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Abstract

The invertebrate Drosophila melanogaster has been a powerful model for understanding blood cell 

development and immunity. Drosophila is a holometabolous insect, which transitions through a 

series of life stages from embryo, larva and pupa to adulthood. In spite of this, remarkable 

parallels exist between Drosophila and vertebrate macrophages, both in terms of development and 

function. More than 90% of Drosophila blood cells (hemocytes) are macrophages (plasmatocytes), 

making this highly tractable genetic system attractive for studying a variety of questions in 

macrophage biology. In vertebrates, recent findings revealed that macrophages have two 

independent origins: self-renewing macrophages, which reside and proliferate in local 

microenvironments in a variety of tissues, and macrophages of the monocyte lineage, which derive 

from hematopoietic stem or progenitor cells. Like vertebrates, Drosophila possesses two 

macrophage lineages with a conserved dual ontogeny. These parallels allow us to take advantage 

of the Drosophila model when investigating macrophage lineage specification, maintenance and 

amplification, and the induction of macrophages and their progenitors by local microenvironments 

and systemic cues. Beyond macrophage development, Drosophila further serves as a paradigm for 

understanding the mechanisms underlying macrophage function and cellular immunity in 

infection, tissue homeostasis and cancer, throughout development and adult life.

Introduction

The blood cell system of the invertebrate Drosophila melanogaster comprises two myeloid 

lineages, which share highly conserved features with the vertebrate myeloid systems (Fig. 

1). Unlike vertebrates, Drosophila lacks both a lymphoid system and red blood cells for 

oxygen transport, the latter instead being achieved by an extensive tracheal system. 

Drosophila largely relies on innate immunity, encompassing both a humoral response of 
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antimicrobial peptide expression, and cellular responses of phagocytosis and encapsulation. 

In Drosophila, the major class of blood cells, or hemocytes, are plasmatocytes, which are 

considered equivalent to vertebrate macrophages. At every developmental stage, aside from 

the early embryo, more than 90% of all hemocytes are plasmatocytes [1–3], which have 

important functions during animal development, and in response to infection, tissue damage, 

and tumor growth.

1. Macrophage lineages and development in Drosophila

1.1. Self-renewing macrophages of embryonic origin—Recent work has shown 

that, in vertebrates, there are two developmentally independent lineages of macrophages [4–

9]. They derive (1) from erythro-myeloid progenitors (EMPs) of the yolk sac [10, 11] and 

(2) from hematopoietic stem and progenitor cells (HSPCs) of the bone marrow, via 

differentiation into monocytes [12, 13] (Fig. 1). EMP-derived macrophages colonize a 

multitude of organs during development and continue to self-renew in local 

microenvironments; they are therefore known as tissue-resident macrophages [8, 14–16]. 

Just like in vertebrates, Drosophila has a lineage of macrophages (plasmatocytes) that 

colonize tissues and self-renew in local microenvironments [17–19]. These macrophages 

originate from the procephalic (head) mesoderm of the embryo, which gives rise to a defined 

number of blood cell progenitors, also called prohemocytes [3] (Fig. 1, 2). More than 90% 

of these prohemocytes differentiate into ~600 plasmatocytes, which have macrophage-like 

roles in the removal of pathogens and apoptotic cells [3], and the deposition of extracellular 

matrix during development [20]. A small percentage of embryonic prohemocytes develop 

into crystal cells, a specialized blood cell type that catalyzes melanization reactions in 

response to wounding and pathogen invasion [21], and shows analogies to vertebrate 

granulocytes.

Many studies have dissected the factors that determine the fate of prohemocytes and 

promote their differentiation into plasmatocytes or other blood cell types. For example, 

several highly conserved transcription factors specify blood cell lineages during Drosophila 
embryogenesis. The GATA factor Serpent (Srp) is both necessary and sufficient for 

hemocyte specification in the embryonic mesoderm [22], acting upstream of the 

transcription factors Lozenge (Lz), Glial cells missing (Gcm) and U-shaped (Ush) [21, 23]. 

Gcm [24, 25] and Gcm2 [26] have redundant roles in specifying the plasmatocyte lineage in 

the embryo, while the Runx protein Lz [21], which is the Drosophila orthologue of Acute 

Myeloid Leukemia-1, is required for crystal cell specification. U-shaped, a zinc finger 

Friend of GATA (FOG) protein, acts to suppress crystal cell formation [23, 27]. The 

regulation and function of these transcription factors are reviewed in more detail elsewhere 

[19, 28, 29].

Plasmatocytes born in the Drosophila embryo colonize local microenvironments in the larva. 

This process is reminiscent of the colonization of fetal liver by EMPs in vertebrates, and the 

subsequent colonization of multiple organs, including brain, lung, skin, heart, and pancreas, 

by EMP-derived tissue macrophages [10, 11, 15, 16, 30, 31]. In particular, Drosophila 
plasmatocytes form sessile, or resident, clusters in specific areas of the gastrointestinal 

system (proventriculus) [32] and microenvironments in the larval body wall (Hematopoietic 
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Pockets) that form a segmentally repeated and terminal segment pattern [17, 18] (Fig. 1, 2). 

This population of plasmatocytes shows high rates of self-renewal, leading to a >30-fold 

expansion of the macrophage pool, from about 300 cells in the 1st instar to around 10,000 in 

the late 3rd instar [33, 34]. While in the 1st larval instar nearly all hemocytes are resident, an 

increasing number of hemocytes is found in circulation from the late 2nd larval instar 

onward, forming a steady state with the resident hemocyte population. Drosophila resident 

plasmatocytes can also give rise to two other types of blood cells: crystal cells [35, 36] and, 

under immune challenge, lamellocytes [37], a type of hemocyte specialized for the 

encapsulation of large foreign bodies, such as parasitoid wasp eggs. This suggests that at 

least some, if not all, plasmatocytes have lineage-restricted progenitor capacity, underscoring 

further parallels with vertebrate EMPs [31]. Several studies have reported distinct 

subpopulations of plasmatocytes with varying combinations [37, 38], and quantitative 

expression differences [17], of commonly used plasmatocyte “markers” such as Hemolectin 

[39], Peroxidasin [40], P1 (Nimrod C1) [41], Croquemort [42], Eater [43], and the pan-

hemocyte marker Hemese [44]. This favors the idea that specialized subsets of 

plasmatocytes exist, which could reflect distinct functional capabilities of these cells.

Recent lineage tracing and live imaging experiments [17, 35] have left little room for a 

scenario in which undifferentiated progenitors would give rise to the resident and circulating 

hemocytes of the Drosophila larva, with the exception of the Lymph Gland (see Section 1.2 

below). Nevertheless, a small fraction of potentially undifferentiated, Wingless-positive 

Hemolectin-negative cells has been reported among the resident/circulating hemocyte 

population [45], yet their potential to expand and contribute to the blood cell pool remains to 

be investigated.

In the Drosophila Hematopoietic Pockets, sensory neuron clusters of the peripheral nervous 

system (PNS) serve as an inductive microenvironments for plasmatocytes/macrophages, 

linking environmental sensory inputs to the control of the macrophage pool ([17] and 

Brückner lab, in revision). Activin-β produced by local neurons promotes plasmatocyte 

proliferation and adhesion (Brückner lab, in revision). This is consistent with ablation 

studies showing that the PNS provides functional support to macrophages, promoting both 

their survival and localization [17]. The PNS is also known to innervate the proventriculus 

[46], suggesting further connections between the nervous system and resident macrophage 

populations. In vertebrates, the nature and regulation of tissue macrophage local 

microenvironments remain unknown. However, the anatomical juxtaposition of self-

renewing macrophages and local populations of peripheral neurons, such as observed in the 

skin [47, 48] heart [49–51], and pancreas [52], suggest that similar regulatory relationships 

may exist.

Other components of the Drosophila Hematopoietic Pockets may also have roles in 

regulating Drosophila self-renewing macrophages. Larval muscle layers, which line the 

internal side of the Hematopoietic Pockets and on which plasmatocytes reside, are the sites 

of JAK/STAT signaling after parasitoid wasp infection. Interestingly, this signaling activity 

is required for mounting a cellular immune response against the parasite, and seems 

important for the mobilization of resident plasmatocytes into circulation, and their 

differentiation into lamellocytes [53].
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The Hematopoietic Pockets of Drosophila also contain clusters of liver-like oenocytes [17, 

18, 54], evoking parallels with the localization of vertebrate EMPs and other blood cell 

progenitors to the fetal liver during development [10, 31, 55], and the residence of Kupffer 

cells (self-renewing macrophages) in the liver throughout the vertebrate lifespan [15, 16]. 

However, the question of potential regulatory roles requires further investigation in 

Drosophila, as initial studies based on oenocyte fate suppression have failed to detect a 

functional correlation between oenocytes and plasmatocyte localization [17].

Self-renewing macrophage populations in vertebrates have specific identities, based on their 

tissue of residence [56, 57]. Tissue macrophage populations play important roles in human 

disease and have started to become the focus of therapeutic interventions, as exemplified by 

pulmonary macrophage transplantation [58]. Thus, understanding the role of local 

microenvironments in the regulation of progenitors and self-renewing macrophages is an 

important field of study that may provide a new interface, and molecular targets, for clinical 

therapies and prevention.

1.2. Progenitor-derived macrophages of the Lymph Gland—The second lineage of 

Drosophila macrophages derives from a hematopoietic organ, the Lymph Gland (LG), 

largely through a progenitor-based mechanism (Fig. 1, 2). The Lymph Gland develops 

during larval stages, but it arises earlier, from an independent embryonic mesodermal anlage 

of the same origin as the Drosophila heart-like organ, or dorsal vessel [2, 59–61]. The origin 

of Drosophila Lymph Gland progenitors from cardiogenic mesoderm echoes the origin of 

some vertebrate hematopoietic stem cells (HSCs) from a hemangioblast progenitor in the 

primitive streak, and HSCs from hemogenic endothelium of the aorta and other major 

arteries [29, 55, 62–64]. Prohemocytes of the Drosophila Lymph Gland mature from the 

mid-2nd larval instar onward, giving rise to an estimated ~2000–3000 blood cells under non-

immune challenged conditions. More than 90% of these cells are plasmatocytes, and the 

remainder consists of small fractions of crystal cells and lamellocytes [2, 29, 60]. By 

analogy to vertebrate macrophages originating from HSPCs, most Lymph Gland 

plasmatocytes derive from undifferentiated progenitors [60, 65]. In addition, differentiated 

Lymph Gland plasmatocytes undergo a relatively short phase of self-renewal, mainly in the 

3rd instar larva [60, 66, 67]. A distinct population of intermediate progenitors that show 

combinations of prohemocyte and plasmatocyte markers [68, 69], or lack prohemocyte and 

plasmatocyte markers [70], and are more proliferative than other cells, were reported [69, 

70]; these cells are thought to contribute to the pool of Lymph Gland plasmatocytes. Thus 

Lymph Gland plasmatocytes show similarities to HSPC-derived macrophages of the 

monocyte lineage, which undergo limited proliferation, particularly in response to immune 

challenges [71, 72].

The Lymph Gland is organized into several pairs of lobes located at the anterior end of the 

dorsal vessel. The primary lobes are functionally regionalized into an undifferentiated 

medullary zone containing progenitors, sometimes distinguished by marker expression as 

pre-prohemocytes and prohemocytes, and a differentiated cortical zone [60]. By 12 hours 

after puparium formation, all hemocytes have differentiated and the Lymph Gland 

disintegrates, releasing its blood cells [73].
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A large body of work has contributed to our understanding of Lymph Gland hemocyte 

differentiation, which is regulated by both local and systemic signals. Several reports 

converge on a key role for the Posterior Signaling Center (PSC), which comprises a small 

group of cells at the posterior end of the primary lobe. The PSC has been proposed to act as 

supportive microenvironment, or niche, that maintains Lymph Gland prohemocytes in an 

undifferentiated state [66, 74]. It has been reported that PSC cells send out several molecular 

cues to regulate the differentiation state of the Lymph Gland, including Serrate (Ser), 

Hedgehog (Hh), Wingless (Wg, Wnt), Decapentaplegic (Dpp, BMP) and Pvf1 (PDGF/

VEGF-related factor) [59, 66, 68, 74, 75]. A recent study has challenged the roles of the 

PSC and Hedgehog signaling in maintaining progenitor maintenance, although it did 

confirm PSC function in inducing lamellocyte differentiation upon parasitization [76]. 

Serrate expression and the consequent activation of Notch signaling are required for crystal 

cell production [59] and maintaining the expression of Collier, a transcription factor which is 

highly expressed in PSC cells and has roles in the Lymph Gland response to wasp infestation 

[67, 76]. Wingless signaling has a dual role in the Lymph Gland. It controls PSC cell 

number cell-autonomously, and is also active in medullary zone prohemocytes, where it is 

required for progenitor maintenance [68]. Dpp antagonizes Wingless signaling in PSC cells, 

and is required cell autonomously to regulate the size of the niche [75]. Pvf1 is required to 

maintain prohemocytes, although interestingly this signal is not received by progenitors in 

the medullary zone, but by differentiating cells in the cortical zone. These cells in turn 

express the enzyme Adenosine Deaminase Growth Factor A (ADGF-A), which lowers 

extracellular adenosine levels. Low adenosine leads to reduced Protein Kinase A (PKA) 

activity and is thought ultimately to promote progenitor quiescence by stabilizing the active 

form of the transcription factor Cubitus interruptus (Ci) [77].

In addition, Lymph Gland hematopoiesis is regulated by many more inputs, including the 

Hippo [78, 79], JAK/STAT [80, 81], Rel/NFκB-family related Toll [82] and FGFR [83] 

signaling pathways, as well as the heparan sulfate proteoglycan (and Perlecan orthologue) 

Trol [83, 84], the germ line differentiation factor Bag of Marbles (Bam) [85, 86], the zinc 

finger transcription factor Zfrp8 [87], the GATA factor Pannier [81], and the Polycomb 

group (PcG) gene multi sex combs (mxc) [88].

1.3. Macrophages in the pupa and the adult—Following their expansion and 

differentiation during larval development, the two Drosophila macrophage lineages persist 

through the pupal stage into the adult [89] (Fig. 2). At the transition to pupariation, 

plasmatocytes and other blood cell types are mobilized into circulation [17, 73], a process 

which is promoted by ecdysone signaling [90]. From this point onward, the two blood cell 

lineages intermix, and distinguishing embryonic and Lymph Gland hemocytes is, according 

to current methodology, only possible by lineage tracing. In the adult, plasmatocytes reside 

in or close to a number of tissues, including fat body (which regulates metabolism and 

immunity), heart, respiratory (tracheal) system, gut, peripheral nervous system, and ovaries 

([38, 91–96] and Brückner lab in preparation). In addition, small numbers of crystal cells, 

but no lamellocytes, are present in the adult [2, 92, 97]. The differentiation status and 

plasticity of adult hemocytes is just beginning to be addressed, and may benefit from the 

development of Drosophila blood cell sub-lineage-specific antibodies and other hemocyte-
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specific research tools [41, 43, 98]. Recent findings indicate that functional subsets of adult 

macrophages have distinct physiological and signaling roles in immunity [99]. Notch 

signaling regulates crystal cell specification in the adult [92], which will be interesting to 

study in more detail in the future, given that transition from plasmatocyte to crystal cell fate 

is also known to occur during the embryonic and larval stages of development [27, 35, 36, 

100]. Sex-specific factors may also influence the size and function of the adult blood cell 

pool [101] and further study will provide more insight into the long-term survival of 

Drosophila blood cells in males and females.

The proliferative capacity of adult plasmatocytes and other blood cells has been a matter of 

debate. A recent report claimed de novo production of hemocytes in the adult fly [92], 

whereas the majority of studies have not been able to obtain evidence of proliferation in 

adult hemocyte populations [2, 38, 97, 102], even under a range of immune-challenged 

conditions (Brückner lab in preparation). Indeed immunosenescence, involving a decline in 

both hemocyte number and phagocytic function, has been documented as adult flies age 

[101]. No evidence of homeostatic hemocyte maintenance has been obtained [102].

2. Macrophage functions in Drosophila

Macrophage functions in Drosophila include the removal of apoptotic cells during 

development, the production of extracellular matrix, and responses to immune invaders and 

damaged or aberrant tissue. Many of these aspects show close parallels with vertebrate 

systems, which have been reviewed in detail elsewhere [19, 29, 103, 104].

2.1. Macrophage functions in the embryo—In the Drosophila embryo, a major 

function of macrophages is the elimination of apoptotic cells [3], which is critical for 

development. Phagocytosis by Drosophila plasmatocytes requires scavenger receptors such 

as Croquemort (Crq) [105], Draper [106, 107], Eater [36, 108] and other Nimrod family 

proteins [109, 110], as well as adhesion molecules such as integrins [111]. In the embryo, 

phagocytosis by macrophages is essential for remodeling the central nervous system (CNS). 

Plasmatocytes phagocytose apoptotic neurons along the CNS midline, which ensures proper 

condensation of the nervous system [112, 113] and is required for embryonic survival. This 

has been demonstrated in Bicaudal-D and srp mutants, which lack embryonic hemocytes 

[22, 113, 114], as well as crq mutants and mutants of the receptor tyrosine kinase Pvr 
(PDGF/VEGF Receptor) [113], in which embryonic hemocytes undergo premature apoptotic 

death [115]. In the embryonic tracheal system, macrophages have a similar role in the 

elimination of apoptotic cells during tissue remodeling [116].

Embryonic plasmatocytes have important roles in the deposition of extracellular matrix 

(ECM) components and the production of ECM-associated molecules, including Collagen 

IV [20, 117, 118], Laminin [119], Tiggrin [120], Papilin [121], Peroxidasin [122, 123], and 

βPS Integrin [124]. The importance of hemocyte-mediated sculpting of the ECM has been 

demonstrated in the context of nervous system development [125], the positioning of the 

renal (Malpighian) tubules [126], and the deposition of basal laminae surrounding internal 

organs such as the brain and gut [20].

Gold and Brückner Page 6

Semin Immunol. Author manuscript; available in PMC 2017 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Macrophage functions in the Drosophila embryo typically involve their regulated migration 

and invasion, such as their entry into the posterior end of the embryo at germband extension 

[3, 115, 127], or their infiltration of the nerve cord at the ventral midline [3, 124, 128]. Both 

systems have provided excellent opportunities for addressing the cellular and molecular 

mechanisms of macrophage migration and invasion, as reviewed comprehensively elsewhere 

[129–131].

The Drosophila embryo has also proved fruitful for the study of macrophage functions in 

response to injury, which is detailed thoroughly in many studies and reviews [40, 130, 132–

135]. The Drosophila embryo has further been used as a model for septic injury (Fig. 3). At 

later stages, Drosophila embryos are competent to mount immune reactions, both through 

cellular mechanisms, involving phagocytosis by plasmatocytes [136], and humoral responses 

via the induction of antimicrobial peptide expression in the respiratory (tracheal) epithelium 

[137]. The competence of the respiratory epithelium to mount a humoral response is 

promoted by the steroid hormone ecdysone, which peaks at stage 12 of embryogenesis 

[137].

2.2. Macrophage functions in the larva—The larval stage is the critical phase for the 

expansion and adaptation of the immune cell pool. Environmental, metabolic, infection- and 

injury-related signals impinge on a plethora of signalling pathways that regulate the two 

larval myeloid systems, and in many cases lead them to mount a cellular immune response 

(see also above and [19]). Embryonically derived self-renewing macrophages (sometimes 

called ‘larval hemocytes’) are located in resident clusters close to barrier epithelia, 

particularly in the Hematopoietic Pockets beneath the epidermis [17, 18], and around the 

proventriculus, an area of the gastrointestinal system that may act as a sink for bacteria and 

debris [32]. As the larva matures, increasing numbers of self-renewing plasmatocytes detach 

and enter into circulation [17, 34, 97], potentially monitoring the hemolymph for pathogens. 

Hemocytes of the Lymph Gland mature over the course of larval life, and are usually 

released into circulation only at the beginning of pupariation [60, 73, 97]. However, upon 

immune or injury challenge, both hemocyte lineages are mobilized into a cellular immune 

response (see below) (Fig. 3).

2.2.1. Responses to sensory and metabolic stimuli: Increasing evidence suggests that 

environmental sensory detection impacts the regulation of the two myeloid lineages in the 

Drosophila larva. Linking sensory inputs, which signal beneficial or adverse environmental 

life conditions, with the expansion of the immune cell pool may be an important safeguard 

for the animal to survive challenges, such as increased apoptotic cell death, or adapt to 

metabolic conditions. Environmental stimuli may be relayed to self-renewing macrophages 

through peripheral sensory neuron clusters in the Hematopoietic Pockets [17, 18] (Brückner 

lab in revision). At these locations, sensory neurons are in direct contact with hemocytes and 

link neuronal activity to Activinβ production, which promotes macrophage adhesion and 

proliferation (Brückner lab in revision). In the Lymph Gland, sensory inputs are linked to 

blood cell responses through systemic signals. Olfactory neurons in the CNS produce the 

neurotransmitter GABA, which signals systemically to the Lymph Gland, where it triggers 

calcium signaling and macrophage maturation [138].
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Systemic signals also directly link the metabolic status of the animal with the regulation of 

the blood cell pool. For example, starvation drives the localization of plasmatocytes to the 

fat body [139], a fat-storing tissue with roles in metabolism and immunity. Changes in 

insulin signaling lead to the premature differentiation of Lymph Gland progenitors [69, 139–

141] and similar effects are also triggered by starvation, detected by the amino acid 

transporter Slimfast [139]. Reactive Oxygen Species (ROS) levels in the Lymph Gland 

respond to metabolic stress and Tor pathway activity [69, 142], and excessive ROS 

production stimulates precocious differentiation of Lymph Gland hemocytes [143].

2.2.2. Responses to parasitization: In the Drosophila larva, a major model for studying 

cellular immunity is infestation by parasitoid wasps, such as Leptopilina boulardi [97, 144, 

145]. In response to parasitization, self-renewing plasmatocytes mobilize rapidly into 

circulation from their resident sites, and differentiate into lamellocytes [37]. In a second 

wave response that occurs one or more days later [37], hemocytes of the Lymph Gland 

undergo a burst of proliferation, differentiate precociously, and are released into circulation, 

thus acting as an emergency reservoir of active blood cells in the larva [97, 144, 146]. Under 

these conditions, cell signaling from the Posterior Signaling Center is required to induce 

lamellocyte differentiation [74, 76]. Hemocyte proliferation in the Lymph Gland after a 

parasitic challenge requires the systemic steroid hormone ecdysone, explaining why 3rd but 

not 2nd instar larvae can mount a Lymph Gland immune response [146]. The cellular 

immune response by hemocytes of both origins encompasses phagocytosis by 

plasmatocytes, encapsulation by lamellocytes, and melanization by crystal cells and 

lamellocytes [147],

These responses often depend on a relay of signals, either systemically and/or through other 

tissues. [148]. For example, communication between hemocytes and larval muscle cells that 

line the Hematopoietic Pockets has an important role in wasp egg encapsulation. 

Parasitization triggers circulating hemocytes to secrete the cytokines Unpaired 2 (Upd2) and 

Unpaired 3 (Upd3) that activate JAK/STAT signaling in somatic muscle, which is necessary 

for lamellocyte formation and wasp egg encapsulation [53]. However, JAK/STAT signaling 

alone is not sufficient to trigger encapsulation [53]; other inputs are required in this process, 

such as the activation of Toll signaling in the fat body [149], and pathways such as JNK 

signaling drive lamellocyte formation [150, 151], yet their route of relay remains to be 

investigated. Moreover, the systemic peptide Edin, which is expressed in the fat body upon 

wasp infestation, induces wasp egg encapsulation, as well as mobilization and expansion of 

plasmatocytes, but not their differentiation into lamellocytes [148]. Future investigation will 

show whether other tissues, such as the liver-like oenocytes [17–19] or other components of 

the Hematopoietic Pockets, may also have roles in relaying cellular and humoral immunity.

2.2.3. Responses to infection and injury: A large body of work on cellular immunity in the 

Drosophila larva has focused on intestinal infections. Here, hemocytes stimulate cellular and 

humoral immune reactions, the latter through the expression of antimicrobial peptides 

(AMPs), which are induced by the two major innate immune pathways of NFkB signaling, 

Toll and Imd [152]. Plasmatocytes in the larva function as phagocytic sentinels combating 

microbial infection, for example in response to gut infections induced by feeding on Serratia 
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marcescens (S. marcescens), which causes an Imd pathway-dependent local response [153]. 

Hemocytes also act as important cellular relays, signaling to the fat body to coordinate 

immune responses across different tissues. For example, natural infection (feeding) by the 

Drosophila pathogen Erwinia carotovora carotovora (Ecc15) induces AMP expression in fat 

body, a response that is decreased in Domino mutants that lack blood cells [154]. Hemocytes 

are thought to act as a relay in a Nitric Oxide-induced systemic immune response to gram-

negative infection, triggering Imd pathway activation in the fat body [155]. Similarly, 

hemocytes relay Ecc15-induced local stress signaling in the intestine, which is mediated by 

reactive oxygen species (ROS), to the fat body, where AMP expression is induced [156]. 

Defensin expression in the fat body depends on pathogen degradation in plasmatocytes, 

which requires the lysosomal protein Psidin [157]. Bacterial infection also triggers AMP 

expression in barrier epithelia, such as the respiratory system (trachea) [158], but the 

involvement of hemocytes in this response remains to be elucidated.

Using the Drosophila larva as a septic injury model has proved fertile ground for studying 

innate immune responses to infection [159–161]. Many of these studies have focused on the 

humoral immune response, but there is also a cellular component mediated by macrophages. 

Similarly to natural infections through the gut, septic injury leads to the upregulation of 

antimicrobial peptides in the larval fat body, and this response depends on a signal relayed 

by hemocytes through secretion of the Toll pathway ligand Spätzle [162].

Cellular responses against bacteria provide an opportunity to examine the phagocytic 

function of macrophages in more detail. Several studies have used larval hemocytes ex vivo 

to investigate the function of phagocytic receptors, such as the scavenger receptors Eater 

[108] and Nimrod C1 [109], and other proteins, such as the actin cytoskeleton regulators D-

SCAR and Profilin, in the control of bacterial phagocytosis [163].

Aseptic injury triggers a cellular immune response that includes the mobilization of resident 

hemocytes, phagocytosis, and differentiation into lamellocytes, recapitulating many aspects 

of septic injury and parasitization [164]. Several studies have examined the cellular 

mechanisms of phagocytosis and encapsulation during aseptic injury [164, 165], and are 

reviewed in detail elsewhere [133, 135].

2.2.4 Roles in ECM production and organ integrity: Plasmatocytes in the larva continue 

to play important roles in the production of ECM, which is crucial for organogenesis and 

organ function. During larval development, hemocytes associate with the female gonad and 

secrete the ECM molecule Collagen IV (ColIV) [38]. These layers of ColIV are required 

during pupariation and adulthood to ensure proper molecular function of the germline stem 

cell niche, and in turn, germline stem cell number and homeostasis [38]. The possibility that 

macrophages regulate other stem cell microenvironments is tantalizing, and will be 

interesting to explore in the future.

2.3. Macrophage functions in the pupa—Drosophila undergoes pupariation and 

metamorphosis when ecdysone levels peak, signaling the end of larval development. Many 

larval tissues, which are often polyploid, are partially or completely replaced by adult 

structures that arise from sets of imaginal cells or discs (e.g. eye, wing, and leg discs) [166]. 
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Drosophila macrophages have roles in the destruction and remodeling of these larval tissues. 

For example, at the onset of metamorphosis, plasmatocytes associate with larval fat body 

cells and facilitate their degradation, a process that is continued well into the first week of 

adult life [93]. Macrophages also participate in neuronal pruning at axons and dendrites 

[167], although a substantial part of this process may be mediated by epidermal cells and 

glia [168, 169]. Macrophages facilitate the remodelling of many other structures and organ 

systems, as exemplified by the maturation of wing discs, where hemocytes are required for 

the bonding of the dorsal and ventral wing regions [170].

In the pupa, macrophages show less resident cluster formation. Instead, they have been 

studied for their migratory and dynamic properties, which involve Integrin and other 

adhesion-related proteins [171], and are important for wound healing [172]. Macrophage 

motility and phagocytosis are also enhanced by ecdysone signaling [173]. Surprisingly, for 

the most part macrophages may not be essential during pupariation and adulthood. Animals 

with genetically ablated hemocytes are viable [174, 175], although developmental defects 

have been found at low penetrance [174, 176].

2.4. Macrophage functions in the adult—In the adult fly, plasmatocytes continue in 

their capacity as professional phagocytes, performing tissue repair [91, 177–179], immune 

surveillance and defense (Fig. 3). Anatomically, hemocytes in the adult fly are found in 

close proximity to the fat body and many surface epithelia, such as the respiratory (tracheal) 

epithelium and areas of the gastrointestinal system (Brückner lab in preparation and [91]) 

(Fig. 3). Clusters of hemocytes are also found in the dorsal abdomen around the heart [92, 

94–96]. These accumulations are thought to monitor and clear the hemolymph of pathogens, 

and have been reported in Drosophila and other invertebrates, such as the mosquito 

Anopheles gambiae [96, 99, 180]. Classic invertebrate literature described these hemocyte 

clusters as ‘invertebrate phagocytic organs’ [181–183]. Indeed, recent publications on septic 

injury models have highlighted the correlation between bacterial and particle accumulations 

around the heart, and corresponding macrophage accumulations [94–96].

Many studies on the humoral immune response in adult Drosophila also report associated 

roles for macrophages. Oral infections with S. marcescens trigger a dual immune reaction, 

comprising a cellular immune response mediated by phagocytic plasmatocytes and a local 

intestinal antimicrobial response regulated by the Imd pathway [153]. Signaling interactions 

between hemocytes and other tissues enable a coordinated immune response to be mounted 

in the adult fly, as observed in the larva. For example, septic injury, or stimulation with the 

bacterial cell membrane component LPS (lipopolysaccharide), trigger expression of the 

cytokine ligand Upd3 in adult macrophages, which in turn activates JAK/STAT signaling in 

the fat body, leading to the upregulation of immune response genes [184]. Adult 

macrophages also respond to wounding and bacterial infection through other growth factors, 

as exemplified by subpopulations of hemocytes that express the BMP ligand Dpp or the 

Activin/TGF-beta ligand Dawdle [99]. Antimicrobial peptides are expressed in a variety of 

barrier epithelia in the adult fly, including Drosocin and Drosomycin in tracheal epithelia, 

Diptericin, Defensin and Attacin in the gut, Metchnikowin and Defensin in oral regions, 

Metchnikowin in renal tubules, and Cecropin, Drosomycin and Defensin in reproductive 

tracts [185, 186]. It will be interesting to investigate possible links between these responses 
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and macrophage signaling. Considering the typically short duration of antimicrobial peptide 

expression [187, 188], and recent findings on the dual role of hemocytes in humoral and 

cellular immunity [189], it appears likely that phagocytosis-mediated cellular immunity has 

an important role during the infection response in adults. Consistent with this hypothesis, 

inhibiting hemocyte function by expressing a bacterial toxin (ExoS) that suppresses 

phagocytosis leads to increased sensitivity to bacterial infection [190]. Further evidence of a 

role for cellular immunity in adult Drosophila comes from TM9SF4 nonaspanin mutant 

flies, which have phagocytosis-defective hemocytes yet a seemingly unaffected AMP 

response, and show increased lethality upon infection by gram-negative bacteria [191]. 

Blocking phagosome activity and bacterial degradation in adult flies leads to increased 

sensitivity to bacterial infection, as seen in mutants of full of bacteria, which encodes an 

ortholog of a HOPS complex subunit necessary for vacuolar fusion in yeast [96]. Adult 

macrophages require the phagocytic receptor Eater [108], which is also required in 

hemocytes at earlier developmental stages and has specificity for gram-positive bacteria 

[36]. Loss of macrophages in the adult fly, induced either by targeted genetic ablation or 

specific mutant backgrounds (e.g. domino), results not only in a weakened immune 

response, but also in decreased long-term survival after bacterial infection [174, 175, 192]. 

This suggests that cellular immunity may have additional functions over the course of 

infection, not just in the short-term. However, alternative scenarios are possible, as it was 

recently shown that hemocyte ablation leads to a shift in inflammation status, with an 

upregulation of Toll signaling and downregulation of the Imd pathway [176]. Interestingly, 

adult macrophage responses may also be linked to environmental conditions. For example, 

phagocytosis and cellular immunity appear to be regulated by circadian inputs, yet 

melanization responses and humoral immunity are not, as evidenced by a model of infection 

with the bacterial pathogen Streptococcus pneumonia [193].

One controversial question in the field has been whether any kind of priming, or adaptive 

immune response, may exist in Drosophila. Some reports suggested such phenomena, either 

through unknown mechanisms or through alternatively spliced variants of the cell surface 

molecule DSCAM [188, 194]. However, future analysis will show whether additional 

mechanistic evidence for these phenomena can be obtained [195].

2.5. Macrophage functions in damage-induced tissue regeneration—Hemocytes 

promote damage-induced tissue recovery and tissue growth at various developmental stages. 

Under certain conditions, hemocytes not only promote the regeneration of tissues, but drive 

their pathological overproliferation. Similarly, macrophages in vertebrates play a host of 

vital roles in tissue repair and regeneration, stimulating proliferation of damaged tissue and 

causing hyperplasia or hypertrophy in some systems [196–199]. Drosophila has allowed to 

identify molecular mechanisms underlying these processes. For example, hemocytes play a 

key role in the recovery of UV- and JNK signaling-induced damage of eye imaginal disc 

epithelium that suffers apoptotic cell loss. Damaged tissue, through induction of the 

transcriptional regulator Schnurri (Shn), produces the PDGF/VEGF related ligand Pvf-1, 

which activates resident plasmatocytes that in turn limit tissue loss [200]. During apoptosis-

induced compensatory proliferation of imaginal epithelia, cells with elevated Caspase 

activity produce reactive oxygen species (ROS) that induce activation of resident 
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plasmatocytes. These activated macrophages produce the inflammatory cytokine Tumor 

Necrosis Factor (TNF)/Eiger, which in turn triggers JNK signaling in the epithelial cells, 

leading to overproliferation [201]. In adult Drosophila, the regenerative response to 

infection- or stress-induced injury of the gut, which often is associated with dysplasia, [202, 

203] depends both on the production of ROS by enterocytes [202, 204] and the active 

involvement of hemocytes [91]. Intestinal tissue damage attracts plasmatocytes and 

stimulates them to produce BMP, which in turn triggers intestinal stem cell proliferation, 

resulting in gut dysplasia [91].

2.6. Macrophage functions in tumor biology—Drosophila is increasingly being used 

as a model for cancer [205, 206]. Hemocytes participate both in the immune response 

against tumors, as well as the promotion of tumor growth. Hemocytes are recruited to 

neoplastic tumors, which are often sites of basement membrane disruption, and thus bear 

some similarities to non-healing wounds or tissue damage challenges [207–209]. Hemocytes 

adhere to epithelial tumors, and their numbers increase in response to tumor formation [208, 

209] involving tumor-derived signals that stimulate JAK/STAT or Pvr signaling in 

hemocytes [208, 210]. Where hemocytes mount an immune attack against tumors, responses 

such as phagocytosis, induction of apoptosis, and melanization/encapsulation by crystal cells 

and lamellocytes, which is considered a functional equivalent to granulomas in vertebrates, 

are seen [207, 208, 210].

As in vertebrates [211–213], however, the effects of macrophage recruitment and 

inflammation on tumor biology vary, depending on the specific genetic background and 

microenvironment of the tumor, and this warrants extensive future research. For example, 

hemocytes associated with epithelial tumors express the inflammatory cytokine Eiger/TNF. 

In the case of Ras-transformed, scribble mutant tumors, activation of TNF signaling has a 

tumor-promoting effect [209]. In contrast, in a different epithelial tumor model based on 

discs large (dlg) mutants, TNF signaling acts to suppress tumors [210].

Mounting an anti-tumor response by macrophages can depend on the concerted action of 

multiple molecular mechanisms. In the Drosophila dlg tumor model, hemocytes not only 

secrete TNF but also Spätzle, the Toll pathway ligand. This results in a two-pronged tumor 

defense response: TNF signaling from hemocytes promotes tumor death directly, and 

Spätzle triggers a systemic immune response in the fat body, which acts in parallel to induce 

tumor cell apoptosis [210].

There are also reports of synergy between bacterial infections and oncogenic mutations, 

which together promote more severe gut dysplasia in response to tissue damage [214, 215]. 

The Imd and JNK signaling pathways mediate this interaction, but as of yet, no role for 

hemocytes has been demonstrated in the process. Thus, the complexities of the interactions 

between tumors, macrophages and cellular microenvironments are just beginning to be 

unraveled.
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Conclusions

Drosophila melanogaster has become a diverse and versatile model to dissect the 

mechanisms of macrophage development and function. A large body of work has established 

high evolutionary conservation between this invertebrate and vertebrates, at the cellular and 

molecular level. Each developmental stage of Drosophila holds its own strengths for certain 

types of investigation, and in many cases their potential for experimental modeling is 

expected to grow even further in the future. Drosophila and its genetic toolkit allows us to 

investigate the mechanisms by which cellular microenvironments and long-range systemic 

signals coordinate communication between various tissues, ultimately shaping the 

development and adaptation of macrophages. It will further broaden our understanding of 

the innate cellular and humoral responses in infection and tissue development, homeostasis, 

regeneration and cancer.
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Highlights

• The invertebrate Drosophila melanogaster is a powerful genetic model 

for blood cell development and immunity.

• Drosophila gives rise to two myeloid lineages. These share highly 

conserved features with the two vertebrate myeloid systems, which are 

(1) self-renewing tissue macrophages and (2) progenitor-based 

monocyte-derived macrophages.

• Drosophila Hematopoietic Pockets harbor self-renewing macrophages 

and regulate them by local microenvironments of peripheral neuron 

clusters and other tissues such as muscle layers. Self-renewing 

macrophages in addition respond to systemic cues.

• The Drosophila Lymph Gland is a progenitor-based hematopoietic 

organ that is regulated by a multitude of local and systemic regulatory 

signals.

• Macrophages in Drosophila function (1) in phagocytosis e.g. during 

immune responses, development, and tissue repair, (2) in the relay of 

local and systemic signals e.g. in immunity, tissue regeneration and 

tumor biology, and (3) in the deposition of extracellular matrix.
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Figure 1. Ontogeny of macrophages in Drosophila and mouse development
(A) Two waves of hematopoiesis during Drosophila development. The embryonic/larval 

lineage (in red) originates from the head mesoderm (HM) of the embryo, differentiates in the 

embryo, and subsequently expands in the larva as self-renewing tissue macrophages 

(plasmatocytes). The progenitor-based Lymph Gland lineage (in blue) originates in the 

embryo and differentiates in the late larva. Macrophages of both lineages persist through 

pupal development into the adult.

(B) Three waves of hematopoiesis during mouse development. The primitive wave (in green) 

emerges in the yolk sac and gives rise to the earliest macrophages; this lineage does not 

persist after birth. The wave of erythro-myeloid progenitors (EMPs, in red) also emerges in 

the yolk sac. These cells mature in the fetal liver, and colonize local microenvironments in 

various organs as tissue-resident macrophages that self-renew and persist. The definitive 

hematopoietic wave emerges from hemogenic endothelium (major arteries) that give rise to 

hematopoietic stem cells (HSCs in blue), which colonize the fetal liver and later the bone 

marrow, giving rise to the monocyte lineage of macrophages.
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Figure 2. Blood cell lineages in Drosophila
(A) The embryonic lineage of hemocytes (blood cells) with parallels to self-renewing tissue 

macrophages in vertebrates. Prohemocyte progenitors (blue) originate in the embryo and 

differentiate into plasmatocytes (macrophages, red) and a small number of crystal cells 

(orange); plasmatocytes are quiescent (q) until the end of embryogenesis. In the larva, 

plasmatocytes colonize local microenvironments, in particular the Hematopoietic Pockets, 

and expand by self-renewal. Plasmatocytes also give rise to a small number of crystal cells, 

and, upon immune challenge, lamellocytes (purple).

(B) Lymph Gland hematopoiesis with parallels to progenitor-based hematopoiesis in 

vertebrates. Lymph Gland prohemocytes (blue) are specified from the cardiogenic mesoderm 

of the embryo. They proliferate at a low rate until the 2nd larval instar, then start 

differentiating, forming (1) intermediate progenitors and plasmatocytes (red), which expand 

further by proliferation; (2) crystal cells (orange); (3) lamellocytes (purple). The primary 

lobe of the differentiating Lymph Gland is organized into a medullary zone (MZ) of 

quiescent (q) progenitors, and a cortical zone (CZ) of differentiating hemocytes; 

differentiation of progenitors is completed by 12h after puparium formation.

Both lineages of hemocytes are mobilized in the pupa and persist into the adult, where new 

blood cell production subsides and hemocyte numbers decline. Plasmatocytes and small 

numbers of crystal cells, but no lamellocytes, are present in the adult.
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Figure 3. Innate immune responses in Drosophila
Throughout its life cycle, Drosophila can mount cellular and humoral innate immune 

responses. Cellular immune responses involve phagoctytosis by plasmatocytes, melanization 

by crystal cells and lamellocytes, and encapsulation by lamellocytes. Humoral responses 

involve the induction of antimicrobial peptide (AMP) expression in a number of tissues. In 

the larva, immune responses include the mobilization of resident plasmatocytes and their 

differentiation into lamellocytes, and the precocious differentiation and mobilization of 

Lymph Gland hemocytes. In the adult, hemocytes reside in proximity to tissues of innate 

immunity and barrier epithelia, such as fat body (brown), respiratory epithelia (purple), 

gastrointestinal system (teal) and circulatory system (gray).
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