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ABSTRACT
This study examined developmental toxicity of different mercury compounds, in-
cluding some used in traditional medicines. Medaka (Oryzias latipes) embryos were
exposed to 0.001–10 µM concentrations of MeHg, HgCl2, α-HgS (Zhu Sha), and β-
HgS (Zuotai) from stage 10 (6–7 hpf) to 10 days post fertilization (dpf). Of the forms
of mercury in this study, the organic form (MeHg) proved the most toxic followed by
inorganic mercury (HgCl2), both producing embryo developmental toxicity. Altered
phenotypes included pericardial edema with elongated or tube heart, reduction of eye
pigmentation, and failure of swim bladder inflation. Both α-HgS and β-HgS were less
toxic than MeHg and HgCl2. Total RNA was extracted from survivors three days after
exposure to MeHg (0.1 µM), HgCl2 (1 µM), α-HgS (10 µM), or β-HgS (10 µM)
to examine toxicity-related gene expression. MeHg and HgCl2 markedly induced
metallothionein (MT ) and heme oxygenase-1 (Ho-1), while α-HgS and β-HgS failed
to induce either gene. Chemical forms of mercury compounds proved to be a major
determinant in their developmental toxicity.

Subjects Aquaculture, Fisheries and Fish Science, Developmental Biology, Toxicology, Pharma-
cology, Public Health
Keywords MeHg, HgCl2, α-HgS (Zhu Sha, cinnabar), β-HgS (Zuotai), Medaka, Developmental
toxicity, Heme oxygenase-1, Mercury, Metallothionein

INTRODUCTION
Mercury-based traditional medicines are an important consideration in public health of
specific countries. For centuries, mercury has been used as an ingredient in diuretics,
antiseptics, skin ointments and laxatives, and more recently, as a dental amalgam and
as a preservative in some vaccines (Clarkson, Magos & Myers, 2003; Liu et al., 2008).
In traditional Indian Ayurvedic (Kamath et al., 2012), Chinese (Pharmacopeia of China,
2015) and Tibetan medicines (Chen et al., 2012; Kan, 2013; Li et al., 2014; Wu et al., 2016),
mercuric sulfides are frequently included in the treatment of various disorders, with the
result that health concerns for public safety are increasing (Liu et al., 2008; Kamath et
al., 2012). This form of mercury, from the naturally occurring minerals, cinnabar and
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metacinnabar, typically undergoes purification and preparation prior to use (Kamath et
al., 2012; Li et al., 2016). Zuotai is primarily composed of β-HgS (metacinnabar) while
cinnabar (Zhu Sha) is α-HgS (Li et al., 2016; Wu et al., 2016). Only mercury sulfides are
used in traditional remedies because they are considered to be safe at clinical dose levels
(Liu et al., 2008). The Chinese Ministry of Health has closely monitored mercury contents
in these medicines and publishes allowable doses (0.1–0.5 g/day) in the Pharmacopeia of
China (Liang & Shang, 2005; Liu et al., 2008). However, these doses can be considerably
higher than what is considered to be safe in Western countries (Liu et al., 2008) (see
Table S1). Inorganic mercury chloride (HgCl2) and organic methylmercury (MeHg) forms
are highly toxic and never used in these treatments (Kamath et al., 2012). This distinction is
important because it is the totalmercury content rather than specific chemical forms that are
commonly used to assess risk of traditionalmedicines, and this approachmay be inaccurate.

Mercury is categorized as a nonessential metal with no biological function but
concentration-dependent toxicity (Sfakianakis et al., 2015). Envrionmental transformation
rendersmercury of increased toxicologic relevance. First, the release ofmercury vapor (Hg0)
occurs following evaporation from water, soil, volcanic eruption/ash, and following certain
industrial practices such as pulp and paper production, metal mining, and coal, wood and
peat burning (Morel, Kraepiel & Amyot, 1998). Inorganic mercury is converted to MeHg
by anaerobic bacteria present in sediments of fresh and ocean water (Liu, Goyer & Waalkes,
2008). This step is key for methylation and eventual bioaccumulation (Morel, Kraepiel
& Amyot, 1998), affecting reactivity of mercury species as well as their concentration,
lipid-permeability, and assimilation efficiency (Morel, Kraepiel & Amyot, 1998; Klaassen,
2001). Biomagnfication of mercury occurs with consecutive passage up the food chain
(Morel, Kraepiel & Amyot, 1998; Authman et al., 2015). Because of their trophic positions
as apex- or mesopredators, certain fish may contain high levels of mercury (Craig, 2003),
and their consumption is the major route of human exposure to MeHg (Karimi, Fitzgerald
& Fisher, 2012; Sheehan et al., 2014) (Table S1). In addition to the above dietary exposure,
inorganicmercury exposure can occur via inhalation ofmercury vapor from the chlor-alkali
industry, heat extraction of gold from amalgam, and industrial discharge as Hg2+ (Liu,
Goyer & Waalkes, 2008). While this awareness has led to the use of various fish species to
investigate toxicity of mercury, less attention has been given to developmental toxicity.

Fish tissues have a high bioaccumulation capacity and are sensitive indicators of mercury
pollution. Ingested mercurials are bound, stored, and redistributed by the liver and can
be retained for long periods (Raldúa et al., 2007; Authman et al., 2015). More recently, in
laboratory model fish species, early life exposures to inorganic mercury and MeHg have
resulted in deformities, with eye, tail, and finfold alterations (Samson & Shenker, 2000).
Advantages of these early life stage models are their low cost, rapid assessment, higher
throughput, and easy determination of abnormalities. Medaka (Oryzias spp.) have been
shown to be relatively sensitive to heavy metal exposure, including mercury (Dial, 1978;
Ismail & Yusof, 2011;Mu et al., 2011). Their wide salinity tolerance and the development of
marine models have led to a variety of studies of metal toxicity (Inoue & Takei, 2002; Chen
et al., 2009; Mu et al., 2011). However, these studies have not tested traditional medicines
(i.e., permutations of mercury ore, cinnabar).

Dong et al. (2016), PeerJ, DOI 10.7717/peerj.2282 2/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.2282/supp-1
http://dx.doi.org/10.7717/peerj.2282/supp-1
http://dx.doi.org/10.7717/peerj.2282


Japanese medaka (Oryzias latipes) is a freshwater aquarium model fish with transparent
embryos that allow for evaluation in ovo (Iwamatsu, 2004) as well as having a variety
of molecular tools available (Cheng et al., 2012). Measuring gene expression is useful in
identifying treatment-induced changes and mechanisms of action following exposure
(Fielden & Zacharewski, 2001). Heme oxygenase-1 (Ho-1) is sensitive to a wide range of
toxicants and has a protective role in the case of oxidative stress (Voelker et al., 2008; Weil
et al., 2009). Metallothioneins (MT) are cysteine-rich, metal binding proteins that detoxify
excess heavy metal ions and play a general role in antioxidant defense (Woo et al., 2006).
Their expression has been shown to increase in a concentration-dependent manner in the
presence of heavy metal contaminants; as such, they are considered to be a good biomarker
for metal exposure in aquatic invertebrates (Amiard et al., 2006), laboratory model fish
(Woo et al., 2006), and free-ranging populations of fish (Chan, 1995). These results follow
closely with findings by Wu et al. (2016) in male Kunming mice exposed to organic-,
inorganic mercury, and traditional medicines. The expression of these genes provides a way
for us to evaluatemercury toxicity inmedaka with the possibility of identifyingmechanisms
and commonalities with higher animal models. In this study, we determined the feasibility
of using the medaka embryo assay as a tool to detect and compare developmental
toxicity potentials of various forms of mercury (α-HgS, β-HgS, HgCl2, and MeHg); we
assessed them for mortality, morphological changes, and toxicity-related gene expression.

MATERIALS AND METHODS
Mercury compounds
HgCl2, MeHg (in the form of CH3HgCl), and α-HgS were obtained from Sigma-Aldrich
(St. Louis, MO). Zuotai (hereafter referred to as β-HgS) was provided by the Northwest
Institute of Plateau Biology, Chinese Academy of Sciences (Xining, China).

Medaka culture and embryo collection
Orange-red (OR) medaka (Oryzias latipes) were maintained at Duke University, Durham,
NC, USA in an AHAB system (Pentair Aquatic Eco-Systems, Apopka, FL, USA) under
standard recirculating water conditions. Brood stocks were housed in a charcoal-filtered,
UV-treated water at 24± 2 ◦Cwith pH 7.4 and a light:dark cycle of 14:10 h. Dry food (Oto-
hime β1; Pentair Aquatic Eco-Systems) was fed three times per day with supplementation
of Artemia nauplii (90% GSL strain, Pentair Aquatic Eco-Systems) during the first two
feedings. Embryos were collected by siphoning approximately 30 min after feeding, cleaned
by rolling on a moistened paper towel, examined under a dissecting microscope (Nikon
SMZ1500, Nikon Instruments, Inc., Melville, NY), and stage 10 embryos (6–7 h post
fertilization (hpf)) were selected for experiments (Iwamatsu, 2004; Kinoshita et al., 2009) to
represent an early exposure window (Villalobos et al., 2000; González-Doncel et al., 2008).
Breeding colonymaintenance, embryo collection, and experimental design followed animal
care and maintenance protocols approved by the Duke University Institutional Animal
Care and Use Committee (A062-15-02 and A031-15-01).
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Experimental design
The experiment was conducted over a 10-day interval, from early blastula (stage 10) to
hatching (Iwamatsu, 2004). All mercury compounds were dissolved in DMSO and in
addition α-HgS and β-HgS were sonicated as described in Liu et al. (2008) and He, Traina
& Weavers (2007) to increase solubility. Stocks were added to the wells of 6-well tissue
culture plates (Corning, VWR International) at 1:1,000 dilutions in 5 mL 0.1% (w/v)
artificial seawater (ASW) to obtain final concentrations of 0 (Control), 0.001, 0.01, 0.1, 1,
and 10µM,with a final DMSO concentration in each≤0.1%. A total of 10–18 embryos were
placed in each well, with three wells per mercury compound concentration, and solutions
were not renewed during the course of the experiment. DMSO controls were chosen based
on previous studies showing it does not contribute to toxicity (e.g., Dong, Matsumura &
Kullman, 2010; Dong et al., 2014). Concentrations were chosen based on preliminary range
finding assays in the same design that produced developmental abnormalities without
leading to 100%mortality. Plates were incubated at 25± 2 ◦C on a 14:10 h light:dark cycle.

Mortality, hatching, growth, and teratogenesis
Embryos were observed daily under a dissecting microscope for mortality, hatching,
delayed growth, and teratogenic effects. The latter included skeletal malformations,
pericardial edema, decreased pigmentation of eyes, and swim bladder inflation or lack
thereof. The Iwamatsu (2004) atlas was used to identify timing of events in organogenesis
and hatching. Mortality was defined as any embryo with a brown, opaque chorion or any
embryo with a non-beating heart. Hatching was defined as complete emergence from the
chorion. Embryos that did not hatch by 10 days post fertilization (dpf) were considered
dead. The experiment was terminated at 10 dpf and fish were euthanized by an overdose
of MS-222 (Dong, Matsumura & Kullman, 2010; Colton et al., 2014).

RNA extraction and real-time PCR
A separate, identical exposure was run using the following concentrations: control, MeHg
(0.1 µM), HgCl2 (1 µM), α-HgS (10 µM), and β-HgS (10 µM). These were the highest
concentrations of each compound that yielded sufficient embryo numbers for RT-PCR
analysis (n= 3, 15 embryos pooled per sample). Embryos were collected at 3 days post
exposure, a time point selected based on survivorship in each treatment (Fig. 1). Embryos
were homogenized with 1 ml of RNAzol using a stainless steel Polytron homogenizer
(Kinematica, Newark, NJ). Following homogenization, total RNA was isolated as described
in Dong, Matsumura & Kullman (2010). RNA quantity was determined using a NanoDrop
ND-1000 spectrophotometer (ThermoScientific) and 260/280 ratios. Total RNA (500 ng)
was reverse transcribed using High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Grand Island, NY). The following medaka specific RT-PCR primers were
designed using Primer3 software and synthesized by Integrated DNATechnologies (Skokie,
IL): Metallothionein (MT, AY466516, forward primer 5′-CTGCAAGAAAAGCTGCTGTG-
3′, reverse primer 5′-GGTGGAAGTGCAGCAGATTC-3′); heme oxygenase-1 (Ho-1,
AB163431, forward primer 5′-TGCACGGCCGAAACAATTTA-3′, reverse primer
5′-AAAGTGCTGCAGTGTCACAG-3′), and β-actin (S74868, forward primer 5′-
GAGTCCTGCGGTATCCATGA-3′, reverse primer 5′-GTACCTCCAGACAGCACAGT-
3′). The cDNA was amplified with SYBR Green PCR Master Mix (Applied Biosystems,
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Figure 1 Survival (%) of medaka embryos following exposure toMeHg (A), HgCl2 (B), α-HgS (C) and
β-HgS (D) at 0 (control), 0.001, 0.01, 0.1, 1, or 10µM (from stage 10 to 10 dpf). Mortality was recorded
daily as the percentage of nonviable individuals. Assays were run in triplicate with each data point repre-
senting the mean of n= 3 replicates of 10–18 embryos per replicate (±SD).

Grand Island, NY). RT-PCR reaction conditions were 95 ◦C for 15 min followed by 40
cycles of 95 ◦C for 15 s and 60 ◦C for 60 s on the Applied Biosystems 7900HT instrument
using their Sequence Detection System 2.0 software. For each sample, the threshold cycle
(Ct) was normalized with β-actin of the same sample according to Chen et al. (2004). The
amplification was calculated using the 2−11CT method (Livak & Schmittgen, 2001; Dong,
Matsumura & Kullman, 2010).

Statistical analysis
For each dpf, mean survival was calculated for each well and then used to calculate overall
mean survival for each treatment group±SD. Survival data were arcsine-square root trans-
formed for ANOVA. RT-PCR data were normalized to β-actin expression and presented as
mean ± SD. β-actin data were analyzed by a Grubbs Outlier test; outliers did not alter the
results in subsequent tests and so were left in the analysis. For all measurements, one-way
ANOVA followed by Tukey’s post-hoc test was used to assess the statistical significance
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among groups. A p≤ 0.05 was considered to be statistically significant. All the data were
analyzed using the SPSS 7.5 (SPSS Inc., Chicago, IL, USA).

RESULTS
Mortality of medaka embryos after exposure to Hg compounds
Embryos exposed to 1 or 10 µM MeHg did not survive to 3 dpf (Fig. 1A). Whereas the
mortality in these treatments was not statistically different from each other, they proved
significantly higher than all other concentrations (p< 0.0001). The 0.1 µM group had
significantly higher mortality than controls by 10 dpf (p< 0.05), increasing to 16.7% and
to 26.7% mortality by 7- and 10 dpf, respectively (Fig. 1A). Those embryos exposed to 0.1
or 0.01 µM concentrations had increased mortality versus the 0.001 µM group (p< 0.05).
While control mortality exceeded that of the 0.001 µM group, this was due to the loss
of a single control individual (Table S2). HgCl2, while toxic, proved less so than MeHg.
At 10 µM, all embryos died before 4 dpf. By 10 dpf, all other concentrations had 60% or
higher survival, with all but the 10 µM statistically the same as the control (Fig. 1B). In
comparison with the above, α-HgS and β-HgS were far less toxic and resembled survival
levels seen in controls. For example, greater than 93% of embryos survived in all treatment
groups by 10 dpf (Figs. 1C–1D).

Developmental toxicity
At 5 dpf, embryos exposed to either 0.1 µMMeHg or 1 µMHgCl2 showed malformations
(Fig. 2). Delayed or arrested growth was also observed in 5 dpf embryos with MeHg and
HgCl2 (Figs. 2B–2C). For example, 100% of individuals had reduced eye pigmentation,
likely retina but further study is needed to confirm the site(s). By 10 dpf, 100% of hatched
MeHg and HgCl2 exposed individuals showed uninflated swim bladders (Figs. 2E–2F)
and associated swimming alterations (i.e., loss of buoyancy and equilibrium), but not
α-HgS or β-HgS (Figs. 2G–2H). At 10 dpf, pericardial edema was observed in 80% of
individuals in the 0.1 µM MeHg treatment but was absent in lower concentrations. This
phenotype was also observed in 45% of the 1 µM HgCl2 exposed fish but was absent at
lower concentrations. In severe cases, pericardial edema resulted in a tube heart in which
expected anatomical positioning of heart chambers was absent (Figs. 2B–2C). No such
edema was observed in α-HgS and β-HgS treatments. At 10 dpf, we observed bent body
axis, surficial edema involving the skin above the inner ear, and a single cell mass projecting
from the dorsal skin (Fig. 2F). In general, MeHg was observed to cause more severe and
higher rates of deformity. No developmental abnormalities occurred with exposure to
α-HgS or β-HgS by 5 dpf (not shown in figures) or by 10 dpf (Figs. 2G–2H).

Metal toxicity-related gene expression
MeHg and HgCl2 increased MT mRNA expression by 4-fold and 5-fold over controls,
respectively, while α-HgS (1.4-fold) and β-HgS (1.30-fold) had no appreciable effects
(Fig. 3A). MeHg and HgCl2 increased Ho-1 mRNA expression by 6-fold and 2.3-fold
over controls, respectively. α-HgS significantly increased Ho-1 expression (1.8-fold) over
controls, but not to the degree of MeHg and HgCl2. β-HgS had no significant effects
(1.4-fold) (Fig. 3B).
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Figure 2 Control morphology and common phenotypic alterations in embryos and larvae follow-
ing exposure to mercury compounds: embryos at 5 dpf: (A) control; (B) 0.1µMMeHg; and (C) 1µM
HgCl2. Larvae at 10 dpf: (D) control; (E) 0.1 µMMeHg; (F) 1 µMHgCl2; (G) 10 µM α-HgS; and (H) 10
µM β-HgS. Arrows point to heart (h); e, eye; S, swim bladder. All images are at the same magnification,
scale bar is 500 µm.

DISCUSSION
Mercury-based herbo-metallic preparations have been used in traditional medicines for
thousands of years (Kamath et al., 2012) and continue to see usage today. Currently, the
Pharmacopeia of China has 26 recipes that contain cinnabar (α-HgS). In Indian Ayurvedic
medicine, Rasasindura, which is primarily composed of mercuric sulfides (α-HgS or
β-HgS), is included in over 20 recipes (Kamath et al., 2012). In Tibetan medicine, Zuotai
(β-HgS) is included in a dozen popular remedies (Kan, 2013; Li et al., 2014). By comparing
MeHg and HgCl2 to α-HgS or β-HgS, we were able to assess compound related embryo
toxicity and determine whether traditional medicines are toxicologically similar.

Numerous aquatic organisms have been studied with respect to the toxicity of mercury;
however, most studies were focused on organic mercury (e.g., MeHg) (Liao et al., 2007;
Cuello et al., 2012) and/or inorganic HgCl2 (Ismail & Yusof, 2011; Wang et al., 2011; Wang
et al., 2013). The toxic potential of α-HgS and β-HgS used in traditional medicines is
largely unknown. The present study demonstrated that embryo toxicity followed exposure
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Figure 3 Analysis of gene expression in medaka embryos exposed to mercury compounds.Medaka
embryos were sampled from control, 0.1 µMMeHg, 1 µMHgCl2, 10 µM α-HgS, and 10 µM β-HgS
treatment groups (n = 3, 15 embryos pooled per replicate) at 3 days post-exposure. Total RNA was ex-
tracted and subjected to RT-PCR analysis for metallothionein (MT ) and heme oxygenase-1 (Ho-1) gene
expression using β-actin expression as the reference. Data are mean± SD. *significantly different from
controls with p< 0.05.

to mercury, with MeHg the most toxic, followed by HgCl2, while α-HgS and β-HgS had
little toxicity.

In humans and rodents, MeHg is known to cross the placenta and reach the fetus
where it is responsible for developmental toxicity (Clarkson, Magos & Myers, 2003; Gandhi,
Panchal & Dhull, 2013). In laboratory studies using fish, MeHg exposure of early life
stages produced developmental toxicity. Exposures of ≤80 ppm (mg L−1) to medaka
embryos have increased mortality and caused teratogenic effects including stunted growth,
decreased heart rate, and small eyes with reduced pigmentation, among others (Heisinger
& Green, 1975; Dial, 1978). In zebrafish (Danio rerio) larvae exposed to ≤25 mg L−1,
down-regulation of >70 proteins was associated with morphological changes including
but not limited to: smaller swim bladder, unabsorbed yolk, jaw deformities, and bent body
axis (Cuello et al., 2012). In the present study, 0.1 µM MeHg produced pericardial edema
that in severe cases formed a tube heart, reduced eye pigmentation, and failed swim bladder
inflation. Each of these changes could impact the organism’s health and survival (Dial,
1978; Hawryshyn, Mackay & Nilsson, 1982; Marty, Hinton & Cech, 1995).

Compared to MeHg, HgCl2 primarily induces kidney and liver injury in rodents and
fish (Klaassen, 2001; Lu et al., 2011a; Wu et al., 2016). However, exposure of mouse- (Van
Maele-Fabry, Gofflot & Picard, 1996), sea urchin- (Marc et al., 2002), and medaka embryos
(Ismail & Yusof, 2011) to HgCl2 produced developmental toxicity. Wang et al. (2011),
Wang et al. (2013) and Wang et al. (2015) studied HgCl2 in adult marine medaka (Oryzias
melastigma), and their proteomic analysis showed down-regulation of several dozen
proteins including some related to oxidative stress after acute (1,000 µg/L for 8 h) and
chronic (10 µg/L for 60 days) exposures. Subsequent work on liver and brain developed
a pathway analysis for potential toxicity (Wang et al., 2013; Wang et al., 2015). However,
ultrastructural changes consistent with altered cells were more apparent in brain than
in liver, where reported alterations of mitochondrial and endoplasmic reticulum were
not supported by the figures. Wester & Canton (1992) provided strong evidence for liver
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toxicity following exposure of adult guppies (Poecilia reticulata) to MeHg (1–10 µg/L for
1 & 3 months). Alterations involved hepatocytes (cell swelling and nuclear pyknosis) and
hyperplastic biliary epithelium of the intrahepatic bile duct.

We have shown thatmedaka have good potential as amodel to investigate developmental
effects of different forms ofmercury.However, in this study, the potential for developmental
toxicity of α-HgS and β-HgS provedmuch lower than that ofMeHg orHgCl2. For example,
at 10 dpf, less than 5% of medaka embryos died and survivors had no apparent teratogenic
effects. These results are comparable with studies of α-HgS and cinnabar-containing
traditional medicines in mice (Lu et al., 2011a; Lu et al., 2011b; Wu et al., 2016) and rats
(Shi et al., 2011). Similarly, β-HgS has been shown to be much less toxic as compared to
HgCl2 in mice (Zhu et al., 2013; Li et al., 2016; Wu et al., 2016). In those studies, α-HgS
and β-HgS were administered orally at 1.5–6 fold (mouse studies) and 20 fold (rat study)
above clinical doses, still fourfold higher than the Chinese Pharmacopoeia Allowable Limit
(Shi et al., 2011). A recent study in mice showed that gestational exposure to low dose
α-HgS (10 mg/kg/day, p.o. × 4 weeks) resulted in offspring with severe neurobehavioral
dysfunctions (Huang et al., 2012).

The present study used aqueous exposure of embryonated eggs, which brings up
bioavailability related to solubility and the role of the chorion. The solubility of cinnabar
is known to be quite low (<0.001 g/L at 20 ◦C), but preparations described by Liu et al.
(2008), used in the present study, can increase this value. However, future work will need
to describe how formulation of the intended medicinal end product affects the solubility
of this mineral (Kamath et al., 2012). The chorion, a semi-permeable membrane, provides
a degree of protection from its surrounding environment (Villalobos et al., 2000) and, near
time of hatching, becomes more permeable (Hamm & Hinton, 2000). Because xenobiotics
in general, andmore recently nano-metals, have been shown to enter through chorion pore
canals, this route can affect developing embryos (Villalobos et al., 2000; González-Doncel et
al., 2003;Wu & Zhou, 2012). Future work is needed to compare if and how different forms
of mercury penetrate the chorion.

Mercury compounds displaymultiple organ toxicity (e.g., hepatotoxicity, nephrotoxicity
andneurotoxicity) in adult humans and experimental animals (Klaassen, 2001; Liu, Goyer &
Waalkes, 2008; Lu et al., 2011b; Shi et al., 2011). One of the most common mechanisms for
toxicity is oxidative stress. For example, mercury induces the production of reactive oxygen
species (ROS) by binding to intracellular thiols (GSH and sulfhydryl proteins) and by
acting as a catalyst in Fenton-type reactions, producing oxidative damage (Klaassen, 2001;
Liu, Goyer & Waalkes, 2008). Heme oxygenase-1 (Ho-1) is an oxidative stress biomarker
and was one of the most sensitive genes in response to toxic stimuli in a study of zebrafish
embryos acutely exposed to 14 different chemicals (Weil et al., 2009). In the present study,
MeHg increased Ho-1 by 6-fold and HgCl2 by 2.3-fold compared to controls, suggesting
that MeHg produced more oxidative damage to embryos. The lack of increased Ho-1
expression by α-HgS and β-HgS coincided with the observed low developmental toxicity.
This is in agreement with rodent studies that showed exposure to α-HgS (300 mg/kg) did
not induce Ho-1 in liver or kidney, concordant with less hepato- (Lu et al., 2011a) and
nephrotoxicity (Lu et al., 2011b).
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Metallothionein (MT) is thought to protect against oxidative stress and detoxify
heavy metals including mercury (Klaassen, Liu & Choudhuri, 1999). Induction of MT
by mercury is a sensitive biomarker for exposure in a variety of fish species (Van Cleef-
Toedt, Kaplan & Crivello, 2001; Cheung, Lam & Chan, 2004; Chan et al., 2006; Oliveira et
al., 2010), including Javanese medaka (Oryzias javanicus) (Woo et al., 2006). We found
MT increased by 4–6 fold compared to controls with MeHg and HgCl2 exposure but
were unchanged following α-HgS and β-HgS. This is similar to rodent studies (Lu et
al., 2011a; Shi et al., 2011). It is possible that the increases we observed were due to the
timing of our sampling (3 day post exposure). That said, considerable development occurs
over 3 days, including formation of many of the major organs (Iwamatsu, 2004). In
zebrafish, MT levels have been shown to have strong and ubiquitous expression during
early embryonic development and drop off later, and it is highly susceptible tometals (Chen
et al., 2004). The displacement of essential metals by Hg may compromise multiple cellular
processes (Amiard et al., 2006), likely problematic during periods of rapid cell division
and differentiation. At this point, we cannot directly link the morphological changes we
observed to MT, but simply state that the observed increase was a response to the added
mercury. The induction of MT by MeHg and HgCl2 reinforces the importance of this
biomarker of mercury compounds in general, and identifies it as a potential biomarker for
developmental toxicity. Future work with these compounds at intermediate concentrations
may provide enough surviving embryos to gauge stage specific gene expression changes in
response to various mercury compounds.

Overall, this study confirmed that the medaka embryo assay is a useful tool for deter-
mining and comparing potentials of developmental toxicity for various forms of mercury.
We found survival even at middle concentrations of the more toxic forms, suggesting that
our ranges were acceptable given the design of our study. We did not observe changes
with α-HgS and β-HgS, possibly due to the limitations in concentrations resulting from
the initial constraint of comparing mercurials at the same concentrations. The rapidity,
repeatability, broad salinity tolerance, and precision of this model will enable assessment
of a broad range of formulations, concentrations, and mechanisms in the future.

CONCLUSIONS
The current study evaluated medaka embryo toxicity caused by exposure to MeHg and
HgCl2 and compared results to mercuric sulfides (α-HgS and β-HgS) used in traditional
medicines. MeHg and HgCl2 caused increased mortality and developmental toxicity. The
latter presented as pericardial edema that, in severe cases, resulted in a tube heart, reduced
eye pigmentation, and failure to inflate the swim bladder. Developmental toxicity appeared
to be in the order of MeHg>HgCl2�α-HgS=β-HgS, indicating that the chemical forms
of mercury were a major determinant of its toxicity to medaka embryos. While this work
only involved two medicinal formulations, these assays will be useful in the study of other
permutations of cinnabar-based medicinals and their toxic mechanisms.
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