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ABSTRACTWe demonstrate the advantages of using information at many unlinked loci to better calibrate estimates of the time to the
most recent common ancestor (TMRCA) at a given locus. To this end, we apply a simple empirical Bayes method to estimate the
TMRCA. This method is both asymptotically optimal, in the sense that the estimator converges to the true value when the number of
unlinked loci for which we have information is large, and has the advantage of not making any assumptions about demographic
history. The algorithm works as follows: we first split the sample at each locus into inferred left and right clades to obtain many
estimates of the TMRCA, which we can average to obtain an initial estimate of the TMRCA. We then use nucleotide sequence data
from other unlinked loci to form an empirical distribution that we can use to improve this initial estimate.
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WITHOUT intralocus recombination, all DNA sequences
sampled at a given genetic locus originate from a

common ancestor. That is, if we follow the genetic lineages
of these sequences back in time, they will merge with one
another until a single inheritance path remains. For each
locus, this process yields a genealogical tree that unites all
of the sampled sequences. The time to the most recent com-
mon ancestor (TMRCA) of a particular locus is the height of
the genealogical tree at that locus.

TMRCA estimates are commonly used in inferring demo-
graphic history. For example, the TMRCA can be used to place
an upper bound on the divergence time of subpopulations, if
themigration rate between subpopulations and the sizeof each
subpopulation are relatively small (Rosenberg and Feldman
2002). This idea has been applied to obtain the evolutionary
history of a number of different organisms, from chaffinches to
anchovies (Griswold and Baker 2002; Hailer et al. 2012).

Early articles in the TMRCA literature studied the human
mitochondrial DNA ancestor, which supported the African
origin hypothesis (Vigilant et al. 1991). Later studies sought
to infer the TMRCA of the Y chromosome, to shed light on the
origin and dispersal of modern humans. This was challenging
due to the scarcity of DNA sequence polymorphisms on the Y

chromosome (Jakubiczka et al. 1989; Hammer 1995). One
early study examined the Zfy intron, which was revealed to
be completely monomorphic in a sample of 38 males (Dorit
et al. 1995). Estimating the TMRCA of this intron necessitated
a Bayesian approach, because any estimate proportional to the
number of mutations would have given a value of zero. Dorit
et al. (1995) used a uniform prior distribution on the TMRCA,
which was considered inappropriate by a number of comment-
ers, who advocated using priors that stemmed from coalescent
theory and their preferred demographicmodels (Donnelly et al.
1996; Fu and Li 1996; Weiss and von Haeseler 1996). As a
result of the lack of signal in the data, these different studies
inferred very different estimates of the TMRCA (Brookfield
1997). Further efforts to infer the TMRCA for other Y chromo-
some data have also been affected by this dependence on the
prior (Hammer 1995; Whitfield et al. 1995; Walsh 2001).

Given the interest in the TMRCA of an individual gene in
inferring demography, the dependence of the estimate on
the prior demographic model is particularly problematic
(Brookfield 1997). In contrast to parametric Bayesian meth-
ods such as those applied to Y chromosome data, frequentist
approaches such as maximum likelihood do not require the
specification of a prior and so might appear preferable. One
such frequentist estimator is the one proposed by Tang et al.
(2002). In this method, nucleotide sequence data are used to
partition the sample into two groups, corresponding to the
inferred two clades on either side of the root of the tree. Tang
et al. (2002) then estimate the TMRCA, using the average
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number of nucleotide sequence differences across all left–
right clade pairs, Di:

Of course, application of this method to the Zfy datawould
give an estimate of zero for the TMRCA, which is a clear
underprediction. More generally, if Tang et al. (2002) had
regressed true TMRCA on estimated TMRCA, it would have
been revealed that their method tends to underpredict when
the number of segregating sites at a locus is small and to
overpredict when it is large. This is because an extreme num-
ber of segregating sites at a locus often results from a combi-
nation of a relatively small or large TMRCA at that locus and a
relatively small or large number of mutations conditional on
the TMRCA. Errors in inference will occur if all of the varia-
tion in the number of segregating sites is attributed to varia-
tion in times to most recent common ancestry, as is the case
generally in frequentist approaches.

We propose augmenting the method of Tang et al. (2002)
by using information at unlinked loci to better calibrate esti-
mates of the TMRCA, and we introduce a very simple non-
parametric empirical Bayes method. By “nonparametric,” we
mean that we do not assume that the prior on the TMRCA has
any particular shape, only that all loci’s TMRCAs are sampled
from the same distribution. In addition to improving on Tang
et al. (2002)’s estimator, our method is advantageous over
many Bayesian methods in that it makes no prior assump-
tions about the distribution of TMRCAs and therefore can be
used when the history of the population is completely un-
known.We show that our method performs well in simulated
data from a wide variety of demographic scenarios.

The idea of using information at additional loci to improve
the estimate at one locus appears in a number of recent
methods, e.g., Hobolth et al. (2007) and Li and Durbin
(2011), although mostly with a spatial context along the
genome that our method does not have. Similarly to Li and
Durbin (2011), our method is able to extract information
from a single genome, by making use of the number of het-
erozygote sites in sequences of DNA between recombination
break points. We apply this method to a single Bantu individ-
ual and a single European individual and are able to show
that loci with the same number of heterozygous sites in dif-
ferent populations have different average TMRCAs.

Materials and Methods

Assumptions

We assume that the number of mutations at a locus follows a
Poisson distributionwith constant rate equal to the product of
the total genealogical branch length and the per locus muta-
tion rate. Inaddition,weassume that eachmutationgenerates
a new segregating site, in accordance with the infinite-sites
model developed by Watterson (1975), which also includes
the assumption of complete linkage among sites at a locus. In
fact, we allow for the possibility of within-locus recombina-
tion as long as it does not modify tree topology or TMRCA,
which would preclude the application of Tang et al. (2002)’s

method. Finally, we assume that all of the different loci under
consideration are independent, in the sense that they repre-
sent independent samples from the distribution of TMRCA.
Approximate independence can be achieved by allowing for
sufficient interlocus distance.

Simple existing methods for inferring the TMRCA of a
sampled pair

Let us first consider estimating the TMRCA at a locus i in a
sample of size 2. The number of nucleotide differences xi
between these two samples follows a Poisson distribution
with rate 2miℓiTi;where mi is the per nucleotide mutation rate
at that locus, ℓi is the length of the sequenced region, and Ti is
the time until coalescence measured in coalescent units. One
natural estimator of Ti is the maximum-likelihood estimator,
used for example by Tang et al. (2002):

T̂i;Freq ¼ Di

2miℓi
: (1)

In Tang et al. (2002), Di is the average number of segregating
sites across all left–right clade pairs, and for n ¼ 2; Di ¼ xi:

Within the framework of coalescent theory, where priors
for Ti have been derived for a number of demographic mod-
els, it is more common to estimate Ti using a parametric
Bayesian approach. However, this requires certain assump-
tions about demographic history, which wemight ideally pre-
fer not to make. One such estimator is the posterior mean,
which can be obtained in the manner of equations 19 and
20 in Tajima (1983) for an exponential prior on the TMRCA,
which corresponds to the demographic assumption of a con-
stant population size,

T̂i;Bayes ¼ u

ð1þ uÞ
xi þ 1
2miℓi

; (2)

where u ¼ 4Nemiℓi; and Ne is the effective population size.

Nonparametric empirical Bayes approach

We can use Robbins’ (1955) method to improve on these
simple frequentist and parametric Bayesian approaches, by
utilizing information from other unlinked loci in the sample.
Robbins considered the following case of sampling from a
mixed distribution. Let xi; conditional on some variable Ti;

be specified by a Poisson distribution,

PðxijTiÞ ¼
T xi
i e2Ti

xi!
:

The Ti are in turn independent and identically distributed
according to some distribution, which we do not know and do
not need to specify. For an illustration of the data-generating
process, see Figure 1.

This data-generating process exactly describes the process
that yields the number of mutations at unlinked loci in a
genome, given our assumptions. That is, conditional onTi and
miℓi; each Xi is an independently distributed Poisson random
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variable with rate 2miℓiTi; and each Ti is drawn i.i.d. from an
unknown distribution. For the sake of computational simplic-
ity, we assume that 2miℓi ¼ 1; which is equivalent to a simple
rescaling of Ti:

Under this compound sampling scheme (although initially
not applied to genetic data), Robbins (1955) showed that we
can obtain a point estimate of Ti by making use of Bayes’ rule
and the form of the Poisson probability distribution,

E½TijXi ¼ xi� ¼
Z

TiPðTijxiÞdTi

¼
Z

Ti
PðxijTiÞPðTiÞ

PðxiÞ dTi

¼ ðxi þ 1Þ
PðxiÞ

Z
e2TiTxiþ1

i
ðxi þ 1Þ! PðTiÞdTi

¼ ðxi þ 1Þ
PðxiÞ

Z
Pðxi þ 1jTiÞPðTiÞdTi

¼ ðxi þ 1ÞPðxi þ 1Þ
PðxiÞ ;

where PðxiÞ is the marginal probability that Xi ¼ xi; that is,
the marginal probability that we observed exactly xi segre-
gating sites at locus i. As can be seen from the sampling
structure depicted in Figure 1, this marginal distribution,
which we could simply call PðxÞ; does not depend on i.

When the number of loci is not too small, we can approx-
imate PðxiÞ by the fraction of loci where the number of ob-
served segregating sites is equal to xi:We usemxi to refer tom
times this fraction or the number of loci with exactly xi mu-
tations. In this way we obtain the following estimator of the
TMRCA at locus i,

T̂i;NPEB ¼ ðxi þ 1Þmxiþ1

mxi
; (3)

where NPEB is the nonparametric empirical Bayes approach.
Note that mutation rates vary across the genome, and we are
not assuming a single underlying mutation rate. Loci with
relatively high mutation rates, for example, can be truncated,
such that theproduct of themutation rate and the locus length
miℓi across all considered loci is roughly similar.

Robbins (1955) proved that this estimator is asymptoti-
cally optimal. That is, as the total number of loci sampled
grows (m/N), its Bayes risk (such as the mean squared
error) converges to the Bayes risk for the Bayesian model
where the true prior of the Ti; and therefore PðxiÞ; is known.
As might be expected, Robbins’ (1955) method behaves er-
ratically in cases where there are few data. If, for example,
mxiþ1 ¼ 0; that is if no loci have exactly xi þ 1 segregating
sites, then our estimate of Ti corresponding to a locus iwhere
there are xi . 0 segregating sites would be 0, which is clearly
wrong. To mitigate this effect, there are a number of smooth-
ing techniques one might apply (Lidstone 1920; Good 1953;
Gale and Church 1990, 1994). In this article, we attempt to
estimate Ti using Robbins’ (1955) method only when loci
where there are xi segregating sites and loci where there
are xi þ 1 segregating sites are not rare. It is indeed for these
loci that Robbins’ (1955) method shows a clear advantage
over traditional methods that do not incorporate information
from other independent loci.

Another consequence of variation inmxi is that estimates of
Ti are not necessarily a nondecreasing function of the number
of mutations xi: In fact, we would expect loci in which there
are more mutations to be at least as ancient as loci in which
there are only a few. To remedy this, we can fit a weighted
isotonic regression of the inferred mean T̂i;NPEB on the num-
ber of mutations, using the pava( ) function in the “Iso” pack-
age (Turner 2015) in R (R Core Team 2015), where we
weight each value by

ðxi þ 1Þ2m
2
xiþ1

m2
xi

 
1
mxi

þ 1
mxiþ1

!
; (4)

and obtain a new set of estimators, denoted by T̂
W
i;NPEB:Weuse

theseweights as an approximation of the variance of T̂i;NPEB; as
is explained in the Effectiveness of Robbins’ method section. As
the isotonic regression yields the least-squares best fit among
nondecreasing relationships, performing this step ensures that
T̂i # T̂j if there are fewer mutations at locus i than at locus j.

To summarize, Robbins’ (1955) method uses the ratio of
the number of loci with exactly xi and xi þ 1 mutations to
calibrate the TMRCA at a given locus with exactly xi muta-
tions. We then incorporate the knowledge that the expected
number of segregating sites at a locus is a nondecreasing
function of its TMRCA, by running an isotonic regression on
the TMRCA estimates.

Generalizing our estimator to a sample of size n‡2

In generalizing our estimator for use on samples of size n$ 2;
we are inspired by the frequentist estimation of coalescence
times from nucleotide sequence data, using a tree-based

Figure 1 Data-generating process for Robbins’ (1955) method, in which
the distribution PðTiÞ is unknown and does not need to be specified.
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partition in Tang et al. (2002). In that work, the n sequences
are first partitioned into two subsets that are meant to corre-
spond to the left and right clades of the genealogical tree. The
MRCA of any two sequences, one in the left clade and one in
the right clade, is the root of the tree. Tang et al. (2002)
propose an estimator of the TMRCA based on the average
number of pairwise differences Di between sequences in the
left clade and sequences in the right clade (see Equation 1).

Although genealogical trees are not always completely
resolved by the data, in many cases there is little ambiguity
about the branching pattern at the root (Tang et al. 2002).
When ambiguity does exist at the root, Tang et al. (2002)
propose a partition algorithm that is less biased than forcing
the pair of sequences that differ most from each other to be in
different clades. This algorithm does not require knowledge
of the ancestral state at the segregating sites. The eight steps
of this algorithm are described in detail in Tang et al. (2002).

We use the following steps to infer Ti in cases where n. 2;
which we also illustrate in Figure 2.

1. For each locus i, where 1# i#m; we use Tang et al.’s
(2002) tree partitioning algorithm to partition the sample
at locus i into left and right clades.

2. From the set of left-clade samples, we pick at random a
single sample. We also pick at random a sample from the
set of right-clade samples. We calculate the number of
pairwise differences and repeat this process for every locus
i. The reason we count the number of differences between
single pairs of left–right clade sequences instead of aver-
aging the number of differences across all left–right clade
pairs is that Robbins’ (1955) method requires xi to be an
integer. We then calculate a T̂i;NPEB for each locus, using
these counts at all m loci, according to Equation 3. The
result of this step is a table that contains estimates of
TMRCA corresponding to different observed numbers of
segregating sites. We then fit a weighted isotonic regres-
sion to these estimates, where each estimate is weighted
according to Equation 4.

3. Clearly, at the end of the previous step, we have not used
much of the information from our sample, as we have
sampled only one left-clade–right-clade pair from each
locus. We therefore repeat the previous step over all pos-
sible left–right clade pairs at a particular locus, which all
have the same TMRCA if the partitioning algorithm is
correct. For each locus, the number of possible left–right
clade pairs depends on the topology of the tree at that
locus. If a single sequence forms one of the clades, the
data at that locus will consist of n2 1 highly correlated
pairwise differences. When the tree is balanced, there
are ðnþ1ðn  is  oddÞÞðn21ðn  is  oddÞÞ=4 pairs, many more
than in the unbalanced case. We repeat step 2 until all
left-right clade pairs have been used at least once. For loci
with the maximum observed number of pairs, each pair is
used exactly once. For loci with fewer pairs, some pairs
are used multiple times; these are sampled uniformly at
random after all pairs at a locus have been used once.

At the end of this step, we obtain between n2 1 and
ðnþ 1ðn  is  oddÞÞðn2 1ðn  is  oddÞÞ=4 tables, depending
on the m inferred tree configurations. That is, the num-
ber of tables produced is equal to the number of pairs in
the locus with the largest amount of left–right pairs.

4. We average the entries in all of the tables obtained in the
previous two steps, i.e., the estimates of TMRCA for each
observed number of segregating sites at a locus, and in this
waywe obtain a final table with the aggregate information
that links each integer-valued unique number of segregat-
ing sites to a unique estimate of the TMRCA.

5. We then consider the data at a single locus i. We calculate
Di; the average number of segregating sites over all left–
right clade pairs at this locus. If this average is an integer,
then the estimate of the TMRCA can be read from the row
corresponding to value Di in the final table. More likely
than not, though, Di is not an integer. We can create a
piecewise linear function that extends our estimates of
the TMRCA to noninteger values of Di: Our estimate of
the TMRCA is then a weighted average of the estimates
of the TMRCA in the rows corresponding to ⌊Di⌋ and ⌈Di⌉:

Figure 2 Inferring Ti for n$2: Here we illustrate the particular case
where n ¼ 4 and m ¼ 3: Steps 1 and 2 focus on the leftmost column.
In step 1, we partition each locus into left and right clades, based on
Tang’s algorithm. Left-clades lineages are depicted in red, and right-clade
lineages are depicted in black. In step 2, we consider a single random left-
clade member and a single random right-clade member at each locus. We
represent these with thick lines and count the number of pairwise differ-
ences (mutations are represented by black circles), which we write below
each tree. In our example, the number of pairwise differences at each
locus is (3, 0, 4). We use this information to calculate an estimate of Ti for
each unique number of segregating sites, which we store in table 1. In
step 3, we repeat this for all left–right pairs. As there are four left–right
clade pairs at locus 2, we resample an extra left-clade–right-clade pair at
loci 1 and 3, which corresponds to the fourth column. In step 4, we
average the TMRCA estimates in all four tables to obtain a final table,
again linking different numbers of segregating sites to different estimates
of TMRCA. Finally, in step 5, we calculate the average number of pairwise
differences between inferred left and right clades at each locus. In our
case, this is ðD1;D2;D3Þ ¼ ð3;   0:5;   3:67Þ: The estimate at locus 3 for
example will be 0.67 times the estimate at a locus with four mutations
and 0.33 times the estimate at a locus with three mutations.
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We note here that the presence of recombination does not
compromise the method in any way when n ¼ 2 but does
require a reinterpretation of the meaning of the results. The
NPEB estimate will no longer correspond to a single TMRCA
at a given locus but to an average TMRCA across the locus.
This is due to the additive properties of the Poisson distribu-
tion and to the fact that, in a sample of size 2, intralocus
recombination will not produce a new tree with a different
shape. Indeed, in a sample of size 2, there is no ambiguity
concerning the members of the left and the right clades. For a
sample size.2, we require no intralocus recombination that
affects tree shape, because otherwise we could not partition
our sample into left and right clades.

Data availability

The programs sufficient to reproduce the results in this article
are available at wakeleylab.oeb.harvard.edu/resources.

Results

Effectiveness of Robbins’ method

To assess where Robbins’ (1955) NPEB method is most effec-
tive, we calculate the variance of T̂i;NPEB as a function ofm,mxi ;

andmxiþ1: Using a Taylor expansion, we can approximate the
variance of the ratio of two random variables (Rice 2007):

Var

 
mxiþ1

mxi

!
� ðEðmxiþ1ÞÞ2

ðEðmxiÞÞ2
 
Varðmxiþ1Þ
ðEðmxiþ1ÞÞ2

2 2
Covðmxi ;mxiþ1Þ
EðmxiÞEðmxiþ1Þ

þ VarðmxiÞ
ðEðmxiÞÞ2

!
:

(5)

We can represent the distribution of themxi for each observed
xi by a multinomial distribution, as long as we create a bin to
account for all unobserved yet possible values of xi: In the
model there are countably infinite possible numbers of seg-
regating sites, but in practice the number is limited by ℓi; the
length in nucleotides of each locus i. By the properties of
the multinomial, we have EðmxiÞ ¼ mPðxiÞ; VarðmxiÞ ¼ mPðxiÞ
ð12PðxiÞÞ; and Covðmxi ;mxiþ1Þ ¼ 2mPðxiÞPðxi þ 1Þ: Equa-
tion 5 then simplifies to

Var

 
mxiþ1

mxi

!
� Pðxi þ 1Þ2

mPðxiÞ2
 

1
PðxiÞ þ

1
Pðxi þ 1Þ

!
:

Therefore, as T̂i;NPEB ¼ ðxi þ 1Þðmxiþ1=mxiÞ; we have

Var
�
T̂i;NPEB

� ¼ Var

 
ðxi þ 1Þmxiþ1

mxi

!

� ðxi þ 1Þ2 Pðxi þ 1Þ2
mPðxiÞ2

 
1

Pðxi þ 1Þ þ
1

PðxiÞ

!
:

(6)

To illustrate where Robbins’ (1955) method is most effective,
we apply 6 to each value xi of an example distribution illus-
trated in Figure 3. As one might expect, if we increase m, we
get more accurate results over more points. For moderate
numbers of loci m, results are still very accurate if PðxiÞ is
not too small, especially in comparisonwith Pðxi þ 1Þ: Finally,
the contribution of the first term on the right side of 6 is
smallest when xi is small. For these reasons, our method
can give accurate results at sites with xi ¼ 0 segregating sites.

Using the observed data, we can approximate the variance
at each point by assumingmxi � mPðxiÞ:This is howweobtain
the weights for our isotonic regression (see Equation 4).

Simulation results in a wide range of
population histories

To test the performance of our estimator against the tradi-
tional frequentist and parametric Bayesian estimators, we run
a series of simulations. Programs sufficient to reproduce all of
the results we present are available at https://wakeleylab.
oeb.harvard.edu/resources.

We generate synthetic data using the program MSMS
(Ewing and Hermisson 2010), which generates sequence
data and TMRCA values under a range of demographic sce-
narios including population growth, subdivision, and admix-
ture.We vary the populationmutation rate u, the exponential
growth rate of the population g, the number of sequences
from which we build our genealogies n, and the divergence
time between populations d across a range of parameters
described in Table 1. We use a cutoff of 0.2 in step 6 of
Tang et al.’s (2002) tree partitioning algorithm. This essen-
tially disallows sampled pairs that have relatively very few
nucleotide differences from being selected to belong to dif-
ferent tree clades. We choose this value as it is the default
setting in Tang et al. (2002). Note again that we measure
time in units scaled by the population mutation rate u.

Figure 3 Accuracy of Robbins’ (1955) method. For each value of xi ;
mPðxiÞ is the expected number of sites with exactly xi segregating sites.
The bars are shaded and labeled according to the approximate standard
deviation of T̂ i;NPEB at each locus with xi mutations, obtained using Equa-
tion 6. There is no estimate of the TMRCA for the locus with seven
mutations, because the NPEB method would require the existence of
some number of sites with exactly eight mutations, and this is not the
case here.
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We illustrate the performance of the method for two
sample sizes, n ¼ 2 and n ¼ 8: Felsenstein (2006) suggested
n ¼ 8 as an optimal choice to balance accuracy of estimating
u against the costs of genotyping. To justify n ¼ 8; we might
also appeal to the results that the expected TMRCA is equal to
2ð12 1=nÞ and that the probability the MRCA of the sample
contains the MRCA of the entire population at a locus is equal
to ðn2 1Þ=ðnþ 1Þ (Saunders et al. 1984) if the interest is in
the whole-population TMRCA at each locus. Concretely, this
means that the TMRCA for 8 lineages is likely to be close to
the TMRCA for many more lineages.

For each demographic scenario, we simulate m indepen-
dent genealogies. We then use our algorithm to calculate
T̂
W
i;NPEB at each locus i. To measure performance, we first

compute the mean squared error (MSE) of our estimators
at all loci for which our estimate of the variance of T̂i;NPEB is
smaller than some threshold, chosen to be 0.1 in these sim-
ulations. We assume that there are m  * such loci,

MSEs
�
T̂
W
i;NPEB

�
� 1

m*

X
VarT̂i;NPEB , 0:1

�
T̂
W
i;NPEB2Ti;True

�2
; (7)

where Ti;True is the true TMRCA at locus i given byMSMS. The
subscript s is the index of one simulated set of m loci under a
given demographic scenario. To have amore accurate estimate
of our error, we repeat these simulations S different times for
each combination of parameters. We then average MSEs over
the S different sets to obtain the final measure of the accuracy
of our estimator, given the demographic scenario.

We impose a cutoff variance because we expect ourmethod
to be advantageous only when the variance of the estimator
is reasonably small. That is, it is beneficial in estimating the
TMRCA of a locus i only where mxi and mxiþ1 are large. Rea-
sonable values of this threshold will depend on the population
mutation rate u. The smaller the cutoff variance is, the smaller
m* is, the number of loci for which we estimate a TMRCA. We
specifically chose 0.1 in these simulations to restrict ourselves
to loci whose TMRCA we could accurately predict, at least
more accurately than using Tang et al.’s (2002) method across
the range of parameters in our simulations.

Comparison to Tang’s method and the parametric Bayes
posterior mean

Figure 4 is a scatterplot of the MSE of estimates using the
method of Tang et al. (2002) compared to those obtained
using NPEB for simulations over the parameters in the mul-
tidimensional grid described in Table 1. We see that Robbins’

(1955) method always performs better than Tang et al.’s
(2002) approach as measured by MSE.

As we increase m, our estimates become more and more
accurate: The NPEB MSE converges to the Bayes MSE where
the true prior is assumed (Robbins 1955). We illustrate this
for g ¼ 0; d ¼ 0; n ¼ 2; and 0:25, u, 2:0 in Figure 5. The
parametric Bayes estimates were obtained by assuming (cor-
rectly) that the values Ti were drawn from an exponential
distribution with parameter u. We update the prior on Ti with
the observed number of mutations xi and in this way obtain
the posterior on Ti:We then report the mean of this posterior
(see Equation 2). Form= 250, the MSE of the NPEB estima-
tor is, depending on u,�3.5–7.4% higher than theMSE of the
Bayesian estimator using the correct prior. Form¼ 4000; the
difference is even smaller, with an increase of only �1.2%.

We found that when the assumed prior is not true, the
Robbins estimator performs better than the parametric Bayes-
ian estimator as long as m is big enough and the assumed
prior is different enough from the true prior (Robbins 1955).
We illustrate this in a particular case, for different values of
g. 0; when the prior assumes g ¼ 0; and for demographic
parameter values d ¼ 0 and u ¼ 0:5 in Figure 6. It is worth

Table 1 Parameter values in simulations

Parameter Values

No. of independent sites m 250, 500, 1000, 2000, 4000
Population mutation rate u 0.25, 0.5, 0.75, 1, 2
Growth rate g 0, 0.5, 1, 2
Divergence time d 0, 1, 3
Sample size n 2, 8

Figure 4 Accuracy of NPEB method vs. Tang et al.’s (2002) method. The
NPEB method performs better than Tang et al.’s method in terms of MSE
across the range of parameters in the multidimensional grid described in
Table 1. Different values of u are plotted using different shapes, and
different values of m are plotted using different colors (large values are
in red). In the dashed line we plot y ¼ x:

Figure 5 NPEB vs. Bayes with true prior assumed. We plot ðMSENPEB 2
MSEBayesÞ=MSEBayes for different values of m, which we vary in color, and
different values of u, which we vary in shape. For the parametric Bayes
case, we assume as a true prior a constant population size and a diver-
gence time of 0. We use a sample size of 2.
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noting that as we increasem, we also increase the number of
loci m* for which we are estimating the TMRCA. For this
reason, the raw MSEs (e.g., Figure 4) are not completely
comparable across different values of m, as they depend on
this value m* (see Equation 7).

In summary,ourmethodperformsbetter thanTang’smethod
across the entire range of tested parameters. Unsurprisingly,
the parametric Bayesian estimator performs better than the
empirical Bayes estimator when the true prior is assumed.
However, our method can outperform the parametric Bayesian
estimate in terms of MSE when the assumed prior is incorrect.

Admixture case study

We also consider the special case of admixture, as a more
complicated demographic history. In this case, we can still
assume that the trueTMRCAsare independent and identically
distributed, but this time according to a more complicated
distribution that exhibits bimodality (see Figure 7). Using
again the program MSMS (Ewing and Hermisson 2010),
we simulate the genealogies of pairs of just admixed individ-
uals. Their parent populations diverged 6 time units in the
past, with 50% of the genetic material in the sample originat-
ing from the first population and 50% from the second pop-
ulation. This means that 50% of sampled lineages will not be
able to coalesce before 6 time units in the past. We fix u¼ 1
and consider m¼ 8000 independently segregating loci. His-
tograms of the true MRCAs and the number of mutations per
site are shown in Figure 7, the latter being equal to Tang’s
estimator in this case (u ¼ 1). We can see that there is con-
siderable bimodality in the TMRCAs, which translates to bi-
modality in the number of mutations at different loci.

Plotting the true TMRCAs vs. the inferred TMRCAs using
the two methods reveals that the true TMRCAs are appropri-
ately shrunk using our method and that Tang’s method espe-
cially overestimates the TMRCAs in cases where there are a
lot of mutations and underestimates them in cases where
there are very few mutations (see Figure 8). We used 0.2
as a cutoff value, such that any points with variance .0.2
are not displayed. Note that Figure 8 represents a single (al-
though typical) run of the algorithm. How well the NPEB

ends up approximating the true TMRCA depends somewhat
on the stochasticity of the data.

Analysis of TMRCAs from human genomes

We also apply our method to data from 37,574 neutrally
evolving autosomal loci from a European and a Bantu indi-
vidual (Gronau et al. 2011). Each interlocus distance is
at minimum 50,000 bp, a distance deemed sufficiently high
by Gronau et al. (2011) that the genealogies can be assumed
to be approximately uncorrelated. These presumably neutral
loci are 1000 bp in length and were chosen to avoid recom-
bination hotspots. We remove any masked bases and reduce
all of our loci to 900 bp, by truncating loci with .900
unmasked bases and removing loci with ,900 unmasked
bp. We use Gronau et al.’s (2011) estimate of the mutation

Figure 6 NPEB vs. Bayes with wrong prior assumed. Here we assume as a
prior a constant population size, but in reality the exponential growth rate
varies between 0 and 2 (see x-axis). The value of u is 0.5, and the sample
size is 2. Values of m range from 250 (in gray) to 4000 (in red).

Figure 7 Histograms of true and inferred TMRCAs in the admixture
model. We can see that the number of mutations follows a similar dis-
tribution to the true times, but with higher variance. Tang et al.’s (2002)
estimate of the TMRCA is proportional to the number of mutations.

Figure 8 Comparison of different methods in admixture model. In black
circles is a scatterplot of the number of mutations at a locus and the true
TMRCA at that locus. The red dots represent the average TMRCA for each
locus with a given number of mutations. Values on the red diagonal line for
each number of mutations represent estimates of the TMRCA using Tang
et al.’s (2002) method, which tends to overestimate the value of the TMRCA
when there are a large number of mutations and underestimate it when
there are a small number of mutations. The white crosses represents NPEB
estimates of the TMRCA for loci with zero to seven mutations. We do not
report NPEB estimates of the TMRCA above seven mutations because the
variance of the estimate is greater than our cutoff value, 0.2.
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rate of 0:73 1029 mutations per site per year and for the sake
of illustration assume no variation in mutation rate across
these loci, which we would otherwise control for by varying
the length of each locus. Because of diploidy, we have a sam-
ple of size 2 for each individual.

The distribution of numbers ofmutations (or heterozygous
sites) is different in the case of the Bantu and the European
(see Figure 9), which we might attribute to the well-known
bottleneck in the ancestry of European populations (Voight
et al. 2005; Keinan et al. 2007). In particular, the average
number of pairwise differences is greater for the Bantu than
for the European. In Figure 10, we plot the inferred TMRCA
at each locus for each of these two genomes. We note that,
unlike with our method, the TMRCAs estimated using Tang’s
method do not vary depending on the population. Using our
method to estimate TMRCAs, we find that the calibration is
less intense for the European sample than it is for the Bantu
sample, which makes sense in light of the fact that the fre-
quency of sites with exactly xi mutations decreases more
sharply as xi increases for the European sample (Figure 9).

Discussion

Wehaveshownthat theproblemofestimating theTMRCAofa
sample can be framed in such away that it allows for theuse of
NPEB methods, such as a modified Robbins’ (1955) method.
The advantage of these methods is that they use data from all
loci to efficiently account for the randomness of mutation,
through which loci with the same TMRCA can have very dif-
ferent numbers of segregating sites. In all of our simulations,
Robbins’ (1955) method, one of the simplest NPEB methods,
showed radical improvement over Tang et al.’s (2002) maxi-
mum-likelihood method (this is because the method makes
use of a lot more of the available information). It also per-
formed very well against a parametric Bayesian method in
which it is assumed that the true prior for TMRCA is known.

It is particularly useful in that Robbins’ (1955) method
provides reliable estimates of the TMRCA even when the
mutation rate is very low. Many of the nucleotide sequences
we simulated had 0 segregating sites. Our method was

nonetheless reliably able to infer TMRCA at these loci, as long
as there was enough information from other independently
segregating loci. The other benefit of our method is that it
does not require any prior assumptions on demographic his-
tory. We ran simulations using simple models of population
expansion and divergence and showed that our method is
effective in a wide variety of demographic scenarios.

For all cases where the genealogies uniting the sampled
sequences are known, as for examplewhen the sample is of size
2, the NPEB estimate may be calculated simply and directly
using Equation3.However, thismethod is somewhat limited to
loci with sufficiently common numbers of segregating sites. It
does not perform well with outliers, i.e., when mxi is small.

More effective yet complicated NPEB approaches involve
estimating the distribution Ĝ of the Ti from the data. Laird
(1978) proved that the distribution of Ti that maximizes the
likelihood of the data is a discrete distribution over finitely
many points j. An estimate of this distribution can be obtained
using the expectation-maximization algorithm (Dempster
et al. 1977). We can then get estimates of each individual
Ti by using Bayes rule with Ĝ as a prior:

E½Ti jXi 5 xi�5
Pj

k51TðkÞP
�
xi jTðkÞ

�
Ĝ
�
TðkÞ

�
Pj

k51P
�
xi jTðkÞ

�
Ĝ
�
TðkÞ

� (8)

This approach is superior to Robbins’ (1955) method in that
conditions of monotonicity and convexity are satisfied, and

Figure 9 Frequency histogram of the number of heterozygote sites in a
Bantu and a European individual.

Figure 10 Estimated TMRCA at loci with different numbers of mutations.
We compare the NPEB method and Tang et al.’s (2002) method in esti-
mating the TMRCA of different loci in a Bantu individual and a European
individual. Tang et al.’s method does not depend on the distribution of
the number of mutations in the population. We do not report NPEB
estimates of the TMRCA above four mutations because their approxi-
mated variance is greater than our cutoff value.
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its success does not depend on the use of a squared error loss
function over a general loss function (Carlin and Louis 2000).
However, it involves much more computation than Robbins’
method. In this article, we concentrated on Robbins’ method
as our goal was to show that there is information at indepen-
dent loci and that even the simplest NPEB method performs
quite well, especially compared to the maximum-likelihood
approach.
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