [89], but molecular studies are still needed to prove
the involvement of aberrant chromatin interactions in the
etiology of these disorders.

Cause or consequence
Given the difficulty of examining the specific contribu-
tion of chromatin conformation changes through gain-
and loss-of-function experiments, most of the evidence
discussed above is correlative. A recent study by our
team investigating transgenic mice that express high
levels of GFP-tagged H2B in forebrain principal neurons
has provided evidence for a causal role of aberrant chro-
matin organization in the emergence of neuropsychiatric
traits [90]. Neuronal nuclei in these mice presented an
aberrant subnuclear pattern resulting from chromocen-
ter declustering, a loss of perinuclear heterochromatin,
heterodense nucleoplasm, and abnormal distribution of
heterochromatic and euchromatic epigenetic markers
(Fig. 3). The mice also exhibited a number of phenotypes
related to neuropsychiatric symptoms, such as hyperlo-
comotor activity, impaired social interactions, nocicep-
tion, sensorimotor gating and memory, and the
downregulation of several serotonin receptor genes that
sit in the edge of “gene desert” zones [90]. Suggestively,
this topographical feature is conserved in the human
genome and might relate to the susceptibility of these
loci to epigenetic deregulation. In addition to this work,
the aforementioned studies conducted by the Akbarian’s
lab on chromosomal loops at schizophrenia-linked genes
further support a causal link between the loss of specific
chromatin loops, transcriptional deregulation and neur-
onal alterations [83–85].
Excitingly, the use of engineered transcription factors

has recently demonstrated that the local manipulation of
epigenetic profiles at a given gene is sufficient to control
drug- and stress-evoked transcriptional and behavioral
responses, thereby providing seminal evidence for a
causative role for those epigenetic marks [91]. Similarly,
CRISPR/Cas9 technology now enables direct manipula-
tion of genome topology, opening up the possibility to
conduct loss- and gain-of-function experiments explor-
ing the role of altered DNA conformations in pathology
and transcription [84]. For example, CRISPR/Cas9 has
recently been used to change the orientation of two
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interacting chromosomal regions, demonstrating that
the functionality in vivo of some enhancers carrying
CTCF-binding sites relies on their relative orientation
and the precise architecture of chromatin domains [92].

Conclusions and prospects
As reviewed here, numerous studies have illustrated
that nuclear architecture and genome topology are
key for understanding neuronal function and dysfunc-
tion. Changes in subnuclear structures and chromatin
loopings have been found to occur in different neur-
onal plasticity paradigms. Similarly, the disruption of
chromatin structures is a landmark for numerous
neurological disorders. Although such a disruption
likely contributes to the onset of a disorder, a clear
distinction between cause and consequence is still
missing, except for some monogenic disorders (often
associated with ID) caused by mutations in architec-
tural proteins or regulatory sequences. Although the
specific contribution of architectural proteins and the
changes in 3D chromatin organization to neuroplasti-
city and neuropathology largely remain to be deter-
mined, new light will soon be shed now that novel
techniques such as super-resolution microscopy,
NGS-based techniques for the analysis of DNA con-
formation and CRISPR/Cas9-based epi-editing have
emerged. These innovative approaches will facilitate a
high resolution determination of the 3D organization

of the genome, in parallel to a systems-level interro-
gation of the consequences of gene expression, the
identification of loci associated with aberrant function,
and even the manipulation of DNA conformations to
promote or correct transcriptional changes.
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