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ABSTRACT The characterization of the distribution of mutational effects is a key goal in evolutionary biology. Recently developed deep-
sequencing approaches allow for accurate and simultaneous estimation of the fitness effects of hundreds of engineered mutations by
monitoring their relative abundance across time points in a single bulk competition. Naturally, the achievable resolution of the estimated
fitness effects depends on the specific experimental setup, the organism and type of mutations studied, and the sequencing technology
utilized, among other factors. By means of analytical approximations and simulations, we provide guidelines for optimizing time-sampled
deep-sequencing bulk competition experiments, focusing on the number of mutants, the sequencing depth, and the number of sampled
time points. Our analytical results show that sampling more time points together with extending the duration of the experiment improves
the achievable precision disproportionately compared with increasing the sequencing depth or reducing the number of competing
mutants. Even if the duration of the experiment is fixed, sampling more time points and clustering these at the beginning and the end of
the experiment increase experimental power and allow for efficient and precise assessment of the entire range of selection coefficients.
Finally, we provide a formula for calculating the 95%-confidence interval for the measurement error estimate, which we implement as an
interactive web tool. This allows for quantification of the maximum expected a priori precision of the experimental setup, as well as for a
statistical threshold for determining deviations from neutrality for specific selection coefficient estimates.
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MUTATIONS provide the fuel for evolutionary change,
and their fitness effects critically influence the course

and dynamics of evolution. The distribution of fitness effects
(DFE) lies at the heart of many evolutionary concepts, such as
the genetic basis of complex traits (Eyre-Walker 2010) and
diseases (Keightley and Eyre-Walker 2010), the rate of ad-
aptation to a new environment (Gerrish and Lenski 1998;
Orr 1998, 2005b), the maintenance of genetic variation
(Charlesworth et al. 1995), and the relative importance of

selection and drift in molecular evolution (Ohta 1977, 1992;
Kimura 1979). Unsurprisingly, considerable effort has been de-
voted, both empirically (e.g., Sawyer et al. 2003; Sousa et al.
2012; Gordo and Campos 2013; Bernet and Elena 2015)
and theoretically (e.g., Gillespie 1983; Orr 2005a; Martin and
Lenormand 2006b; Connallon and Clark 2015; Rice et al.
2015), to assess the fraction of all possible mutations that are
beneficial, neutral, or deleterious. Until recently, the two main
approaches for assessing the DFE have been based either on the
analysis of polymorphism and divergence data (Jensen et al.
2008; Keightley and Eyre-Walker 2010; Schneider et al. 2011)
or on laboratory evolution studies in which spontaneously oc-
curring mutations are followed for many generations (Imhof
and Schlötterer 2001; Rozen et al. 2002; Halligan and Keightley
2010; Frenkel et al. 2014). However, the complex action and
interaction of evolutionary forces within and between individ-
uals and the environment make accurate estimation of fitness
effects of single mutations difficult (Orr 2009).
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Recently, an alternative option to study mutational effects
on a large scale has emerged from thefield of biophysics: deep
mutational scanning (DMS; Fowler et al. 2010; Hietpas et al.
2011; Fowler and Fields 2014). This approach is typically
focused on a specific region of the genome for which a large
library of mutants is created, through either random or
systematic mutagenesis. The effects of the mutants are sub-
sequently assessed by sequencing, with the readout yield-
ing the relative frequencies of each mutant through time
(obtained either directly or via sequence tags). This results in
a high-precision snapshot of local mutational effects without
the influence of genome-wide interactions (e.g., epistasis)
and environmental fluctuations.

DMS provides various advantages over traditional ap-
proaches of deriving DFEs from polymorphism and laboratory-
evolution data. First, it is not confounded by sampling bias
(i.e., lethal mutations can also be observed) because the
entire spectrum of preengineered or random mutations is
introduced into a controlled and identical genetic back-
ground rather than waiting for mutations to appear and sur-
vive stochastic loss (Rokyta et al. 2005; Orr 2009). Second,
the short timeframe of the experiment and the large library
size minimize the influence of secondary mutations, which
eliminates the challenges imposed by epistasis and linked
selection. Finally, bulk competition ensures that all mutants
experience the same environment.

A DMS approach termed EMPIRIC (Hietpas et al. 2011,
2012) has been most prevalently studied with respect to es-
timation of the DFE and its application to evolutionary ques-
tions. EMPIRIC allows simultaneous estimation of the fitness
of systematically engineered mutations in a given protein
region. Mutants are constructed by transformation of precon-
structed plasmid mutant libraries, each representing one of
all total point mutations from the focal protein region; these
then undergo bulk competition for a number of generations.
Fitness is determined by assessing relative growth rates from
the relative abundance of each mutant, which is obtained
from deep sequence data for a number of time points.

To date, EMPIRIC has been applied to yeast (Saccharomy-
ces cerevisiae) to illuminate the DFE of all point mutations in
Ubiquitin (Roscoe et al. 2013) and Hsp90 (Hietpas et al.
2011) across different environments, to quantify the amount
and strength of epistatic interactions within a region of
Hsp90 (Bank et al. 2015), and to assess a large intragenic
fitness landscape in Hsp90. Recently, this approach has been
extended to human influenza A virus to study the DFE in a
region of the Neuraminidase protein containing a known
drug-resistant locus. This opens the door for studying the
mechanistic features underlying drug resistance and for de-
termining potential future resistance mutations in viral pop-
ulations (Jiang et al. 2015).

It has been demonstrated that the EMPIRIC approach is
highly reproducible across replicate experiments and shows
strong correspondence with selection coefficient estimates
from binary competitions (Hietpas et al. 2011, 2013), result-
ing in precise estimates of selection coefficients (Bank et al.

2014). However, the attainable precision strongly depends
on the experimental setup, in particular on the number of
mutants considered, the number of time samples taken,
and the sequencing depth. Furthermore all these factors need
to be determined before the experiment and are constrained
by the scientific question at hand and additional limitations
imposed by time and budget. The aim of this article is to
provide a statistical framework for a priori optimization of
the experimental setup for future DMS studies (for an alter-
native approach see Kowalsky et al. 2015).

Our model was originally inspired by the EMPIRIC ap-
proach, but our predictions can be readily applied to any
experiment that meets the following requirements (see
Table 1 for further examples):

1. All studied mutants are present at large copy number at
the beginning of the experiment (such that all mutants
will be sampled sufficiently at later time points; usually
on the order of 102).

2. The population size is always kept smaller than the carrying
capacity (e.g., through serial dilution or in a chemostat),
such that mutants grow approximately exponentially (i.e.,
log-linearly) throughout the experiment.

3. Population size and sample size (for sequencing or in case
of serial passaging) are large compared with the number
of mutants and sequencing depth.

4. Populations are sampled by deep sequencing (or fluores-
cence counting) at two or more time points, and individ-
ual mutant frequencies are assessed either directly or via
sequence tags.

Thus, the statistical guidelines derived in the following can
in principle be directly applied to experiments, using new
genome-editing approaches based on CRISPR/Cas9 (Jinek
et al. 2012), ZFN (Chen et al. 2011), and TALEN (Joung
and Sander 2013), which constitute particularly exciting
and promising new means for assessing the selective effects
of new mutations (i.e., the DFE), but equally pertain to tra-
ditional binary competition experiments to assess relative
growth rates. Note however, that DMS studies in which the
functional capacity of a (mutant) protein (i.e., the protein
fitness) cannot be directly related to organismal fitness (for
a recent review on the topic see Boucher et al. 2016) do not
adhere to the statistical framework presented here. Examples
include recent DMS studies, which were based on fluores-
cence (as in Sarkisyan et al. 2016), antibiotic resistance
(e.g., Jacquier et al. 2013; Firnberg et al. 2014), and binding
selection using protein display technologies (Fowler et al.
2010; Whitehead et al. 2012; Olson et al. 2014).

Here, we derive analytical approximations for the variance
and the mean squared error (MSE) of the estimators for the
selection coefficients obtained by (log-)linear regression. We
describe how measurement error decreases with the number
of sampling time points and the number of sequencing reads
and how increasing the number of mutants generally
increases the MSE. Based on these results, we derive the
length of the 95%-confidence interval as an a priorimeasure
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of maximum attainable precision under a given experimental
setup. Furthermore, we demonstrate that sampling more
time points together with extending the duration of the ex-
periment improves the achievable precision disproportion-
ately compared with increasing the sequencing depth.
However, even if the duration of the experiment is fixed,
sampling more time points and clustering these at the begin-
ning and the end of the experiment increases experimental
power and allows for efficient and precise assessment of se-
lection coefficients of strongly deleterious as well as nearly
neutral mutants. When applying our statistical framework to
a data set of 568 engineered mutations from Hsp90 in
S. cerevisiae, we find that the experimental error is well pre-
dicted as long as the experimental requirements (see above)
are met. To ease application of our results to future experi-
ments, we provide an interactive online calculator (available
at https://evoldynamics.org/tools).

Model and Methods

Experimental setup

We consider an experiment assessing the fitness of K mutants
that are labeled by i 2 f1; 2; . . . ;Kg. Each mutant is present in
the initial library at population size ci and grows exponentially
at constant rate ri: Consequently, the number ofmutants of type

i at time t is given by NiðtÞ ¼ ciexpfritg: For convenience, we
measure time in hours. Growth rates can easily be rescaled to
r9i ¼ ri=logð2Þ; where r9i denotes the growth rate per generation.
At each sampling time point t ¼ ðt1 ¼ 0; t2; . . . ; ttÞ; sequencing
reads are drawn from a multinomial distribution with parame-
ters D (sequencing depth) and pðtÞ ¼ ðp1ðtÞ; p2ðtÞ; . . . ; pKðtÞÞ;
where piðtÞ ¼ NiðtÞ=

PK
j¼1NjðtÞ is the relative frequency of mu-

tant i in the population at time t. Accordingly, t and tt denote
the number of samples and the duration of the experiment,
respectively. Note that for notational convenience, we omit the
subscript in t to denote any element in t. For illustrative purposes,
we present our results under the assumption that T equally spaced
time points are sampled, such that t ¼ ð0; 1; . . . ;T2 1Þ; and in
particular t ¼ T and tt ¼ T2 1: Note that, with this definition,
increasing the number of sampling time points (T) increases the
actual numbers of samples taken (t) and the duration of the ex-
periment (tt). The separate effects of t and tt will be discussed
subsequently (notation and definitions in Table 2).

Furthermore, let nðtÞ ¼ ðn1ðtÞ; n2ðtÞ; . . . ; nKðtÞÞ denote
the random vector of the number of sequencing reads sam-
pled at time t. Without loss of generality, we denote the wild-
type reference (or any chosen reference type) by i ¼ 1 and set
its growth rate to 1 (i.e., r1 ¼ 1). Thus, mutant growth rates
are measured relative to that of the wild type. Accordingly,
the selection coefficient of mutant i with respect to the wild
type is given by si ¼ ri 2 r1:

Table 1 List of published DMS studies assessing mutant growth rates in accordance with our statistical model, arranged by number of
time points sampled

Reference
No. of

time points
No. of
mutants

Total no.
of sequence

reads (millions)
Reproducibility
(if reported) Summary of reference

Hietpas et al. (2013) 6 or 7 568 30 R2 ¼ 0:95 for full replicates Beneficial single substitutions in Hsp90 of
yeast under altered environments

Jiang et al. (2013) 6 or 7 568 34 R2 ¼ 0:96 for full replicates Interaction of expression and single
substitutions on DFE of yeast Hsp90

Puchta et al. (2016) 5–7 �60,000 545.7 R2 ¼ 0:85 Network of epistatic interactions in yeast
small nucleolar RNA

Roscoe et al. (2013) 6 1,530 21 R2 ¼ 0:93 for full replicates Functional biophysics of single
substitutions in ubiquitin of yeast

Hietpas et al. (2011) 3 or 7 568 26 R2 ¼ 0:82 for full replicates DFE of single substitutions for a short
region of Hsp90 in yeast

Bank et al. (2015) 5 1,015 21.6 Credibility intervals (figure 6B) DFE of epistatic substitutions in Hsp90 of
yeast

Wu et al. (2013) 3 .400 .0.002 NA Compensatory single substitutions for
neuraminidase mutant of influenza

Li et al. (2016) 2 65,537 685.5 R2 ¼ 0:997 mean across 15 pairs
of biological replicates

Fitness landscape of a transfer RNA gene in
yeast

Jiang et al. (2015) 2 475 20.5 R2 ¼ 0:92 for full replicates Biophysics of single substitutions in
influenza neuraminidase with antiviral

Roscoe and
Bolon (2014)

2 1,617 30 R2 ¼ 0:96 for full replicates Biophysics of single ubiquitin substitutions
on E1 activity and yeast fitness

Melnikov et al.
(2014)

2 4,993 33.2 R2 ¼ 0:90 for full replicates Biophysics of single substitutions in APH
(39)II in Escherichia coli with antibiotics

Kim et al. (2013) 2 29,708 90.2 NA Biophysics of single substitutions in yeast
Deg1 protein degradation signal

Melamed et al.
(2013)

2 110,745 186.5 NA Biophysics of single and multiple
substitutions in Pab1 RRM of yeast

Klesmith et al.
(2015)

2 9,219 5.8 Reproducibility plot Biophysics of levoglucosan consumption
rate in E. coli
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Estimators for the selection coefficients si are then
obtained from linear regression, based on log ratios of the
number of sequencing reads niðtÞ over the different sampling
time points (but see Bank et al. 2014, for a Bayesian Markov
Chain Monte Carlo approach). The corresponding linear
model can then be written as

yt ¼ C þ sit þ et; (1)

where yt is the (transformed) observation variable, C is a con-
stant (i.e., the intercept), and et denotes the regression residual.

In the following, we derive an estimator that uses the log
ratios of the number of reads of mutant i over the number of
reads of the wild type as dependent variables in a linear re-
gression. We call this method the wild-type (WT) approach. In
Supplemental Material, File S2, we derive and analyze an al-
ternative selection coefficient estimator that is based on log
ratios of the number of mutant reads with respect to the total
number of sequencing reads, which we call the total (TOT)
approach. This estimator has previously been used for detecting
outliers within the experimental setup considered in Bank et al.
(2014).

Estimation of selection coefficients ŝWT

Ultimately, we want to calculate the mean of the log ratios of the
numberof sequencing reads formutant iover thenumberofwild-
type sequencing reads, E½logðniðtÞ=n1ðtÞÞ� By noting that niðtÞ is
binomially distributed [for every mutant i 2 f1; 2; . . . ;Kg] and
using the Delta method (for derivation see File S1; see also Hurt
1976; Casella and Berger 2002), we derive

E

"
log
�
niðtÞ þ 1
n1ðtÞ þ 1

�#
¼ E

�
logðniðtÞ þ 1Þ�2 E

�
logðn1ðtÞ þ 1Þ�

� log
�
DpiðtÞ

�
2 log

�
Dp1ðtÞ

�
¼ log

�
piðtÞ
p1ðtÞ

�

¼ log
�
ci
c1

�
þ sit

(2)

such that an estimator ŝWT;i for si can be obtained by applying
the ordinary least-squares (OLS) method on the linear re-
gression model

log
�
niðtÞ þ 1
n1ðtÞ þ 1

�
¼ log

�
ci
c1

�
þ sit þ eWT;t; (3)

where eWT;t denotes the regression residual using the WT
approach (as opposed to the TOT approach; see also File
S2). Note that the additive termwithin the logarithm ensures
that the logarithm is always well defined and was added
solely for mathematical convenience.

Simulation of time-sampled deep sequencing data

To validate analytical results, we simulated time-sampled deep
sequencing data (implemented in C++; available upon re-
quest). We assumed that mutant libraries were created per-
fectly, such that the initial population size ci was identical for all
mutants and, accordingly, piðt1Þ ¼ 1=K for all i ¼ 1; 2; . . . ;K:
Selection coefficients were independently drawn from a nor-
mal distribution with mean 0 and standard deviation 0.1. To
test the robustness of these assumptions we performed addi-
tional simulations where initial population sizes were drawn
from a log-normal distribution [i.e., ci � 10Nð4;s¼0:5Þ] reflect-
ing empirical distributions of inferred initial population sizes.
Furthermore, selection coefficients were also drawn from a
mixture distribution

si � 2jN ð0;s ¼ 0:1Þj if z ¼ 0
Expð0:02Þ if z ¼ 1;

�
(4)

where Z � Bernoullið0:7Þ (Figure S1). For a given number of
sampling time points T and sequencing depth D, the number
of mutant sequencing reads ðn1ðtÞ; n2ðtÞ; . . . ; nKðtÞÞ was
drawn from a multinomial distribution with parameters D
and pðtÞ for each sampling point. Selection coefficient esti-
mates ð̂siÞi¼2;...;K were then obtained by fitting the linear
model by means of OLS. Finally, the accuracy of the param-
eter estimates was assessed by computing the MSE,

MSE ¼ 1
K2 1

XK
i¼2

ð̂si2siÞ2; (5)

and the deviation (DEV)

DEV ¼ 1
K2 1

XK
i¼2

ð̂si2 siÞ: (6)

Note that we have omitted the hat over the MSE and DEV for
notational convenience. Ifnot statedotherwise, statisticswere
calculated over 1000 simulated experiments for each set of
parameters.

Data availability

The empirical data used in Figure 4 have been downloaded
from Dryad, DOI: 10.5061/dryad.nb259 (data from Hietpas
et al. 2013).

Table 2 Summary of notation and definitions

Notation Definition

K No. of mutants
D Total no. of reads per sampling

time point (sequencing depth)
ci Initial population size of mutant i
ri (Exponential) growth rate of mutant i
NiðtÞ No. of mutants of type i at time t
nðtÞ¼ðn1ðtÞ;n2ðtÞ; . . . ;nKðtÞÞ Vector of the observed no. of

sequencing reads sampled at time t
piðtÞ Relative frequency of mutant i at time t
t No. of samples taken
tt Duration of the experiment
T No. of sampling time points

ðt ¼ T ; tt ¼ T 21Þ
si ¼ ri 2 r1 Selection coefficient of mutant i
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Results and Discussion

Theaimof this article is to provide a statistical framework fora
priori optimization of the experimental setup for future DMS
studies. As such, our primary interest lies in the quantification
of the MSE and its dependence on the experimental setup.
We first deduce analytical approximations for the variance and
the MSE of the estimators for the selection coefficient and com-
pare these with simulated data. We then derive approximate
formulas for the length of the confidence interval of the esti-
mates and themean absolute error (MAE),which can be used to
assess the expected precision of the estimates. For each of these
steps, we discuss the consequences of relaxing some of the
above assumptions along with potential extensions of the
model. Finally, we apply our statistical framework to experimen-
tal evolution data of 568 engineered mutations from Hsp90 in
S. cerevisiae and show that our model indeed captures the most
prevalent source of error (i.e., error from sampling).

Approximation of the mean squared error

Generally, theMSEof anestimator û (for parameter u) is givenby

MSEðûÞ ¼ E
h
ðû2uÞ2

i
¼ Var½û� þ biasðûÞ2

(see section 7.3.1 of Casella and Berger 2002). Since
E½eWT� ¼ 0 (i.e., the mean of the regression residual is zero,
implying that ŝWT;i is an unbiased estimator; Figure S2), it is
sufficient to analyze Var½̂sWT;i� to assess MSEð̂sWT;iÞ: For ease
of notation, and since all results in the main text are derived
using the wild-type approach, we omit the WT index from
here on. Taking the variance of Equation 3 implies

Var

"
log
�
niðtÞ þ 1
n1ðtÞ þ 1

�#
¼ Var½et�; (7)

which, by applying the Delta method (see File S1) and using
Equation S5 in File S1 together with Equations S4 and S6 in
File S1 can be approximated by

Var½et� �
DpiðtÞ

�
12 piðtÞ

�
�
1þ DpiðtÞ

�2 þ Dp1ðtÞ
�
12 p1ðtÞ

�
�
1þ Dp1ðtÞ

�2
22

DpiðtÞp1ðtÞ�
1þ DpiðtÞ

��
1þ Dp1ðtÞ

�:
(8)

Note that the residuals are heteroscedastic [i.e., their variance is
time dependent; the relative mutant frequencies piðtÞ change
during the course of the experiment]. Hence, there is no gen-
eral closed-form expression of the variance of ŝi: However, by
making the simplifying assumption of homoscedasticity [i.e.,
piðtÞ � piðt1Þ and p1ðtÞ � p1ðt1Þ for all t], we obtain

Var½e� � Dpið12 piÞ
ð1þ DpiÞ2

þ Dp1ð12 p1Þ
ð1þ Dp1Þ2

2 2
Dpip1

ð1þ DpiÞð1þ Dp1Þ

� Dpið12 piÞ
ð1þ DpiÞ2

þ Dp1ð12 p1Þ
ð1þ Dp1Þ2

;

(9)

where the dependence on time has been dropped for ease of
notation. Note that omitting the covariance term implicitly
assumes that the number of mutants K is sufficiently large
(i.e., pi and p1 are small). We discuss the effect of assuming
homoscedastic error terms below. Equation 9 shows that
Var½e� decreases monotonically with increasing sequencing
depth and increasing relative proportions of the wild-type
and focal mutants.

Using existing theory on variances of slope coefficients in a
linear regression framework with homoscedastic error terms
(e.g., see section 11.3.2 in Casella and Berger 2002), the
variance of the selection coefficient estimate is given by

MSEð̂siÞ ¼ Var½̂si� ¼ Var½e�Pt
i¼1ðti2�tÞ2

�
 
Dpið12 piÞ
ð1þ DpiÞ2

þ Dp1ð12 p1Þ
ð1þ Dp1Þ2

!
1Pt

i¼1ðti2�tÞ2;

(10)

which is our first main result.
Using that sampling times are assumed to be equally

spaced, Equation 10 can further be rewritten as

MSEð̂siÞ �
 
Dpið12 piÞ
ð1þ DpiÞ2

þ Dp1ð12 p1Þ
ð1þ Dp1Þ2

!
12

T32T
; (11)

which shows that the MSE decreases cubically with the
number of time points T (Figure 1). Thus, sampling addi-
tional time points (i.e., taking more samples and thereby
extending the duration of the experiment) drastically in-
creases the precision of the measurement.

Our approximation generally performs verywell across the
entire parameter space. Although we assumed that the rela-
tive abundance of all mutants remains roughly constant with
time (i.e., neglecting that error terms are heteroscedastic),
the (small) absolute error of our approximation remains con-
stant across time points (Figure S3A). Deviations from ho-
moscedasticity increase as more and later time points are
sampled, as shown by the relative error (Figure S3B). This is
also reflected by the deviation between the predicted MSE
and the true average MSE obtained from the simulated data
(Figure 1). For realistic experimental durations, however,
compared to the experimental error (due to sampling) this
approximation error is negligible.

Uneven sampling schemes: To obtain a closed formula for
the decay in the measurement error with the number of
time samples T (Equation 11), we assumed equally spaced
sampling times. The observed decay remains cubic relative
to the number of time points also when samples are not taken
at equally spaced time points. Furthermore, Equation 10 in-
forms about the optimal sampling scheme to use to mini-
mize measurement error: For fixed sequencing depth and
number of mutants, the MSE is minimized when the sum of
squared deviations of the sampling times from their mean
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is maximized. In other words, to minimize the measurement
error one should sample in two sampling blocks, one at the
beginning and another at the end of the experiment instead
of sampling throughout the experiment, or, if time and re-
sources allow, create full two-time-point replicates [e.g.,
t ¼ ð0; 1; 5; 6Þ is better than t ¼ ð0; 2; 4; 6Þ; see also the in-
teractive demonstration tool provided online].

Duration and sampling density of the experiment: Equa-
tion 11 implies that the MSE decreases cubically when both
more samples are taken and the duration of the experiment is
extended. However, extending the experiment indefinitely is
impossible, both because of experimental constraints and
because secondary mutations will begin to affect the mea-
surement. Hence, the possible duration of an experiment
under a given condition may be a (fixed) short time tt
(e.g., ,20 yeast generations for EMPIRIC). To separate the
effects of taking more samples t from those of extending the
duration of the experiment tt—which are combined in T in
the normal model setup (seeModel and Methods)—Equation
11 can be rewritten as

MSEð̂siÞ �
 
Dpið12 piÞ
ð1þ DpiÞ2

þ Dp1ð12 p1Þ
ð1þ Dp1Þ2

!
12ðt2 1Þ
tðt þ 1Þt2t

: (12)

Thus, when the duration of the experiment tt is held constant,
measurement error decays linearly as t (i.e., the number of
sampling points) increases. Conversely, when extending the
duration of experiment, the MSE decreases quadratically.
This result suggests that the experimental duration should
always be maximized under the constraints that mutants
grow exponentially and population size is much smaller than
the carrying capacity. How long both of these assumptions are
met depends on each individual mutant’s selection coefficient
(or growth rate) and its initial frequency. Accordingly, there is

no universal “optimal” duration of the experiment. For exam-
ple, the frequency of strongly deleterious mutations in the
population generally decreases quickly, such that the phase
where they show strict exponential growth is short and does
not span the entire duration of the experiment. Furthermore,
mutations might be lost from the population before the ex-
periment is completed. Thus, when sampling two time points
that extend over a long experimental time, growth rates for
strongly deleterious mutations can be substantially over-
estimated (see also Contribution of additional error: Data
application).

Conversely, for mutations with small (i.e., wild-type-like)
selection coefficients, increasing the duration of the experi-
ment considerably improves the precision of the estimates.
Specifically, to infer deviations from the wild type’s growth
rate the (expected) log ratio of the number of mutant se-
quencing reads over the number of wild-type sequencing
reads (i.e., the ratio of relative frequencies between mutant
and wild-type abundance) needs to change consistently with
time (i.e., either increase or decrease; Equation 2). However,
changes in the log ratios will be small if the duration of the
experiment is short, and even if there are slight shifts, se-
quencing depth D needs to be large enough such that they
are not washed out by sampling.

Thus, beyond the linear improvement on the MSE that
comeswith increasing t, samplingmore time points can be an
efficient strategy to capture the entire range of selection co-
efficients (i.e., strongly deleterious and wild-type-like mu-
tants). Specifically, sampling in two blocks (one at the
beginning and another at the end of the experiment as sug-
gested above) would allow using different tt; depending on
the underlying selection coefficient, which could be deter-
mined by a bootstrap leave-p-out cross-validation approach
(for details see Contribution of additional error: Data applica-
tion). For example, the first sampling block could be used for

Figure 1 Comparison of the predicted mean squared error (Equation 10; red circles) and the average mean squared error (blue stars), obtained from
1000 simulated data sets for (A) different numbers of sampling time points T and mutants K, for sequencing depth D ¼ 100;000; and (B) different
sequencing depth D, with fixed T ¼ 5; K ¼ 100: Boxes represent the interquartile range (i.e., the 50% C.I.), whiskers extend to the highest/lowest data
point within the box6 1.5 times the interquartile range, and black and gray circles represent close and far outliers, respectively. Results are presented on
log scale.
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strongly deleterious mutations, whereas all sampled time
points could be used for the remaining mutations, reducing
error due to overestimation of strongly deleterious selection
coefficients and increasing statistical power to detect differ-
ences from wild-type-like growth rates.

Library design and the number of mutants: Increasing the
number ofmutantsK reduces the number of sequencing reads
per mutant and hence pi; which explains the approximately
linear increase of the MSE with K (Figure 1). Crucially, we
assumed that the initial mutant library was balanced, such
that all mutants were initially present at equal frequencies.
In practice this is hardly ever the case and previous analy-
ses have shown that initial mutant abundances instead fol-
low a log-normal distribution (Bank et al. 2014). Taking this
into account, we find that unbalanced mutant libraries, as
expected from Equation 9, introduce an error due to the
higher variance terms resulting from the generally lower pi
(Figure S5). This error can be avoided by using the estimated
relative mutant abundance, p̂i; in Equation 9 (Figure S5).

The additional—although practically inevitable—error in-
troduced by variance in mutant abundance indicates that
library preparation is an important first step for obtaining
precise estimates. In fact, Equation 9 suggests that the mea-
surement precision increases with the relative abundance
of the wild type (such that the second term in Equation 9
decreases). However, this results in a trade-off because in-
creasing wild-type abundance results in a decrease of the
abundance of all other mutants, which leads to an increase
of the first term in Equation 9. Assuming that increasing the
relative abundance of the wild type reduces the relative
abundance of all mutants equally (i.e., pi ¼ pj for all
i; j 2 f2; 3; . . . ;Kg), we find that precision is maximized by
increasing the wild-type abundance by a factor proportional
to

ffiffiffiffi
K

p
(analytical result not shown; Figure 2). This way, the

MSE can be reduced by 50% compared to theMSEwith equal
proportions of all mutants. Most importantly, however, if
wild-type abundance is low (i.e., p1 � 1=K), the error in-
creases substantially (i.e., .10-fold; see Figure 2A, inset).

Sequencing depth and its fluctuations: The MSE de-
creases approximately linearly with the sequencing depth
D (Figure 1), because the number of reads per mutant in-
creases. As long asD is independent of the number ofmutants
K in the actual experiment, it can simply be treated as a
rescaling parameter; hence, qualitative results are indepen-
dent of the actual choice of D. Similarly, the variance of the
estimated MSE decreases approximately quadratically with
sequencing depth and increases quadratically as the number
of mutants increases (Figure 1).

Although we here treat the sequencing depth D as a con-
stant parameter, it will in practice vary between sampling
time points. Thus, D should rather be interpreted as the
(expected) average sequencing depth taken over all time
points. In particular, compared to a fixed sequencing depth,
variance in D introduces an additional source of error (due to
increased heteroscedasticity), although deviations from the
predicted to the observed mean MSE remain roughly identi-
cal (Figure S6). Ourmodel can also account for other forms of
sampling. For example, if the sample taken from the bulk
competition is known to be smaller than the sequencing
depth, its size should be used as D in the precision estimates.

Shape of the underlying DFE: Our results remain qualita-
tively unchanged when selection coefficients are drawn from
differently shaped DFEs. The assumed normally distributed
DFE corresponds to theoretical expectations derived from
Fisher’s geometric model [assuming that the number of traits
under selection is large (Martin and Lenormand 2006a;
Tenaillon 2014)]. DFEs inferred from experimental evolu-
tion studies, however, are typically characterized by an ap-
proximately exponential tail of beneficial mutations and a
heavier tail of deleterious mutations (Eyre-Walker and
Keightley 2007; Bank et al. 2014) that roughly follows a
(displaced) gamma distribution (Martin and Lenormand
2006a; Keightley and Eyre-Walker 2010). To account for
this expected excess of deleterious mutations in the DFE
(reviewed by Bataillon and Bailey 2014), we used a mixture
distribution that resulted in a highly skewed DFE. For this,

Figure 2 (A) The relative MSE as a function of the relative abundance of the wild type, i.e., MSEðp1 ¼ x=KÞ=MSEðp1 ¼ 1=KÞ; for K ¼ 100: The inset
shows results for p1 #1=K; where the y-axis has been put on log scale. The abundance of all other (except the wild type) is assumed to scale proportionally. (B)
The relative wild-type abundance that minimizes the MSE as a function of the number of mutants K. An explicit formula (given by the black line) is not shown
due to complexity, but can well be approximated by

ffiffiffiffi
K

p
: Either prediction is based on Equation 10. Other parameters: D ¼ 100;000:
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beneficial mutations (s. 0) were drawn from an exponential
distribution and deleterious mutations were given by the ab-
solute value drawn from a Gaussian distribution (Figure S1;
see Model and Methods for details). Even with this highly
skewed DFE, we did not find changes in either the MSE
(Figure S4) or the deviation (Figure 3), indicating that our
results are robust across a range of realistic DFEs.

An alternative normalization: In File S2, we analyze and
discuss an alternative estimation approach based on the log
ratios of the number of mutant reads over the sequencing
depth D (as opposed to a single reference/wild type) that
was proposed in Bank et al. (2014) and called the TOT ap-
proach. Although the TOT approach can improve results for
very noisy data (i.e., if T or D is small; File S2, Figures A–D),
its estimates are generally biased. The bias increases with the
number of time points and overrides the smaller variance in
residuals (see Equation 9 and File S2, Equation S8). Thus,
application of the TOT approach is recommended only under
special circumstances, e.g., under the suspicion of outlier
measurements in the wild type (as in the case of Bank et al.
2014).

Confidence intervals, precision, and hypothesis testing

One way of quantifying the precision of the estimated selec-
tion coefficient is obtained using Jensen’s inequality (see sec-
tion 6.6 of Williams 1991), which yields an upper bound for
the MAE,

MAEð̂siÞ#
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½̂si�

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
Dpið12 piÞ
ð1þ DpiÞ2

þ Dp1ð12 p1Þ
ð1þ Dp1Þ2

!
1Pt

i¼1ðti2�tÞ2

vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 
Dpið12 piÞ
ð1þ DpiÞ2

þ Dp1ð12 p1Þ
ð1þ Dp1Þ2

!
12

T3 2T

vuut ;

(13)

where, in the last line, we have again assumed that sampling
times are equally spaced. Thus, the MAE is simply the square
root of the MSE.

Alternatively, using central limit theorem arguments (Rice
1995), it can be shown that for a fixedmutant i the estimated
selection coefficient ŝi asymptotically follows a normal distri-
bution (Figure 3 and Figure S2). The upper and lower bounds
of the ð12aÞ-confidence interval with significance level a for
si are then given by

C:I:ð̂siÞ ¼ ŝi6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½̂si�

p
z12a=2; (14)

where z12a=2 denotes the ð12a=2Þ quantile of the standard
normal distribution. The length of the ð12aÞ-confidence
interval, Lð12aÞ; can be used as an intuitive a priori measure
for the precision of the estimated selection coefficient. For-
mally, let L12a ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½̂si�

p
z12a=2 denote the length of the

ð12aÞ-confidence interval. Setting a ¼ 0:05 and using
Equation 10, we obtain the approximation

L0:95 � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K
D

2Pt
i¼1ðti2�tÞ2

s
� 20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

DðT3 2TÞ

s
; (15)

where we assumed z0:975 � 2: Equation 15 shows that the
sequencing depth D and the number of mutants K are in-
versely proportional. Similar to Equation 10, the number of
time points T enters cubically.

Furthermore, Equation 14 can be used to define the upper
and lower bounds of the region of rejection of a two-sided
Z-test with, for instance, null hypothesis si ¼ 0 (or more gen-
erally any other null hypothesis si ¼ u). The Z-statistic is then
given by

Z ¼ ŝi 2 uffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½̂si�

p (16)

(see Chap. 8 in Sprinthall 2014). This statistic can be applied
to existing data to test whether a mutant has an effect

Figure 3 Histogram of the deviation (Equation 6) be-
tween the estimated and true selection coefficients drawn
from either a normal distribution or a mixture distribution
(for details see Model and Methods) based on 1000 sim-
ulated data sets each. The red line is the prediction based
on Equation 10. Other parameters: T ¼ 5; D ¼ 100;000;
K ¼ 100:
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different from the wild type. In addition, we can use this
statistic to determine the maximum achievable statistical res-
olution of a planned experiment.

Optimization of experimental design

Equation 10 suggests that the measurement error modeled
here could in theory be eliminated entirely by sampling (in-
finitely) many time points. In practice, the attainable resolu-
tion of the experiment is also limited by technical constraints
imposed by the experimental details and by sequencing error
and by the available manpower and budget. To further im-
prove the experimental design taking the latter two factors
into account, we can integrate our approach into an optimi-
zation problem, using a cost function Ca;b;Ctt ;KðD; tt; tÞ: As an
example, we define

Ca;b;Ctt ;KðD; t; ttÞ ¼ tt 3Ctt þ t3 fðDÞ
þ a3MSEKðD; tt; tÞb; (17)

where Ctt denotes the personnel costs over the dura-
tion of the experiment, f ðDÞ denotes the sequencing
costs per sampled time point, and a and b scale the as-
sociated error costs given by Equation 12 (Boyd and
Vandenberghe 2004). The optimization problem is solved
by minimizing

Ca;b;Ctt
ðD; tt; tÞ (18a)

under constraints

2# t# tmax (18b)

tt;min# tt # tt;max (18c)

Dmin#D#Dmax (18d)

MSEKðD; tt; tÞ#MSEmax; (18e)

which yields the maximum tolerable error MSEmax while
minimizing the total experimental costs. An illustrative ex-
ample is given in File S3.

Contribution of additional error: Data application

An important limitation of our model is that it does not
consider additional sources of experimental error. Therefore,
any results presented here should be interpreted as upper
limits of the attainable precision. In particular, sequencing
error (dependent on the sequencing platform and protocol
used) is expected to affect the precision of measurements.
However, if the additional error is nonsystematic (i.e., ran-
dom), it will not change the results qualitatively, but solely
add an additional variance to the measurement.

To assess the influence of additional error sources on the
validity of our statistical framework, we reanalyzed a data set
of 568 engineered mutations from Hsp90 in S. cerevisiae
grown in standard laboratory conditions (i.e., 30�; for details
see Bank et al. 2014).We estimated the initial population size
and the selection coefficient for each mutant, using the
linear-regression framework discussed here. With respect to
the experimental parameters (i.e., number and location of
sampling points, sequencing depth) and our proposedmodel,
we simulated 1000 bootstrap data sets. We assessed the ac-
curacy of our selection coefficient estimates by calculating
the MSE between the selection coefficient estimates obtained
from the bootstrap data sets and those obtained from the
experimental data, which serve as a reference for the “true”
(but unknown) selection coefficient. To quantify the effect of
the number of sampling time points, we used a leave-p-out
cross-validation approach, successively dropping sampling
time points (Geisser 1993).

For the complete data set, our prediction holds only when
the number of time points considered is small. Conversely,
with more than four time samples, the MSE even slightly
increases with the number of sampling points (Figure 4, in-
set). However, when strongly deleterious mutations (i.e.,

Figure 4 Comparison of the predicted mean squared error
(Equation 10; red) against the average mean squared error
(blue stars) obtained from 1000 cross-validation data sets.
Only mutants with an estimated selection coefficient larger
than the intermediate between the estimated mean syno-
nym and the estimated mean stop codon selection coeffi-
cient were considered. The inset shows the MSE calculated
for all mutants. The MSE is presented on log scale.
Other parameters: t ¼ ð4:8;7:2;9:6;12; 16:8;26:4;36Þ;
DFigure ¼ ð474;931; 636;257;873;827; 1;513;392; 424;182;
443;739;452;326Þ; DInset ¼ ð654;311;820;301; 1;046;169;
1;726;516; 469;855; 464;070; 463;363Þ; KFigure ¼ 400;
KInset ¼ 568: Alternatively, in the presence of strongly dele-
terious mutants a Poisson regression may be used for esti-
mating growth rates (see Figure S7).
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those with a selection coefficient closer to that of the average
stop codon than to the wild type; see also Bank et al. 2014)
are excluded from the analysis, the MSE is very well pre-
dicted by Equation 10 for any number of time points (Figure
4). Two model violations may well explain the observed
pattern when deleterious mutations are included. First, the
frequency of strongly deleterious mutations in the population
decreases quickly and does not show strictly exponential
growth (figure S2 in Bank et al. 2014), especially for later time
points. Second, these mutations might not be present in the
population over the entire course of the experiment. Sequenc-
ing errorwill then create a spurious signal, feigning and extend-
ing their “presence,” thus biasing the results. The bootstrap
approach utilized here could in principle be used to determine
the time points that should be considered for the estimation of
strongly deleterious mutations and to generally test for model
violations. Indeed, Figure 4 demonstrates that our model cap-
tures the most prevalent source of error (i.e., error from sam-
pling) when strongly deleterious mutations are excluded.

Conclusion

The advent of sophisticated biotechnological approaches on a
single-mutation level, combined with the continual improve-
ment and reduction in costs of sequencing, presents uswith an
unprecedented opportunity to address long-standing ques-
tions about mutational effects and the shape of the distribu-
tion of fitness effects. An additional step toward optimizing
results receives little attention: By systematically invoking
statistical considerations ahead of empirical work, it is possi-
ble to quantify and maximize the attainable experimental
power while avoiding unnecessary expenses, regarding both
financial and human resources. Here, we present a thorough
statistical analysis that results in several straightforward,
general predictions and rules of thumb for the design of
DMS studies, which can be applied directly to future exper-
iments using a free interactive web tool provided online
(https://evoldynamics.org/tools). We emphasize here three
important and general rules that emerged from the analysis:

1. Increasing sequencing depth and the number of replicate
experiments is good, but adding sampling points together
with increasing the duration of the experiment is much
better for accurate estimation of small-effect selection
coefficients.

2. Preparation of a balanced library is the key to good results.
The quality of selection coefficient estimates strongly
depends on the abundance of the reference genotype:
Always ensure that the frequency of the reference geno-
type is .   1=K — “less is a mess.”

3. Clustering sampling points at the beginning and the end of
the experiment increases experimental power and allows
the efficient and precise assessment of the entire range
of the distribution of fitness effects.

Although the statistical advice presented here is limited to
experimentalapproaches that fulfill the requirements listed in the
Introduction and focuses on the error introduced through sam-

pling, our work highlights the promises that lie in long-term
collaborations between theoreticians and experimentalists com-
pared to the common practice of post hoc statistical consultation.
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Figure S1 – Histogram showing the distribution of fitness effects obtained from 10,000 draws from a mixture distribution that serves as an alternative to the normal distribution that is
otherwise assumed throughout the manuscript.For details see Model and Methods.
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Figure S2 – The deviation (eq. 6) of the estimated selection coefficient from the true selection coefficient obtained from 1,000 simulated data sets for different numbers of sampling time points.
Other parameters: D = 100,000, K = 100.
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Figure S3 – The absolute (A) and the relative (B) error calculated from 1,000 simulated data sets for different numbers of sampling time points T and mutants K. Results in A are presented on
log-scale. Other parameters: D = 100,000.
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Figure S4 – Comparison of the predicted mean squared error (eq. 10; red) against the average mean squared error (blue star) obtained from 1,000 simulated data sets for different numbers of
sampling time points. Results are presented on log-scale. Other parameters: D = 100,000, K = 100.



�

�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�
�

� � � � ��-�

-�

-�

-�

������ �� 	
�� ��
�	
 (�)

��
� �
�(
�
��

)

�
���������	 ��

���������	 
=�/�


�������� ����

�
�����������
�
��

�
�
�
�
��������������
�

�

������
��
����
�
����

���������
�
�

�
�
���
��
��������
�����

�

�
����
�
�������
�

������

�������

�
����
������
���
���
�
�
�
���
�
�
�
�
�
�����
�

���
�����
�
�����
�
�

������
�
�
������
���
�
��

�

�

�����

�
�

�
�

� �

�
�

�
�

� �

�

�

�

�

�
�

�

�

�

�

�
�

���� ��

������ (���=���)

� � � � � ��

-�

-�

-�

-�

-�

������ �� 	
�� ��
�	
 (�)

��
� �
�(
�
��

)

�

� ���������	

� ��������	 
���

Figure S5 – The mean squared error obtained from 1,000 simulated data sets with a fixed initial population size c

i

compared to that where c

i

has been drawn from a log-normal distribution.
In A the prediction (eq. 10; red) is based on p̂

i

, i.e., the estimated relative abundance of mutant i such that it can be referenced against the empirical average MSE (blue stars). B
compares the empirical average MSE (solid line) against the predicted MSE with a balanced mutant library (i.e., p = 1/K; black) and an uneven mutant library (i.e.,
c

i

⇠ 10N (4,s=0.5) ; red). Either prediction is based on equation (10). Note the differences in scale. Results are presented on log-scale. Other parameters: D = 100,000.
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Figure S6 – The mean squared error obtained from 1,000 simulated data sets with a fixed sequencing depth D compared to that where D alternates between 1,000,000 and 500,000 for each
time point. The predicted mean squared error (eq. 10; red) for the varying sequencing depth is calculated based on average sequencing depth across time points. The empirical
average MSE is given by the blue stars. Results are presented on log-scale. Other parameters: K = 100.
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Figure S7 – Comparison of the predicted mean squared error (eq. 10; red) against the average mean squared error (blue star) obtained from 1,000 simulated data sets using the WT-approach
and a Poisson regression approach of the sequencing counts against time with sequencing depth A D = 10,000 B D = 100,000 C D = 1,000,000. Results are shown on log-scale.
Note the differences in y-axis range. Other parameters: K = 100.



Supporting Information

File S1. Derivation of the Delta method
In this Supporting Information we will briefly motivate and introduce the delta method and derive the equations in the main
text. Consider a generic random variable X with finite second moment and smooth function f : R ! R. If f is non-linear
E [ f (X)] = f (E [X]) does in general no longer hold such that f and E[•] can no longer be interchanged. However, an approximate
result can be obtained by Taylor-expanding f around E[X] up to the second order such that

E [ f (X)] ⇡ E
⇥

f (E [X]) + f

0(E [X])(X � E [X])

+
1
2

f

00(E [X])(X � E [X])2]

= f (E [X]) +
1
2

f

00(E [X])V(X).

(S1)

This approach is called the Delta-method or method of error propagation (Hurt 1976; Oehlert 1992; Casella and Berger 2002).
Thus, for X ⇠ Bin(D, p) and f (x) = log(1 + x), the expectation of f (X) can be approximated as

E [log(X + 1)] ⇡ log(1 + Dp)� 1
2

Dp(1 � p)

(1 + Dp)2 ⇡ log(Dp), (S2)

which is used in equation (2) in the main text. Note that the approximation induces a small error. However, for fixed p this distortion
is of order O(D

�1), which is generally negligible if D is large (i.e., when the sequencing depth is large).
Analogously, we can calculate the variance of f (X) as

Var[ f (X)] ⇡ f

0(E [X])2 Var [X] , (S3)

which again for X ⇠ Bin(D, p) and f (x) = log(1 + x) becomes

Var[log(X + 1)] ⇡ Dp(1 � p)

(1 + Dp)2 , (S4)

which is used in equation (9) and (10) in the main text.
Similarly, let g : R2 ! R be a smooth function and X1, X2 denote two square integrable random variables. Taylor-expanding up to

the first order and taking variances yields

Var [g(X1, X2)] ⇡ ∂1g(E [X1] , E [X2])
2 Var [X1] + ∂2g(E [X1] , E [X2])

2 Var [X2]

+ 2∂1g(E [X1] , E [X2])∂2g(E [X1] , E [X2])Cov [X1, X2] ,
(S5)

which is used for the derivation of equation (9) and (10) in the main text. Furthermore, if x1 and x2 denote two realizations of the same
multinomial, the covariance between x1 and x2 are given by

Cov[x1, x2] = �Dp1 p2, (S6)

which is again used in equation (9) and (10) in the main text.

SI: A statistical guide to deep mutational scanning SI 1



File S2. The Total Approach

In this Supporting Information File S2 we derive and analyze an alternative estimator of selection coefficient to the one proposed
in the main text. Unlike the WT approach this estimator is based on the log-ratios of the number of mutant reads with respect to
the total number of sequencing reads (i.e., sequencing depth) and which is thus called the total approach (TOT). This estimator has
previously been used for detecting outliers in time-sampled deep-sequencing bulk completion data (Bank et al. 2014) and proved to be
more robust than the WT approach. Analogous to the main text we will first analyse and discuss the statistical properties of selection
coefficient estimator based on the TOT approach and then compare its performance to the WT approach. Finally, we will end by giving
rough guidelines when to prefer one over the other approach.

Statistical analysis of the TOT approach In contrast to the WT approach the TOT approach is based on the log-ratios of the number of
mutant reads with respect to the sequencing depth D, such that a linear model can be written as

log
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+ s
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t + #TOT,t, (S7)

where the approximation assumes that r

j

⇡ 1 for all mutants K.
Then, with a calculation analogous to the one in the main text, we obtain

Var [#TOT,t] ⇡ Dp

i

(t)(1 � p

i

(t))

(1 + Dp

i

(t))2 . (S8)

Again assuming that residuals are homoscedastic, i.e., that p

i

(t) ⇡ p

i

(t1) for all t, we have

Var
⇥
ŝTOT,i

⇤ ⇡ Dp

i

(t)(1 � p

i

(t))

(1 + Dp

i

(t))2
1

Ât
i=1 (ti

� t̄)2

=
Dp

i

(t)(1 � p

i

(t))

(1 + Dp

i

(t))2
12

T

3 � T

. (S9)

However, the approximation used in equation (S7) induces a systematic error, such that E [#TOT,t] 6= 0 meaning that ŝTOT,i is generally
biased as can be seen from Figure A and Figure B.
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Figure A – The average mean squared error (blue star) obtained from 1,000 simulated data sets for A different numbers of sampling time points T compared against the analytical prediction
with (red) and without (purple) accounting for the estimation bias as given by equation S15 and S9, respectively. B for different numbers of sequencing reads D with T = 5. Boxes
represent the interquartile range (i.e., the 50% C.I.), whiskers extend to the highest/lowest data point within the box ± 1.5 times the interquartile range, and black and gray circles
represent close and far outliers, respectively. Results are presented on log-scale. Other parameters: D = 100,000, K = 100.
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Figure B – A Comparison of the deviation (eq. 6) of the true and estimated selection coefficient as obtained by the WT and TOT approach, calculated from 1,000 simulated data sets for
different numbers of sampling time points T. B Histogram of the deviation (eq. 6) between the estimated and true selection coefficients based on 1,000 simulated data sets using the
TOT approach with T = 5. The red line is a normal distribution centered around the empirical mean and variance given by the square root of equation (S9). Other parameters:
D = 100,000, K = 100.

To quantify this bias, we will now derive an approximation based on the Delta method (see Supporting Information File S1).
Rewriting equation (S7) we obtain
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where (e
t

)
t=1,...,T are independent with mean zero, and #TOT,t = log

⇣
ÂK

j=1 exp
⇣

s

j

t
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+ e

t

. For ease of notation we will define
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D
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, and use the fact that the slope coefficient of a simple linear regression can be

expressed as
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� t̄)2 . (S11)
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Note that in order to derive an explicit formula for the bias, the distribution of the (s
i

)
i=2,...,K needs to be specified. In accordance with

our simulation assumptions, we consider the case where the s

j

i.i.d⇠ N (0, s). Hence, the random variables Y

t

i

:= ÂK

j=2 exp(s
j

t

i

) are
sums of i.i.d. log-normal random variables with the first three moments given by
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Since X

t

i

= � log(Y
t

i

), we have that Taylor-expanding up to the third order and taking expectations yields
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. (S13)

Finally, combining equations (S12) and (S13) and using that Ât
i=1 w

t

i

= 0 yields

bias(ŝTOT,i) =
t

Â
j=1

w

t

j

0

@
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A . (S14)

Note that the accuracy of the approximation strongly depends on s, t and tt potentially because of the local validity implied by the
Taylor approximation breaking down. In particular, for small s and T (i.e., s  0.1, t  7 and tt  7) yields a reasonable prediction of
the bias (Figs. A,C).

Thus, by combining equations (S9) and (S14) we obtain
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A (S15)

While comparing equations (9) and (S9) shows that Var
⇥
ŝTOT,i

⇤
< Var

⇥
ŝWT,i

⇤
(with identical T,D andp

i

), the bias clearly limits the
use of the TOT approach. In particular, the bias is strongest when T (and in particular tt) is large and/or only a few mutants were
considered (i.e., K is low relative to D). Similarly, increasing D does not improve the mean MSE by much (Fig. A).
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Figure C – Comparison of the predicted mean squared error (eq. S15; red) against the average mean squared error (blue star) obtained from 1,000 simulated data sets for different numbers of
sampling time points T and mutants K. Other parameters: D = 100,000.

Comparison of the WT and TOT approach Comparing the TOT approach to the WT approach (Fig. D) shows that the former only
outperforms the latter when stochastic forces (induced by the multinomial sampling and only a few sampling time points) are large
(i.e., when D and T are small, and K is big) – in other words whenever there were problems with obtaining the data. This also shows
up by the generally reduced variance of the MSE when increasing K or decreasing D (Figs. A, C, D). This is due to the fact that
calculating the log-ratios with respect to the sequencing depth D introduces a “saturation effect” such that the log-ratios are non-linear
in t as if the mutants no longer grow exponentially (comparable to deceleration and saturation phase described in Hall et al. 2014). In
line with our observations (Figs. A, C, D), this effect is strongest if K is small and/or T is large (and the duration of the experiment
is long), i.e., if p

i

becomes large such that the log-ratios saturate. Accordingly, the bias also strongly depends on the variance of
the DFE and thus on the environment. If mutants can generally grow faster, i.e., if the variance in the DFE is high, the log-ratios
will start to become saturated even earlier (i.e., with smaller T). The overall effect is that selection coefficient estimates will be less
extreme, i.e., large positive selection coefficients (strongly beneficial mutants) will be underestimated whereas large negative selection
coefficients (strongly deleterious mutants) will be overestimated. Still, when the wild type is systematically misestimated (due to
some non-random error in the experiment) or if the the wild type is rare (see also Fig 2) the TOT approach might outperform the WT
approach. Furthermore, when applied for detecting outliers – where this approach has been proposed initially and proved to be more
robust (Bank et al. 2014) – only the TOT approach is able to detect potential outliers in the wild type. In particular, when outliers in
the wild type remain undetected they will introduce a bias in the estimated selection coefficients for all other mutants. Accordingly,
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calculating the log-ratios with respect to the number of sequencing reads of wild-type like mutants could make use of the advantages
of the WT and TOT approach, i.e., reducing the variance of the estimator without introducing a bias, which is however beyond the
scope of this manuscript.
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Figure D – Comparison of the mean squared error obtained under the WT and TOT approach calculated from 1,000 simulated data sets for different numbers of sampling time points T. A
K = 100 B K = 1000. Note the differences in scale. Results are presented on log-scale. Other parameters: D = 100,000.
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File S3. Optimization Example

To illustrate the potential use of the optimization approach, we parameterized equation (17) as

Ca,b,C
tt ,K(D, t, tt) = tt ⇤ 20 + f (t, D) + 1010 ⇤ MSE

K

(D, tt , t), (S16a)

where

f (t, D) = (t + 1)⇥ (DNA extraction + PCR + quality control & quantification + library synthesis)

+

8
><

>:

MiSeq lane cost (t + 1)⇥ D  35 ⇥ 106

MidOutput NextSeq lane cost 35 ⇥ 106 < (t + 1)⇥ D  260 ⇥ 106

HighOutput NextSeq lane cost 260 ⇥ 106 < (t + 1)⇥ D  800 ⇥ 106
,

which is inspired by the experimental protocol described in Hietpas et al. (2012). The first term in equation (S16a) denotes personnel
costs as given by product of the duration of the experiment and the median per hour salary of a post-doc researcher in the US
(according to payscale.com).

Estimated order-of-magnitude costs for the procedures given in f (t, D) were either estimated from personal lab experience or
taken from the Georgia Genomics Facility as

DNA extraction: ⇠ 50

PCR: ⇠ 10

quality control & quantification: ⇠ 50

library synthesis: ⇠ 100

MiSeq (300 cycles) (v2); PE150: ⇠ 1800

MidOutput Flow Cell NextSeq (300 cycles) PE150: ⇠ 2600

HighOutput Flow Cell NextSeq (300 cycles) PE150: ⇠ 6000.

Note that following Hietpas et al. (2012), an additional “processing analysis” sequencing run is done per experiment on the
wild-type sequence in order to determine the misread analysis, which is why the total number of reads per experiment is (t + 1)⇥ D.
Furthermore we have chosen a = 1010 and b = 1 such that a higher MSE induces additional costs reflecting that stochasticity in the
experiment can lead to larger than expected errors (that are highly penalized with this parametrization, putting an emphasise on
the quality of the estimate rather than on experimental costs). Thus, the lower the MSE the more likely it is that the desired minimal
precision MSEmax is reached.

Constraints are chosen arbitrarily since they depend on the experimental setup and are given as

2  t  20 (S17)

500,000  D  800 ⇥ 106/(t + 1) (S18)

MSE
K

(D, tt , t)  10�6, (S19)

reflecting that over the course of the experiment at most 20 samples can be taken, and that at least 500,000 but up to 800 ⇥ 106/(t + 1)
sequencing reads can be obtained. Furthermore, we assume that the experiment is designed to infer the growth rates of K = 10,000
mutants that evolve for a fixed experimental duration tt = 20, and the desired minimal precision (given by MSEmax) is 10�6

(corresponding to MAE = 10�3; eq. 13). In addition, we for simplicity assume that sampling time points are equally spaced such that
the sampling interval is given by tt/t.

Figure A shows that under the given constraints costs (MinCa,b,C
tt ,K(D, t, tt)) sharply decrease and are minimized for t = 7 with

a sequencing depth D = 1 ⇥ 108, but start to increase again when more time points are sequenced. Pure monetary costs, however,
monotonically increase in t. Thus, if budgetary constraints were emphasized (e.g., with a = 0), it would be optimal to only sample
twice at the beginning and the end of the experiment. As argued above, however, sampling additional time points (in particular more
than two) can improve capturing the entire range of selection coefficients.

Note that in principle any cost function could be used (also incorporating additional cost terms). Furthermore, sequencing costs
and progress in sequencing technology are inherently dynamic factors, such that any parametrization of Ca,b,C

tt ,K(D, t) becomes
outdated and unrealistic immediately. However, as demonstrated by the above example: The experimental guidelines derived from
this study can be used as an auxiliary tool for assessing the a priori measurement error, and, when specifying experimental costs, to
design cost- and time-efficient experiments. Specifically, by providing a free, web-based interface, cost functions can be tailored to the
specific experimental setup and thus our results can readily be used to design efficient and statistically robust experiments.
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Figure A – MinCa,b,C
tt ,K(D, t, tt ) as parameterized by eq. S16a for different t. Costs are minimized for t = 7. Note however, that pure monetary costs monotonically increase in t.
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Supporting Information

File S1. Derivation of the Delta method
In this Supporting Information we will briefly motivate and introduce the delta method and derive the equations in the main
text. Consider a generic random variable X with finite second moment and smooth function f : R ! R. If f is non-linear
E [ f (X)] = f (E [X]) does in general no longer hold such that f and E[•] can no longer be interchanged. However, an approximate
result can be obtained by Taylor-expanding f around E[X] up to the second order such that

E [ f (X)] ⇡ E
⇥

f (E [X]) + f

0(E [X])(X � E [X])

+
1
2

f

00(E [X])(X � E [X])2]

= f (E [X]) +
1
2

f

00(E [X])V(X).

(S1)

This approach is called the Delta-method or method of error propagation (Hurt 1976; Oehlert 1992; Casella and Berger 2002).
Thus, for X ⇠ Bin(D, p) and f (x) = log(1 + x), the expectation of f (X) can be approximated as

E [log(X + 1)] ⇡ log(1 + Dp)� 1
2

Dp(1 � p)

(1 + Dp)2 ⇡ log(Dp), (S2)

which is used in equation (2) in the main text. Note that the approximation induces a small error. However, for fixed p this distortion
is of order O(D

�1), which is generally negligible if D is large (i.e., when the sequencing depth is large).
Analogously, we can calculate the variance of f (X) as

Var[ f (X)] ⇡ f

0(E [X])2 Var [X] , (S3)

which again for X ⇠ Bin(D, p) and f (x) = log(1 + x) becomes

Var[log(X + 1)] ⇡ Dp(1 � p)

(1 + Dp)2 , (S4)

which is used in equation (9) and (10) in the main text.
Similarly, let g : R2 ! R be a smooth function and X1, X2 denote two square integrable random variables. Taylor-expanding up to

the first order and taking variances yields

Var [g(X1, X2)] ⇡ ∂1g(E [X1] , E [X2])
2 Var [X1] + ∂2g(E [X1] , E [X2])

2 Var [X2]

+ 2∂1g(E [X1] , E [X2])∂2g(E [X1] , E [X2])Cov [X1, X2] ,
(S5)

which is used for the derivation of equation (9) and (10) in the main text. Furthermore, if x1 and x2 denote two realizations of the same
multinomial, the covariance between x1 and x2 are given by

Cov[x1, x2] = �Dp1 p2, (S6)

which is again used in equation (9) and (10) in the main text.
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File S2. The Total Approach

In this Supporting Information File S2 we derive and analyze an alternative estimator of selection coefficient to the one proposed
in the main text. Unlike the WT approach this estimator is based on the log-ratios of the number of mutant reads with respect to
the total number of sequencing reads (i.e., sequencing depth) and which is thus called the total approach (TOT). This estimator has
previously been used for detecting outliers in time-sampled deep-sequencing bulk completion data (Bank et al. 2014) and proved to be
more robust than the WT approach. Analogous to the main text we will first analyse and discuss the statistical properties of selection
coefficient estimator based on the TOT approach and then compare its performance to the WT approach. Finally, we will end by giving
rough guidelines when to prefer one over the other approach.

Statistical analysis of the TOT approach In contrast to the WT approach the TOT approach is based on the log-ratios of the number of
mutant reads with respect to the sequencing depth D, such that a linear model can be written as
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where the approximation assumes that r

j

⇡ 1 for all mutants K.
Then, with a calculation analogous to the one in the main text, we obtain

Var [#TOT,t] ⇡ Dp

i

(t)(1 � p

i

(t))

(1 + Dp

i

(t))2 . (S8)

Again assuming that residuals are homoscedastic, i.e., that p

i

(t) ⇡ p

i

(t1) for all t, we have

Var
⇥
ŝTOT,i
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(t))

(1 + Dp

i

(t))2
1
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i=1 (ti
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=
Dp

i

(t)(1 � p

i

(t))

(1 + Dp

i

(t))2
12

T

3 � T

. (S9)

However, the approximation used in equation (S7) induces a systematic error, such that E [#TOT,t] 6= 0 meaning that ŝTOT,i is generally
biased as can be seen from Figure A and Figure B.
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Figure A – The average mean squared error (blue star) obtained from 1,000 simulated data sets for A different numbers of sampling time points T compared against the analytical prediction
with (red) and without (purple) accounting for the estimation bias as given by equation S15 and S9, respectively. B for different numbers of sequencing reads D with T = 5. Boxes
represent the interquartile range (i.e., the 50% C.I.), whiskers extend to the highest/lowest data point within the box ± 1.5 times the interquartile range, and black and gray circles
represent close and far outliers, respectively. Results are presented on log-scale. Other parameters: D = 100,000, K = 100.
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Figure B – A Comparison of the deviation (eq. 6) of the true and estimated selection coefficient as obtained by the WT and TOT approach, calculated from 1,000 simulated data sets for
different numbers of sampling time points T. B Histogram of the deviation (eq. 6) between the estimated and true selection coefficients based on 1,000 simulated data sets using the
TOT approach with T = 5. The red line is a normal distribution centered around the empirical mean and variance given by the square root of equation (S9). Other parameters:
D = 100,000, K = 100.

To quantify this bias, we will now derive an approximation based on the Delta method (see Supporting Information File S1).
Rewriting equation (S7) we obtain
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where (e
t

)
t=1,...,T are independent with mean zero, and #TOT,t = log
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, and use the fact that the slope coefficient of a simple linear regression can be

expressed as
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Note that in order to derive an explicit formula for the bias, the distribution of the (s
i

)
i=2,...,K needs to be specified. In accordance with

our simulation assumptions, we consider the case where the s

j

i.i.d⇠ N (0, s). Hence, the random variables Y

t

i

:= ÂK

j=2 exp(s
j

t

i

) are
sums of i.i.d. log-normal random variables with the first three moments given by

E [Y
t

i

] = (K � 1) exp
⇣
(st

i

)2/2
⌘
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t

i

] = (K � 1)(exp
⇣
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E
h
(Y

t

i

� E [Y
t

i

])3
i
= exp

⇣
3(st

i

)2/2
⌘ ⇣
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⇣
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� 1
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⌘
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Since X

t

i

= � log(Y
t

i

), we have that Taylor-expanding up to the third order and taking expectations yields

E [X
t

i

] ⇡ � log(K � 1) +
e

(st

i

)2 � 1
2(K � 1)

� (st

i

)2

2
� 1

3(K � 1)2

⇣
exp

⇣
(st

i

)2
⌘
� 1
⌘2 ⇣

exp
⇣
(st

i

)2
⌘
+ 2
⌘

. (S13)

Finally, combining equations (S12) and (S13) and using that Ât
i=1 w

t

i

= 0 yields

bias(ŝTOT,i) =
t

Â
j=1

w

t

j

0

@
exp

⇣
(st

j

)2
⌘
� 1

2(K � 1)
� (st

j

)2

2
� 1

3(K � 1)2

⇣
exp

⇣
(st

j

)2
⌘
� 1
⌘2 ⇣

exp
⇣
(st

j

)2
⌘
+ 2
⌘
1

A . (S14)

Note that the accuracy of the approximation strongly depends on s, t and tt potentially because of the local validity implied by the
Taylor approximation breaking down. In particular, for small s and T (i.e., s  0.1, t  7 and tt  7) yields a reasonable prediction of
the bias (Figs. A,C).

Thus, by combining equations (S9) and (S14) we obtain

MSE
�
ŝTOT,i

�
= Var [ŝTOT] + bias(ŝTOT,i)

⇡ Dp

i

(t)(1 � p

i
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(t))2
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⇣
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⌘
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+ 2
⌘
1

A (S15)

While comparing equations (9) and (S9) shows that Var
⇥
ŝTOT,i

⇤
< Var

⇥
ŝWT,i

⇤
(with identical T,D andp

i

), the bias clearly limits the
use of the TOT approach. In particular, the bias is strongest when T (and in particular tt) is large and/or only a few mutants were
considered (i.e., K is low relative to D). Similarly, increasing D does not improve the mean MSE by much (Fig. A).
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Figure C – Comparison of the predicted mean squared error (eq. S15; red) against the average mean squared error (blue star) obtained from 1,000 simulated data sets for different numbers of
sampling time points T and mutants K. Other parameters: D = 100,000.

Comparison of the WT and TOT approach Comparing the TOT approach to the WT approach (Fig. D) shows that the former only
outperforms the latter when stochastic forces (induced by the multinomial sampling and only a few sampling time points) are large
(i.e., when D and T are small, and K is big) – in other words whenever there were problems with obtaining the data. This also shows
up by the generally reduced variance of the MSE when increasing K or decreasing D (Figs. A, C, D). This is due to the fact that
calculating the log-ratios with respect to the sequencing depth D introduces a “saturation effect” such that the log-ratios are non-linear
in t as if the mutants no longer grow exponentially (comparable to deceleration and saturation phase described in Hall et al. 2014). In
line with our observations (Figs. A, C, D), this effect is strongest if K is small and/or T is large (and the duration of the experiment
is long), i.e., if p

i

becomes large such that the log-ratios saturate. Accordingly, the bias also strongly depends on the variance of
the DFE and thus on the environment. If mutants can generally grow faster, i.e., if the variance in the DFE is high, the log-ratios
will start to become saturated even earlier (i.e., with smaller T). The overall effect is that selection coefficient estimates will be less
extreme, i.e., large positive selection coefficients (strongly beneficial mutants) will be underestimated whereas large negative selection
coefficients (strongly deleterious mutants) will be overestimated. Still, when the wild type is systematically misestimated (due to
some non-random error in the experiment) or if the the wild type is rare (see also Fig 2) the TOT approach might outperform the WT
approach. Furthermore, when applied for detecting outliers – where this approach has been proposed initially and proved to be more
robust (Bank et al. 2014) – only the TOT approach is able to detect potential outliers in the wild type. In particular, when outliers in
the wild type remain undetected they will introduce a bias in the estimated selection coefficients for all other mutants. Accordingly,
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calculating the log-ratios with respect to the number of sequencing reads of wild-type like mutants could make use of the advantages
of the WT and TOT approach, i.e., reducing the variance of the estimator without introducing a bias, which is however beyond the
scope of this manuscript.
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Figure D – Comparison of the mean squared error obtained under the WT and TOT approach calculated from 1,000 simulated data sets for different numbers of sampling time points T. A
K = 100 B K = 1000. Note the differences in scale. Results are presented on log-scale. Other parameters: D = 100,000.
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File S3. Optimization Example

To illustrate the potential use of the optimization approach, we parameterized equation (17) as

Ca,b,C
tt ,K(D, t, tt) = tt ⇤ 20 + f (t, D) + 1010 ⇤ MSE

K

(D, tt , t), (S16a)

where

f (t, D) = (t + 1)⇥ (DNA extraction + PCR + quality control & quantification + library synthesis)

+

8
><

>:

MiSeq lane cost (t + 1)⇥ D  35 ⇥ 106

MidOutput NextSeq lane cost 35 ⇥ 106 < (t + 1)⇥ D  260 ⇥ 106

HighOutput NextSeq lane cost 260 ⇥ 106 < (t + 1)⇥ D  800 ⇥ 106
,

which is inspired by the experimental protocol described in Hietpas et al. (2012). The first term in equation (S16a) denotes personnel
costs as given by product of the duration of the experiment and the median per hour salary of a post-doc researcher in the US
(according to payscale.com).

Estimated order-of-magnitude costs for the procedures given in f (t, D) were either estimated from personal lab experience or
taken from the Georgia Genomics Facility as

DNA extraction: ⇠ 50

PCR: ⇠ 10

quality control & quantification: ⇠ 50

library synthesis: ⇠ 100

MiSeq (300 cycles) (v2); PE150: ⇠ 1800

MidOutput Flow Cell NextSeq (300 cycles) PE150: ⇠ 2600

HighOutput Flow Cell NextSeq (300 cycles) PE150: ⇠ 6000.

Note that following Hietpas et al. (2012), an additional “processing analysis” sequencing run is done per experiment on the
wild-type sequence in order to determine the misread analysis, which is why the total number of reads per experiment is (t + 1)⇥ D.
Furthermore we have chosen a = 1010 and b = 1 such that a higher MSE induces additional costs reflecting that stochasticity in the
experiment can lead to larger than expected errors (that are highly penalized with this parametrization, putting an emphasise on
the quality of the estimate rather than on experimental costs). Thus, the lower the MSE the more likely it is that the desired minimal
precision MSEmax is reached.

Constraints are chosen arbitrarily since they depend on the experimental setup and are given as

2  t  20 (S17)

500,000  D  800 ⇥ 106/(t + 1) (S18)

MSE
K

(D, tt , t)  10�6, (S19)

reflecting that over the course of the experiment at most 20 samples can be taken, and that at least 500,000 but up to 800 ⇥ 106/(t + 1)
sequencing reads can be obtained. Furthermore, we assume that the experiment is designed to infer the growth rates of K = 10,000
mutants that evolve for a fixed experimental duration tt = 20, and the desired minimal precision (given by MSEmax) is 10�6

(corresponding to MAE = 10�3; eq. 13). In addition, we for simplicity assume that sampling time points are equally spaced such that
the sampling interval is given by tt/t.

Figure A shows that under the given constraints costs (MinCa,b,C
tt ,K(D, t, tt)) sharply decrease and are minimized for t = 7 with

a sequencing depth D = 1 ⇥ 108, but start to increase again when more time points are sequenced. Pure monetary costs, however,
monotonically increase in t. Thus, if budgetary constraints were emphasized (e.g., with a = 0), it would be optimal to only sample
twice at the beginning and the end of the experiment. As argued above, however, sampling additional time points (in particular more
than two) can improve capturing the entire range of selection coefficients.

Note that in principle any cost function could be used (also incorporating additional cost terms). Furthermore, sequencing costs
and progress in sequencing technology are inherently dynamic factors, such that any parametrization of Ca,b,C

tt ,K(D, t) becomes
outdated and unrealistic immediately. However, as demonstrated by the above example: The experimental guidelines derived from
this study can be used as an auxiliary tool for assessing the a priori measurement error, and, when specifying experimental costs, to
design cost- and time-efficient experiments. Specifically, by providing a free, web-based interface, cost functions can be tailored to the
specific experimental setup and thus our results can readily be used to design efficient and statistically robust experiments.
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Figure A – MinCa,b,C
tt ,K(D, t, tt ) as parameterized by eq. S16a for different t. Costs are minimized for t = 7. Note however, that pure monetary costs monotonically increase in t.
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. Supplemental Figures
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Figure S1 – Histogram showing the distribution of fitness effects obtained from 10,000 draws from a mixture distribution that serves as an alternative to the normal distribution that is
otherwise assumed throughout the manuscript.For details see Model and Methods.
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Figure S2 – The deviation (eq. 6) of the estimated selection coefficient from the true selection coefficient obtained from 1,000 simulated data sets for different numbers of sampling time points.
Other parameters: D = 100,000, K = 100.
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Figure S3 – The absolute (A) and the relative (B) error calculated from 1,000 simulated data sets for different numbers of sampling time points T and mutants K. Results in A are presented on
log-scale. Other parameters: D = 100,000.
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Figure S4 – Comparison of the predicted mean squared error (eq. 10; red) against the average mean squared error (blue star) obtained from 1,000 simulated data sets for different numbers of
sampling time points. Results are presented on log-scale. Other parameters: D = 100,000, K = 100.
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Figure S5 – The mean squared error obtained from 1,000 simulated data sets with a fixed initial population size c

i

compared to that where c

i

has been drawn from a log-normal distribution.
In A the prediction (eq. 10; red) is based on p̂

i

, i.e., the estimated relative abundance of mutant i such that it can be referenced against the empirical average MSE (blue stars). B
compares the empirical average MSE (solid line) against the predicted MSE with a balanced mutant library (i.e., p = 1/K; black) and an uneven mutant library (i.e.,
c

i

⇠ 10N (4,s=0.5) ; red). Either prediction is based on equation (10). Note the differences in scale. Results are presented on log-scale. Other parameters: D = 100,000.
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Figure S6 – The mean squared error obtained from 1,000 simulated data sets with a fixed sequencing depth D compared to that where D alternates between 1,000,000 and 500,000 for each
time point. The predicted mean squared error (eq. 10; red) for the varying sequencing depth is calculated based on average sequencing depth across time points. The empirical
average MSE is given by the blue stars. Results are presented on log-scale. Other parameters: K = 100.
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Figure S7 – Comparison of the predicted mean squared error (eq. 10; red) against the average mean squared error (blue star) obtained from 1,000 simulated data sets using the WT-approach
and a Poisson regression approach of the sequencing counts against time with sequencing depth A D = 10,000 B D = 100,000 C D = 1,000,000. Results are shown on log-scale.
Note the differences in y-axis range. Other parameters: K = 100.
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