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Abstract

Background: Spotted wilt caused by tomato spotted wilt virus (TSWV) is one of the major peanut (Arachis hypogaea
L) diseases in the southeastern United States. Occurrence, severity, and symptoms of spotted wilt disease are highly
variable from season to season, making it difficult to efficiently evaluate breeding populations for resistance. Molecular
markers linked to spotted wilt resistance could overcome this problem and allow selection of resistant lines regardless
of environmental conditions. Florida-EP™ 113" is a spotted wilt resistant cultivar with a significantly lower infection
frequency. However, the genetic basis is still unknown. The objective of this study is to map the major quantitative trait
loci (QTLs) linked to spotted wilt resistance in Florida-EP™ 113,

Results: Among 2,431 SSR markers located across the whole peanut genome screened between the two parental
lines, 329 were polymorphic. Those polymorphic markers were used to further genotype a representative set of
individuals in a segregating population. Only polymorphic markers on chromosome AOT showed co-segregation
between genotype and phenotype. Genotyping by sequencing (GBS) of the representative set of individuals in the
segregating population also depicted a strong association between several SNPs on chromosome A01 and the trait,
indicating a major QTL on chromosome AO1. Therefore marker density was enriched on the A0T chromosome. A
linkage map with 23 makers on chromosome A01 was constructed, showing collinearity with the physical map.
Combined with phenotypic data, a major QTL flanked by marker AHGS4584 and GM672 was identified on
chromosome AO1, with up to 22.7 % PVE and 9.0 LOD value.

Conclusion: A major QTL controlling the spotted wilt resistance in Florida-E 113" was identified. The resistance is
most likely contributed by Pl 576638, a hirsuta botanical-type line, introduced from Mexico with spotted wilt resistance.
The flanking markers of this QTL can be used for further fine mapping and marker assisted selection in peanut
breeding programs.
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Background

Cultivated Peanut (Arachis hypogaea L, 2n = 4x =40) is a
member of the legume family and is cultivated mainly in
semi-arid tropic and sub-tropic regions. Worldwide,
more than 42 million tons of peanuts were produced in
2013. Peanut seeds have high concentrations of oil (45—
52 %) and protein (about 25 %), serving as a principal
nutrition source in some developing countries [1]. Culti-
vated peanut is an allotetraploid with a genome compos-
ition of AABB. The genomes A and B were most likely
derived from two wild diploid Arachis species, A. dura-
nensis (A genome, 2n =20) and A. ipaensis (B genome,
2n = 20) respectively [2]. Peanut production is signifi-
cantly affected by spotted wilt disease caused by Tomato
spotted wilt virus (TSWV) (genus Tospovirus, family
Bunyaviridae), specifically in the United States. In 1997,
the production losses due to spotted wilt in Georgia
were estimated to be approximately $40 million [3]. The
typical symptoms of spotted wilt on peanuts are yellow-
ing, stunting, concentric ringspots, chlorosis, and necro-
sis of various sizes and shapes on leaflets [4].

Many factors affect the severity of spotted wilt includ-
ing peanut variety, planting date, plant population, row
pattern, crop rotation, and tillage. Host resistance (pea-
nut variety) is the most important factor to reduce dis-
ease risk. Hence, the development of spotted wilt
resistance varieties has become a major breeding object-
ive in peanut breeding programs in the United States.
Traditionally, peanut breeders select resistant plants in
the field under natural conditions. However, expression
of spotted wilt disease is highly variable from season to
season, reducing selection efficiency. The recent advances
in genetic and genomic tools and resources for peanut in-
creased the potential of using molecular markers for selec-
tion to accelerate the peanut cultivar improvement [5].
Much progress was made in the past few years. Specific-
ally, the two ancestor genomes, the A genome from A.
duranensis and the B genome from A. ipaensis, have been
sequenced and annotated [6], which provided a funda-
mental resource for molecular marker development.

Simple sequence repeat (SSR) marker is a valuable
type of marker. Its abundance in the genome, co-
dominance, multiple alleles, high polymorphism, PCR-
based simple analysis, and transferability from other
related species made SSR marker a great choice [7, 8]
for peanut genetic studies. Single nucleotide polymorph-
ism (SNP) is another type of molecular marker, which is
very abundant and distributed throughout the whole
genome. Those molecular markers can be used to help
construct peanut linkage maps [9-11]. Linkage maps
provide the basic framework for genetic and genomics
studies, such as quantitative trait locus (QTL) analysis,
marker assisted selection (MAS), comparative genomics,
and genome assembly. QTL analysis based on the linkage
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map is critical in identifying markers linked to agronomi-
cally important traits. Several QTLs for important traits
have been identified in peanut, such as drought tolerance,
disease resistance, and nutritional quality [9, 12-15].
Florida-EP™ ‘113’ is a new runner-type variety with
superior spotted wilt resistance [16]. It has been tested
under earlier planting date (April) and reduced seed
density (13.1 seed per meter). Both conditions favor for
spotted wilt epidemics. However, Florida-EP™ ‘113’proved
to have resistance sufficient to obviate high risk situations
presented by earlier planting date and lower seed density
[17]. One of the parental lines of Florida-EP™ 113’ is
NC94022. High level of field resistance has been reported
for NC94022 [18] and the crosses utilizing NC94022 as a
parental line in peanut breeding programs were initiated
[19]. In 2012, Qin et al. [20] reported the first genetic link-
age map based on NC94022-derived population and a
major QTL asssociated with resistance to TSWV on link-
age group ‘A1’ was reported, which had a phenotypic vari-
ation explained (PVE) of 35.8 %. Recently Khera et al. [21]
reported an improved genetic map for the same
NC94022-derived population and QTLs on chromosome
‘A0’ associated with multi-year TSWV phenotypic data
were identified. However, whether genetic basis of the
spotted wilt resistance in Florida-EP™ ‘113’ is the same
as the NC94022 was unknown. The objective of this study
was to understand the genetic basis of the supurior
spotted wilt resistance in Florida-EP™ ‘113’ through
maping and QTL analysis using Florida-EP™ ‘113'-
derived populations. If the major QTLs of the resist-
ance in Florida-EP™-113 can be detected, MAS can
be applied in the breeding program to avoid uncertain
environmental impacts on selection of new cultivars.

Methods

Plant materials

An F, population was derived from cross between Florida-
EP™ ‘113’ and Georgia Valencia made in 2009. Georgia
Valencia is a large-podded Valencia market type peanut
susceptible to spotted wilt [22]. The F, segregating popula-
tion comprised of 200 lines was planted at the North
Florida Research and Education Center (NFREC) near
Marianna, FL, in 2011. All F, plants were self-pollinated to
generate next generation seeds. Since seeds harvested from
a few F, lines were mixed up during seeds processing and
thus discarded, only 163 pure F,3 (F, _derived in F3) fam-
ilies were kept and planted in 2012. Planting of F,3 lines
took place at Plant Science Research and Education Unit
(PSREU) located near Citra, Florida in early April and at
NEREC in the middle of April 2012. An augmented experi-
mental design with two parental lines as controls was used
at each location. Each plot had two rows, 0.9 m wide and
4.5 m long, and a single family was planted in each plot.
Seed planting density was one seed per 0.3 m.
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The plants from each F,3; family allowed self-
pollinating. The F,.3 seeds were bulk harvested and seeds
from each family were randomly chosen to generate
163 Fy4 (F, _derived in F,) families in 2013. After the
harvest of the F,., families, 163 F,.5 (F, _derived in Fs)
families were planted subsequently in 2014. The experi-
mental design for the F,.5 was the same as the F,;3 and
F,., but the planting took place only at the NFREC loca-
tion (Additional file 1). A single plant was harvested
from each F,.5 families and seeds were randomly chosen
to plant the Fs generation as RILs (163 lines) with a high
level of homozygosity. F,.3, Fo.4 and F,.5 generations were
included in the research for phenotyping.

Rating for disease resistance
Two different disease evaluation methods were con-
ducted to assess the severity of spotted wilt. One was a
visual rating on a scale ranging from 1 to 10, and the
other was a form of immunoassay (immunostrip testing),
which was used to test for the presence of TSWYV in the
root crown. A visual rating was conducted on a whole
plot basis prior to digging. Each plot was assessed for
typical symptoms of spotted wilt such as stunting and
foliar symptoms of ringspot, leaf necrosis, and chlorosis
(yellowing) [4]. The 1 to 10 scale represented a percentage
of infected plants (1, 1.5, 2, 3,4, 5, 6,7, 8,9, 10 equals 0 %,
1-10 %, 11-20 %, 21-30 %, 31-40 %, 41-50 %, 51-60 %,
61-70 %71-80 %, 81-90 %, and 91-100 %, respectively).
The immunostrip testing was conducted by using the
ImmunoStrip Kit (Agdia Inc., Elkhart, IN, USA). Ten in-
dividual plants were randomly harvested from each plot
and root crowns of each plant were collected and air-
dried after digging. Approximately 0.4 g root crown
sample was trimmed and subjected to immunostrip test
following the manufacturer’s instructions. The percent-
age of infected plants out of the 10 randomly selected
plants from each plot represented the TSWYV infection
frequency of each plot, thus each plot had the possibility
of TSWYV infection percentage ranging from 0 to 100 %.
The visual disease evaluation method was conducted
in F,.3 and F,., families at both NFREC and PSREU. For
F,.5 families, only at NFREC, the evaluation was applied.
Immunostrip testing was utilized in F,3 and F,,4 genera-
tions at only NFREC (Additional file 1). Phenotypic corre-
lations were analyzed using SPSS 22.0 to calculate
Spearman’s rank correlation coefficient (Spearman’s rho).

SSR genotyping

The genomic DNA of each F, individual was extracted
from approximately 500 mg young leaf tissues using the
method described by Dellaporta et al. [23], with a modifi-
cation that 1 % polyvinylpyrrolidone (PVP) was added to ex-
traction buffer to remove phenolic compounds. DNA
quality and quantity were evaluated by using 1 % agarose
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gel electrophoresis and NanoDrop (Thermo Scientific,
United States). The isolated DNA was diluted to 5 to 30 ng/
ul for further polymerase chain reaction (PCR) process.
Publicly available SSR markers were selected based on
polymorphism information content (PIC) and linkage
group information from related literatures [7-9, 11, 13,
14, 20, 24-39] (Additional file 2). The primers of se-
lected SSR markers were synthesized by Invitrogen™,
Life Technologies. PCR was performed in 10 ul volumes
containing 1 ul of 10 x PCR buffer, 1 pl of Magnesium
Chloride (25 mM), 1 pl of ANTP (2 mM), 0.3 ul of Taq
enzyme (home-made), 2 pl of forward and reverse
primers (2 mM), 2 pl of DNA template (10 ng/ul), and
2.8 ul of distilled deionized water. The PCR program
was operated using a touchdown program with an initial
denaturation at 94 °C for 3 min; 10 cycles of amplifica-
tion at 94 °C for 30 s, 65 to 55 °C for 20 s (every cycle
drops one degree until 55 °C), 72 °C for 40 s; 30 cycles
of amplification at 94 °C for 30 s, 55 °C for 20 s, 72 °C
for 40 s; and a final extension at 72 °C for 7 min. The
PCR products were separated on 6 % non-denatured
polyacrylamide gel electrophoresis (PAGE) under 150
volts for 2 h in 1X TBE buffer with DYCZ- 30B gel rigs
system (Beijing, China) [40]. The gels were stained by
ethidium bromide and visualized under UV light.

Genotyping by sequencing (GBS)

Two parental lines (Florida-EP™ ‘113’ and Georgia
Valencia) plus 10 Fg lines samples were selected for
GBS. Among the 10 F¢ lines, five lines consistently
showed disease resistance for 3 years and the other five
lines showed susceptibility. The 12 DNA samples with
high quality and a concentration higher than 50 ng/ul
were delivered to Cornell University, Institute of bio-
technology (Genomic Diversity Facility) for 96-plex GBS
library preparation (in combination with other 83 sam-
ples unrelated with this experiment) and sequencing
with Illumina HiSeq 2000 platform following the opti-
mized protocol [41]. The restriction enzyme, ApeKI was
used for reduced representation library preparation.

The Tassel-GBS pipeline was utilized for SNP calling
[42]. Trimmed and cleaned sequence tags were aligned
to peanut A and B genomes respectively [6] using Bowtie2
[43]. The minor allele frequency (MAF) cutoff was
set at 0.01. Raw SNPs were called and the resulting
HapMap.hmp.txt files were input into TASSEL soft-
ware [44] for further filtering. SNPs with more than
25 % missing data were removed. The remaining SNPs
were applied for single marker analysis first. Then associ-
ation mapping analysis was conducted. The general linear
model (GLM) was performed and a Manhattan plot was
generated by Tassel v5.0 after inputting phenotyping data
of 12 samples [44, 45].
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Linkage and QTL analysis

Linkage analysis was performed using software QTL
IciMapping V4.0 [46] in combination with JoinMap 4.0
[47]. To construct linkage groups, a minimum log-of-
odds (LOD) threshold of 3.0 was applied and map dis-
tances were converted to centi morgans (cMs) using
Kosambi mapping function [48]. The 3-year phenotyping
data were incorporated with linkage map information
for QTL mapping using the software QTL IciMapping
V4.0 [46]. The Inclusive Composite Interval Mapping
(ICIM-ADD) method [49, 50] was applied for QTL ana-
lysis with a minimum 3.0 LOD, 0.001 probability in step-
wise regression, and a scanning interval of 1.0 cM/step.

Results

Disease rating distribution in the segregating populations
Out of 163 F,.5 lines, more than 68 (40 %) at the PSREU
in 2012 had a disease rating of “1”, indicating no visible
symptoms. Only 25 lines showed more than 20 % disease
symptoms (disease rating more than 2) (Fig. la). The
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two checks (two parental lines) showed a distinct differ-
ence at PSREU in 2012. Out of the 10 Florida-EP™
‘113’ plots, eight did not show symptoms, but all
Georgia Valencia plots showed various levels of disease
symptoms with ratings ranging from 2 to 8 (Fig. 1b).
Compared to the rating data collected from PSREU, data
from NFREC had more plots with ratings of 1.5 and less
plots with ratings of 1 (Fig. 1c). Florida-EP™ 113’
checks had mostly ratings of 1, while Georgia Valencia
had a wide rating range (Fig. 1d). In general, the spotted
wilt epidemics detected by visual rating was higher at
NFREC than at PSREU.

The distribution of Immunostrip test results in 2012
was relatively even in contrast to the skewed distribution
in visual ratings (Fig. 2a). The disease rating distribu-
tions of Florida-EP™ ‘113” and Georgia Valencia were
distinct in 2012 (Fig. 2b).

The distribution of visual ratings of the F,., population
at PSREU in 2013 were skewed toward low disease rat-
ing. There were 132 plots, whose rating range were from
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1, 1.5 to 2, 60 plots were scored 1.5; 34 plots were
scored 1, and 38 plots were scored 2 (Additional file 3).
Florida-EP™ ‘113’ received all ratings below 2; however,
Georgia Valencia also received many rating scores below
2 (Additional file 3). At NFREC, the visual rating re-
sulted in most plots being scored 2 (45 plots), followed
by rating score of 3 (38 plots). Only one plot was free of
visual symptoms, whereas more plots had a high rating
score (>3) (Additional file 3). Georgia Valencia plots
had a wide range of disease ratings ranging from 1 to
9 indicating the uneven infection or disease develop-
ment in the field (Additional file 3). In general, the
disease pressure was higher in 2013 than in 2012, and
the disease rating was higher at NFREC than at
PSREU.

The distribution of immunostrip test results of the
population in 2013 was nearly a normal distribution with
a majority of plots falling between 40 and 70 % (Fig. 2c).
As for the disease severity distribution of the two

checks, it was bimodal, which represented their resistant
and susceptible feature respectively (Fig. 2d).

The F,.5 population was only rated visually at NFREC,
2014. More lines (38, 35, and 33 lines, respectively) re-
ceived rating scores of 2, 3 and 4 than other lower or
higher rating scores (Additional file 4). Most plots of
Florida-EP™ ‘113’ received rating scores of 2 and lower,
and the rating scores of Georgia Valencia plots were all
higher than 2 (Additional file 4).

Phenotypic correlation

A total of seven phenotypic datasets representing differ-
ent years, locations, generations of the population, and
measurement methods were recorded. The seven data-
sets were entitled as 2012NF-VR (2012: year 2012; NF:
NFREC; VR: visual rating), 2013NF-VR (2013: year 2013;
NF: NFREC; VR: visual rating), 2014NF-VR (2014: year
2014; NF: NFREC; VR: visual rating), 2012PS-VR (2012:
year 2012; PS: PSREU VR: visual rating), 2013PS-VR
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(2013: year 2013; PS: PSREU; VR: visual rating),
2012NF-IS (2012: year 2012; NF: NFREC; IS: immuno-
strip), and 2013NF-IS (2013: year 2013; NF: NFREC; IS:
immunostrip). There were a total of 21 possible pair-
wise combinations among the seven datasets. The corre-
lations of all the combinations were significant, except
the combination between 2012NF-VR and 2013PS-VR
(Table 1).

The highest correlation was found between 2013NF-IS
and 2013NF-VR with a coefficient of 0.78 (p < 0.01). The
second highest correlation coefficient was 0.59 (p < 0.01)
between 2012NF-IS and 2012NF-VR. In general, the
datasets from the same location tended to have higher
correlations than those from different locations, indicat-
ing environmental variation between the two locations.
Even though 2012NF-IS and 2013NEF-IS were datasets of
different years and generations, they were still correlated
with a coefficient of 0.498 (p < 0.01). However, 2012NF-IS
and 2013NF-VR were also correlated with a coefficient of
0.503 (p<0.01), but they were datasets from different
years and using different measurement methods. Overall,
the majority of the correlations had coefficients in a range
between 0.2 and 0.4. While comparing the correlations
within the year of 2013 (0.781, 0.401, and 0.316, p < 0.01)
and within the year of 2012 (0.591, 0.270, and 0.266,
p <0.01), the correlations of datasets collected in 2013
were higher than those in 2012.

Within the correlations of datasets between 2012 and
2013 that used the same measurement method (visual
rating), the dataset generated from NFREC had greater
correlation coefficient (0.355, p <0.01) than that from
PSREU (0.236, p < 0.01). While comparing the correlations
between datasets in 2012 and 2013 at the same location
(NFREC), the correlation coefficient of the IS (0.498,
p <0.01) was higher than that of the VR (0.355, p < 0.01).

SSR marker screening

A total of 2,431 markers across the whole peanut ge-
nomes (Table 2) were screened between the two parental
lines, Florida-EP™ ‘113’ and Georgia Valencia. Each
linkage group (LG) had an average of 88.4 markers
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screened, ranging from 62 to 128 markers/LG. The aver-
age number of markers screened was 93.9 on each A
chromosome and 82.9 on each B chromosome, with
additional 663 markers having no linkage group infor-
mation. The sequences from 2,431 markers were aligned
to A and B reference genomes [6] and 1,637 (67.34 %)
could be mapped to the genomes and 794 SSR primers
(32.66 %) could not be mapped, which may due to the
genome rearrangement of cultivated peanut or incom-
pleteness of the reference genomes.

The number of amplifiable markers was 2,221 with an
amplification ratio of 91.36 %. Polymorphism was de-
tected between the two parental lines at 329 SSR marker
loci with a polymorphic ratio of 13.51 %. The lowest and
highest polymorphic ratio was found on A04 (2.94 %)
and B02 (26.39 %), respectively (Table 2).

Major QTL identification

To identify the chromosome location of the major QTLs
for TSWYV resistance, the 329 polymorphic SSR markers
were further screened using 12 selected individuals, con-
sisting of two parental lines, five susceptible and five re-
sistant lines. Only 19 markers on chromosome AO1
displayed co-segregation with phenotypes (Additional
file 5). Markers on the other 19 chromosomes showed
random band patterns and did not correspond to their
phenotypic data (Additional file 5) indicating that poten-
tial major QTLs of spotted wilt disease resistance in
Florida-EP™ ‘113'were on the chromosome AOl. In
addition, the GBS experiment generated a total of
1,856,429 sequences reads and 7,972 raw SNPs were
called by Tassel-GBS pipeline. After removing the SNPs
with high level of missing data (>25 %), a total of 2,670
SNPs were identified. Single marker analysis indicated
that 18 SNP markers co-segregated with phenotypes of
the 12 individuals including 8 SNPs on A0l chromo-
some, two on B7 chromosome one marker on A3, A4,
A6, A7, A8, A9, B8 and B9 chromosome respectively.
Association mapping further confirmed some of the
markers associated with the TSWV resistance as showed
on the manhattan plot (Fig. 3). The results further

Table 1 Spearman’s rank correlation coefficients among the phenotypic measures of spotted wilt in peanut tested in Marianna and

Citra, FL
2012NF-VR 2012PS-VR 2013NF-IS 2013NF-VR 2013PS-VR 2014NF-VR

2012NF-IS 0.591** 0.270** 0.498** 0.503** 0.209** 0.290**
2012NF-VR 0.266"* 0.285** 0.355** 0.094 0.162*
2012PS-VR 0.247%* 0.266** 0.236** 0.223**
2013NF-IS 0.781** 0.401** 0433*
2013NF-VR 0.316* 0.343**
2013PS-VR 0.338**

* means correlation is significant at the 0.05 level, ** means correlation is significant at the 0.01 level. NF = North Florida Research and Education Center,
Marianna, FL; PS=Plant Science Research and Education Unit, Citra, FL. IS =Immunostrip Testing; VR = Visual Rating
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Table 2 The number of SSR primers screened, amplifible and polymorphic according to different linkage groups in cross between
Florida-EP™ 113’ and Georgia Valencia peanut cultivars

Linkage Group Total SSRs  Number of Amplifiable  Number of Polymorphic  Amplification Ratio (%)  Polymorphic Ratio (%)
Screened Primer Primer

AO1 110 98 19 89.09 17.27
A02 75 66 14 88.00 1867
AO3 128 121 23 94.53 1797
A04 100 88 7 88.00 7.00
A05 89 81 9 91.01 10.11
AO6 98 92 14 93.88 14.29
AO7 62 54 15 87.10 24.19
A08 102 93 3 91.18 294
A09 91 82 20 90.11 21.98
A10 84 77 6 91.67 7.14
BO1 99 89 20 89.90 20.20
B02 72 64 19 88.89 26.39
BO3 95 89 8 93.68 842
B04 97 90 7 92.78 7.22
BOS 76 72 8 94.74 1053
BO6 82 78 10 95.12 12.20
B07 80 72 13 90.00 16.25
B0O8 82 75 6 91.46 7.32
B09 75 66 15 88.00 20.00
B10 71 69 1 97.18 1549
No linkage group information 663 606 82 9140 1237
Total 2431 2221 329 91.36 13.53
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Fig. 3 Manhattan plot showing the associations between SNPs and spotted wilt resistance on different peanut chromosomes. Different colors
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indicated that there were major loci on chromosome
AO1 associated with spotted wilt disease resistance
(Fig. 3). Chromosomes A3, A9, B8 and B9 also showed a
few SNPs associated with TSWYV resistance. However,
compared to the number of associated SNPs on chromo-
some A01, the numbers of SNPs on other chromosomes
were relatively few.

To increase the mapping resolution on chromosome
A01, an additional 154 SSR markers from latest litera-
ture [9, 11, 34] on chromosome A0l were utilized for
polymorphism screening using the parental lines. Over-
all, 2,583 markers have been screened (Additional file 2)
and 29 polymorphic SSR markers on A0l were used to
genotype the whole F, population of 163 individuals.

Linkage analysis revealed that out of 29 polymorphic
SSR markers 23 markers were mapped on one linkage
group. The genetic distance was 157.80 cM (Fig. 4b).
Out of 23 linked SSR markers, 19 markers can be
aligned to the reference genome on chromosome AOI.
The physical positions of seven SNP markers from GBS
were also indicated on the physical map (Fig. 4a). On
the physical map, the top marker aligned to A0l was
ARhTE0369 and the position was at 5.7 megabase. The
bottom marker was AHGS1351 and the position was at
105.1 megabase. A high collinearity between the genetic
and physical maps was observed (Fig. 4, Table 3).

The seven phenotypic datasets and the genotypic re-
sults were used for QTL analysis. Two QTLs represent-
ing two locations, NFREC and PSREU, were detected on
chromosome AO01 (Fig. 5). The same QTL was identified
using phenotypic datasets of 2012NEF-IS, 2013NE-VS,
2013NF-IS, and 2014NF-VS with flanking markers,
AHGS4584 (80.73 ¢cM) and GM672 (83.28 cM). A similar
QTL was identified using 2012NF-VS dataset with flank-
ing markers, AHGS1646 (78.83 c¢cM) and AHGS4584
(80.73 cM). The QTL using 2013NF-IS dataset showed
the highest LOD score (9.00) and PVE (22.7 %) (Table 4).
QTL identified using datasets of 2012PS-VS and 2013PS-
VS had same flanking markers, AHGS1713 (90.00 cM)
and AHGS1760 (92.57 ¢M). However, the QTL identified
using 2013PS-VS dataset showed the lowest LOD score
(3.76) and PVE (10.02 %) (Table 4).

Discussion

Phenotypic variability in population

Mechanical transmission of TSWYV is difficult to achieve.
Several factors affect the transmission efficiency [51]. In
addition, it is time consuming to inoculate every single
plant in large-scale breeding experiment. In this study,
the phenotypic data were collected based on natural in-
oculation. Under natural inoculation conditions, single
plant rating is not reliable for spotted wilt disease evalu-
ation, so the plot-based evaluation with multiple years at
two different locations was applied in this study. Each
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line in the Fy4 and F,.3 families can be traced back to a
single F, plant. The family mean of phenotypic value
from multiple individuals can represent the phenotype
of the single F, plant [52].

Visual rating was a comprehensive plot-based method
including the assessment of spotted wilt severity and in-
cidence. However, compared to immunostrip test, visual
rating had a narrow disease scoring scale (1 to 10).
When conducting QTL analysis, the discrete scales
might not be able to represent the diverse variability of
the populations. In addition, visual rating relies on ex-
perience and thus is relative subjective and may produce
rating biases by a single person.

Immunostrip results were derived from 10 random
plants in a plot and can be considered as the average of
a plot. Immunostrip testing can capture TSWV reaction
more accurately than visual scoring, since it can detect
the virus in non-symptomatic plants. Approximately
50 % of non-symptomatic plants of some cultivars were
found to be infected with TSWV [17]. This means that
visual rating does not capture the potential of disease ex-
pression. Visual rating resulted more ratings in the low
range (rating 1, 1.5 and 2) and much fewer in the high
range (rating 7, 8 and 9) mostly due to the non-
symptomatic issue and non-synchronized infection.
Varying disease pressure over seasons and locations can
affect the spotted wilt epidemic, making visual ratings
less reliable. Even the homozygous parental lines exhibited
inconsistent disease levels across the field, specifically
when disease pressure was not sufficient; the susceptible
and resistant checks were not easily distinguished. How-
ever, the distribution of immunostrip testing results of the
two parents showed a distinction. According to immuno-
strip results, more plots had severe infection compared to
those with no or minor infection.

Major QTL underlying the TSWV resistance in Florida-EP™
113’
Bulk segregant analysis based on polymorphic SSR
markers indicated that only markers located on AO1
chromosome showed co-segregation with resistant/sus-
ceptible plants (Additional file 5). In addition, according
to association analysis based on GBS data (Fig. 5), 11
SNPs showed a high degree of association with spotted
wilt resistance (-log;o (p-value) = 8 as cutoff) and 7 of
11 SNPs were located on chromosome AOl. The other
four were located at chromosome A3, A9, B8, and B9 re-
spectively, most likely representing minor QTLs, which
will be investigated in the future. In this study, we fo-
cused on the major QTLs located at chromosome A01.
The QTL analysis in this study (Table 4 and Fig. 5) re-
vealed two putative QTLs on chromosome A0l next to
each other. One was associated with NFREC phenotypic
data and the other was associated with PSREU phenotypic
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data, which most likely are the same QTL with a slight
shift to different positions due to the environment effects
[53]. In addition, genotype-by-environment interaction,
population size, marker density, and genotyping errors
[54] can also influence the QTL position. Therefore, most

likely one major QTL on chromosome A0l with 23 %
PVE controls the spotted wilt disease resistance in
Florida-EP™ ‘113’. Association analysis based on GBS
data revealed seven SNPs on chromosome A01 associated
with TSWYV resistance with three of them between
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Table 3 The positions of AO1T markers on physical (Mb) and
linkage map (cM) in cross between Florida-EP™ 113" and
Georgia Valencia peanut cultivars

Marker name Physaical map (Mb) Linkage map (cM)

AhTE0369 5.692568 0
AhTEO188 - 411
AHGS1910 19.035441 2749
SNP1 2863

ARS729 31451985 3203
ARS721 22.130732 3456
AHGS1465 20917612 56.67
AHGS1389 37.76887 78.21
AHGS3363 42634304 7852
AHGS1646 43.349687 7883
SNP2 52.87

SNP3 5755

AHGS4584 57.79209 80.73
SNP4 59.65

SNP5 59.79

SNP6 66.38

GM672 72.196023 83.28
SNP7 7267

Ah21 89.295856 84.22
GM1661 89.295751 82.22
Ah126 89.295748 84.22
GM1694 90.064266 85.46
AHGS1713 - 90
AHGS1760 92.841619 9257
GM2350 103.02
TC3HO02 130.17
AhTEO0571 103.985083 139.01
seq8E12 104.139715 145.06
AhTE0499 103.336438 149.76
AHGS1351 105.122604 157.85

flanking markers AHGS 4584 and GM 672. Two are be-
tween markers AHGS 1646 and AHGS4584 (Fig. 3). The
resutls were in accordance with the QTL mapping (Fig. 4
and Table 3). In this study, the map was consructed based
on a F, popualtion, which might lead to overestimated
phentoypic effects of QTL due to large number of hetero-
zygous loci in the F, individuals and transgressive segrea-
tion [55]. Further validation of the effects of this major
QTL with advanced RIL population may be necessory.
Qin et al. [20] and Khera et al. [21] also reported
major QTLs associated to TSWYV resistance on chromo-
some AOl. Due to large number of different poly-
morphic markers between the maps, we noticed that
one (ARS721) of the two flanking markers (Seq12F7 and
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ARS721) of the QTL identified by Qin et al. [20] and
two markers (Ah21 and Ah126) of the four flanking
markers (Ah21, Ah126, Seql3A10 and GNB842) of
QTLs identified by Khera et al. [21] were also mapped
to AO1 linkage group in our study. Based on the physical
locations of these common SSR markers (Table 3), we
could tell that our QTL location flanked by AHGS4584
and GM 672 were between the QTLs identified by Qin
et al. [20] and Khera et al. [21], not quite the same as
either of them. It could be either that the major QTL
related to TSWV resistance in Florida-EP™ ‘113" was
different from that in the NC94022 or most likely that
these reported QTLs earlier were the same but with
shifted location due to environment effects [53]. There
was another possible TSWV resistance QTL located on
chromosome A09 [21]. Five markers showed poly-
morphism between two parental lines on chromosome
A09 were further used to genotype 163 F, plants in our
experiment, however, these markers were not linked
together based on this mapping population. Our associ-
ation analysis using GBS data indicated one SNP on
chromosome AQ09 significantly associated with TSWV
resistance, which might be a minor QTL and will be
investigated in the future.

Spotted wilt resistance QTLs

Spotted wilt dominant resistance genes have been found
in tomato (Solanum lycopersicum) and pepper (Capsi-
cum annuum), named Sw-5 and Tsw, respectively with
the hypersensitive response (HR) resistant mechanism
[56, 57]. In this study, the spotted wilt resistance in
Florida-EP™ ‘113 does not appear to be a HR mechan-
ism, although one major QTL was identified. Sw-5 has
an ortholog gene in peanut, Aisw with 37 % amino acid
identity to Sw-5 [58]. The gene was characterized as pea-
nut oxalate oxidase [59] and two gene-specific SSR
markers (Seq2F10 and TC7G10) were identified. How-
ever, none of them displayed polymorphism between
Florida-EP™ ‘113’ and Georgia Valencia, thus were not
used to validate the linkage within our segregating
population.

Two mapping populations have been utilized for spot-
ted wilt resistance QTL mapping previously. They were
derived from the cross between Tifrunner and GT-C20
(referred as T-population) and the cross between SunO-
leic 97R and NC94022 (referred as S-population) [20].
Two resistant QTLs (g7SWVI and qTSWV2) were first
reported on S populations [20]. gTSWVI was located on
linkage group 15 (LGJ15) on T-population and g7SWV2
was on A0l chromosome on S-population. Further 15
and 9 QTLs were identified using different generations
(F, and F5) on T-population [55], respectively. With S-
population, there were six spotted wilt related QTLs
were identified [21]. The major QTL located on LG A01
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identified based on S population was at the similar loca-
tion as the QTLs identified in the study here. Most likely
the resistance segregating in both populations was
derived from same genetic source, PI 576638, known as
hirsuta botanical-type line introduced from the high-
lands of Mexico.

Peanut is not a native crop to the United States, so
plant introduction (PI) played an important role in pea-
nut cultivar development. Two PIs, PI 203396 and PI
576638, have provided extensive disease resistant
sources [60, 61]. It was reported that several breeding
lines containing PI 576638 origin had better TSWV

Table 4 The positions, flanking markers, LOD values, PVE (%) and additive effects of putative QTLs on AOT chromosome in cross

between Florida-EP™ 113’ and Georgia Valencia peanut cultivars

Dataset Chromosome Position (cM) Left marker Right marker LOD PVE (%) add

2012PS-VR AO1 92 AHGS1713 AHGS1760 6.65 16.93 -0.56
2013PS-VR AO1 90 AHGS1713 AHGS1760 3.76 10.02 -0.24
2012NF-VR AO1 80 AHGS1646 AHGS4584 452 1217 -0.59
2013NF-VR AO1 81 AHGS4584 GM672 6.91 17.69 -0.91
2014NF-VR AO1 81 AHGS4584 GM672 433 11.55 -0.71
2012NF-IS AO1 81 AHGS4584 GM672 6.52 17.06 -0.19
2013NF-IS AO1 82 AHGS4584 GM672 9 22.7 -0.17
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resistance than the lines derived from PI 203396. The
two PI accessions may contain different resistant genes
and have different resistance mechanisms [18]. At the
similar QTL region on A01, QTL for early leaf spot resist-
ance was also detected [21], indicating that wild Arachis
species displayed a high level resistance to several diseases
(early leaf spot, late leaf spot, and stem rot) [62].

Marker assisted selection (MAS)

In this study, the spotted wilt resistant QTL with 22.7 %
PVE was identified and the two flanking makers,
AHGS4584 and GM672 can be applied to conduct
MAS. The map distance between two markers was
2.55 cM on linkage map with 14.4 megabase (Mb) dis-
tance on physical map. Although one major QTL was
identified [20], the linkage map distance on entire A0l
chromosome was only 34.0 cM constructed by using the
S segregating population reported by Qin et al. previ-
ously [20] and the QTL region (LOD >3.0) was quite
wide, covering approximately one-third of the AO01
chromosome. In our current study, the whole linkage
group is much larger (157.85 cM) and the identified
QTL was located in a much narrow region (2.55 cM),
which can be used for MAS with increased confidence.
The physical distance was estimated by A genome (A.
duranensis) sequencing, not directly from the genomes
of cultivated peanut, however, the distance was still far.
Crossovers could happen between traits (the resistant
QTL) and markers, causing recombination, which may
lead to certain false positive results and decreased selec-
tion accuracy. More closely linked markers should be
obtained to increase the efficiency of MAS.

GBS is feasible for large genome species with a low
cost [41]. In this study, 12 samples were selected to con-
duct GBS and the results indicated there were high asso-
ciations between spotted wilt resistant loci and SNPs on
chromosome AOl. The SNPs identified at the region
should be further validated in order to develop more
potential markers, which are closely linked to disease
resistance. Besides the disease resistant trait, other traits,
for examples, seed maturity, seed size, seed number per
pod, seed coat color, and leaf spot resistance, also
showed differences in this mapping population. GBS can
help to develop SNP markers associated to the traits
mentioned above and will be available for constructing a
high-density linkage map, QTL analysis, and MAS.

Conclusions

Expression of spotted wilt disease in peanut is highly
variable depending on the disease pressure which varies
by location and season. Phenotypic distribution results
in this study indicated that disease pressure at NFREC
was higher than PSREU. By using immunostrip testing,
Florida-EP™ ‘113’ proved to be a good variety to
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efficiently separate resistant and susceptible genotypes.
Since visual rating cannot detect asymptomatic infec-
tion, many “resistant” looking plants were actually sus-
ceptible genotypes. By screening polymorphic makers
between Florida-EP™ ‘113’ and Georgia Valencia, only
makers located on A01 chromosome co-segregated with
spotted wilt resistance. The GBS method also indicated
the strongest association between SNP markers and dis-
ease resistant loci on A0l chromosome. Other minor
SNPs are worthy of investigating further in the future. The
A01 linkage map constructed using the Florida-EP™
‘113’ derived population had good marker collinearity with
the physical map. Two QTLs have been identified on
chromosome A01. One QTL was PSREU-specific and an-
other was NFREC-specific. The latter one had higher
LOD and PVE values than the former one. Historically,
the spotted wilt pressure was lower at PSREU, so QTL re-
gions identified based on phenotypic data at NFREC are
more reliable with two flanking markers, AHGS4584 and
GM672. This major QTL is most likely contributed by PI
576638, a hirsuta botanical-type line, introduced from
Mexico. Marker enrichment in the region needs to be
conducted to perform fine mapping to refine the QTL
region. Next generation sequencing technology could be
utilized in the future.
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