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Abstract

In a phase III multi-center cancer clinical trial or large public health studies, sample size is 

predetermined to achieve desired power and study participants are enrolled from tens or hundreds 

of participating institutions. As the accrual is closing to the target size, the coordinating data center 

needs to project the accrual closure date based on the observed accrual pattern and notify the 

participating sites several weeks in advance. In the past, projections were simply based on some 

crude assessment and conservative measures were incorporated in order to achieve the target 

accrual size. This approach often resulted in excessive accrual size and subsequently unnecessary 

financial burden on the study sponsors. Here we proposed a discrete-time Poisson process-based 

method to estimate the accrual rate at time of projection and subsequently the trial closure date. To 

ensure that target size would be reached with high confidence, we also proposed a conservative 

method for the closure date projection. The proposed method was illustrated through the analysis 

of the accrual data of NSABP trial B-38. The results showed that application of proposed method 

could help to save considerable amount of expenditure in patient management without 

compromising the accrual goal in multi-center clinical trials.
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1. INTRODUCTION

The spending on clinical trials is enormous and ever increasing though patient care costs for 

clinical trials are not appreciably higher than costs for patients not enrolled in trials. The 

average cost of a phase III clinical trial could potentially exceed $20,000 per patient. There 

could be many reasons for the higher spending on the clinical trials. Some are necessary 

costs which are hard to avoid, such as costs on patient registration, treatment, subsequent 

health management, and data collection. Certain costs, such as those due to extra enrollment 

beyond the target sample size, may be lessened. In a multi-center phase III trial, the sample 

size is pre-determined in order to achieve sufficient power for its primary hypothesis. 

Participants are often recruited from tens or hundreds of clinical sites such as hospitals, 

community clinics and cancer centers over time. Because of the complexity of recruiting 

process, it is almost impossible for the coordinating center, especially of cancer clinical 

trials, to determine a cut-off date on accrual in advance and eventually reach the target 

sample size exactly. It has been the usual practice to choose an accrual closure date so that 

reaching the target sample size can be guaranteed though this often leads to extra and 

sometimes excessive accruals. Extra accruals up to a certain degree are helpful because they 

would fill in for participants who later on withdraw consent or lose to follow up. However, 

excessively extra accrual would increase unnecessary financial burden on the coordinating 

centers and their sponsors.

In 2004, a phase III trial B-38 was designed by the National Surgical Adjuvant Breast and 

Bowel Project (NSABP) to compare the treatment efficacy of three adjuvant chemotherapy 

regimens for node-positive breast cancer patients. The accrual size of 4,800 was pre-

determined in order to achieve sufficient power for the primary hypothesis that the 

investigative arm, dose-dense doxorubicin and cyclophosphamide (AC) followed by 

paclitaxel plus gemcitabine, improved the disease-free survival over the other two arms, 

docetaxel plus AC, and dose-dense AC followed by paclitaxel alone, respectively. Patients 

were accrued from hundreds of participating institutions or sites over time. The protocol was 

opened on October 1, 2004, and the first patient entered this trial on November 3, 2004. As 

the cumulative accrual was closing to the target sample size, on March 20, 2007, the 

coordinating data center needed to project an accrual closure date for this trial based on past 

accrual pattern and notify participating sites several weeks in advance. Such an early notice 

was necessary because it took 2-4 weeks for the sites to screen a patient for the eligibility 

criteria and work up the patient with medical scans such as multi-gated acquisition (MUGA) 

scan and magnetic resonance imaging (MRI) during the process. At that time, May 3 of 

2007 was determined as the closure date. This prediction was based on the average daily 

accrual during the 3-month period before March 20, 2007, an assumption that this average 

accrual rate would be maintained in the future, and a conservative measure via adding three 

days to make sure that the target sample size would be reached. Eventually 4894 patients 

were randomized in this trial with following this crude method.

Figure 1 shows the daily accrual in B-38 over time. The horizontal axis displays the number 

of days from November 3 of 2004 on when the first patient was randomized and the vertical 

axis shows the daily accruals. Weekends and holidays are not included because accruals 

were not performed in those days. Several interesting phenomena were observed. At first, 
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the accrual rate increased steadily during the first 4 or 5 months. This reflects that it took 

time for the participating institutions to fulfill regulatory requirements and start recruiting 

patients for a trial. Subsequently, the accrual pattern became relatively stable after March of 

2005. Finally, during the last five days of the accrual period prior to the designated closure 

date, the daily accrual increased to about twice of the average daily accrual prior to that 

period. This accrual pattern has been observed in other several other NSABP trials. Accrual 

data from B-38 supplied an excellent opportunity for us to study the prediction of the trial 

closure dates.

Time aspects of accrual are pertinent to the modeling of the clinical trial accrual process. 

First, in a typical multi-center phase III trial, hundreds of participating institutions recruit 

hundreds or thousands of patients during a 2-4 year period. Consequently, the chance to 

recruit one or more patients during a short period such as a day would be small for any 

single institution. Second, in general the patient accruals during disjoint time intervals are 

independent from each other. These properties lead to an observation that the accrual process 

approximately follows a continuous-time Poisson process, often simply mentioned as 

Poisson process. 1

Senn (1998) considered modeling the accrual process as a homogeneous Poisson process 

with a constant rate. With time points for past accruals as the observed data, this constant 

rate can be estimated.2 Based on the theory of Poisson processes, the time to reach the target 

accrual would follow a Gamma distribution with parameters depending on the accrual rate 

and the number of further accruals. Gajewski et al. (2008) considered the corresponding 

Bayesian approach to predict the time to completion of target accrual.3 After deriving the 

posterior distribution of the accrual rate based on past accrual data, values of this rate are 

drawn from this posterior distribution. Then an empirical distribution of the time to accrual 

completion can be simulated through Gamma distributions with parameters depending on 

the number of additional patients needed to complete accrual and those drawn values of 

accrual rate. Another extension assumes that accrual from each participating site follows a 

homogeneous Poisson process but the accrual rates from these sites follow a Gamma 

distribution.4

While this type of modeling is useful, it is not always appropriate for the real-world 

situation. In many occasions only the daily accrual counts instead of the exact accrual time 

are available. Furthermore, in many clinical trials the accrual rate increases dramatically 

during the last few days before the predicted accrual closure date because participating 

clinical institutions strive to enroll as many patients as possible before enrollment to the trial 

is closed. More flexible methods are needed under such circumstances.

2. PREDICTION OF ACCRUAL CLOSURE

2.1 A flexible model for patient accrual

We propose a flexible discrete-time Poisson process-based method to model patient accrual 

and predict the accrual closure date. Consider a multi-center trial where the daily accrual of 

the coordinating center is denoted by {x(t), t=1, 2,...}, t is the number of days from the 

initiation of study. Assume that the patient's arrival follows a discrete-time Poisson process 
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and the daily accrual rates are {λ(t)=E[x(t)], t=1,2,...}. Denote the cumulative accrual at 

time t by N(t), i.e.,

Assume that accrual needs a period of time to start at t0 and increase until reaching full 

potential at a later time t1. Then the accrual becomes stable for a substantial period. When 

the cumulative accrual is close to the target size N, say at time t2>t1, the coordinating center 

needs to assess the observed accrual data up to t2, denoted as D(t2)={x(1), x(2), ..., x(t2)}, 

and predict a future date as the trial closure date. As mentioned before, the accrual during 

the final few days was often much faster than the average. We propose the following Poisson 

process model for the daily accrual rate λ(t) :

(1)

where t3 is the predicted closure date and Δ is the length of the short period with high 

accrual rate before t3. The accrual rate during [t0+1,t1] is usually not of interest and is not 

specified here because the focus is the projection of accrual closure date. If the initiation of 

participating institutions follows a homogeneous Poisson process before t1, then the 

intensity rate λ(t) during [t0+1,t1] is a linear function of t. In practice, time point t0 usually 

refers to the day before the first accrual. Time point t1 represents the time when all sites start 

actively enrolling patients and is usually unknown. Estimation of t1 by an ad-hoc method 

and a change-point analysis will be discussed in Section 3. Time point t2 is the time point 

when the coordinating center needs to predict the future closure date. The constants Δ and 

ϕ>1 could be speculated from accrual patterns of past trials that are similar to the current 

trial in terms of patient characteristics and treatment regimen. When such clinical trials are 

not available, an alternative is to conduct sensitivity analysis under various plausible values 

of Δ and ϕ.

Denote T as the day when the cumulative accrual exceeds the target sample size N. Because 

the primary concern is to predict T rather than accurately modeling λ(t) during the whole 

accrual process, we propose to use the accrual data in [t1+1,t2] to estimate the accrual rate at 

t2 and predict T under the assumed model (1). Time t1 is tentatively assumed known and its 

determination will be discussed in Section 3.

2.2. Inference based on past accrual pattern

Based on model (1), {x(t1+1),x(t1+2),...,x(t2)} is an independent identically distributed 

Poisson sequence with a common mean μ. The maximum likelihood estimator (MLE) of μ 

is:
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The standard error of  is

2.3. Estimation of ϕ from a past trial

Once a clinical institution learns the projected date of accrual closure, they expedite their 

accrual effort to enroll as many patients as possible before the closure date. This leads to a 

higher than usual accrual rate during the last few days. This phenomenon was manifested in 

B-38 (Figure 1) where the accrual rate during the last five days doubled the previously 

observed accrual rate. Assume the length of this fast accrual period, Δ, is known. Based on 

the similar completed accrual data from a past multi-center trial carried out by the same 

coordinating center, an estimate of ϕ can be obtained from maximizing the following 

likelihood function:

Then the MLE of ϕ is:

However, when such a similar clinical trial does not exist, one could perform a sensitivity 

analysis by predicting the accrual closure date under plausible choices of Δ and ϕ. The 

sensitivity analysis will be briefly described in the Discussion.

2.4. Determination of accrual closure date

Assume that N is the target accrual size and the accrual after occasion t2 follows (1) with 

t1<t2<t3-Δ, two methods are proposed here to determine the accrual closure date. The first 

method uses E(T) and the second method uses a more conservative date tα=min{t: pr[T< t]≥ 

1-α}, for a pre-determined small value α>0. The choices of α may be 0.05, 0.1, or a larger 

number in (0, 0.5), depending on how conservative the investigator would like to be.
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Let W=T-t2 denote the additional accrual time, after t2, needed to reach the target sample 

size. From T=min{t:N(t)≥ N}, we have

where,

Because the total accrual N(t2) at t2 must be less than N, pr[T-t2>0]=1. From Ê(T) = Ê(W) + 

t2, E(T) can be estimated with μ substituted by .

The standard error of  can be estimated by the Delta method as , 

where the function h(μ)=E(T).

For any given t>t2, let

(2)

Then tα would be the smallest t that satisfies (2). Because of (1),

(3)

follows a Poisson distribution with mean {(t – Δ – t2) + Δϕ}μ.

With μ estimated based on observed accrual data D(t2) the estimator  can be used in the 

above formula to derive tα. Its variability can be obtained by the bootstrap method.
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2.5. Prediction of total number of accrual given a closure date t3

After the closure date t3 is determined, from (3), a natural estimator of the final accrual size 

N(t3) would be

The standard deviation associated with the estimated total accrual can be estimated by

3. DETERMINATION OF t1

In the previous section, the estimation of accrual rate at time t2 is based on the assumption 

that accrual data from [t1+1,t2] follow a homogeneous discrete-time Poisson process and t1 

is assumed known. In practice, t1 is usually unknown and needs to be determined from the 

accrual data. A heuristic approach is to choose t1 based on model diagnostic measures such 

as the goodness-of-fit statistic for the Poisson sequence {x(t1+1), x(t1+2), ..., x(t2)}:

G2 approximately follows a Chi-square distribution with a degree of freedom (t2-t1-1) if the 

accrual process in [t1+1, t2] is homogeneous.

An alternative model diagnostic measure that can be used is the ratio between the sample 

mean and sample variance of the accrual data in [t1+1, t2]. This ratio should be close to 1 

under the same assumption. For all t in [t0, t2], we can obtain the corresponding p-values for 

the goodness-of-fit test from the analysis of accrual data between t and t2, and the ratios 

between the sample means and sample variances. Then choose a t that is related to a large p-

value and a ratio close to 1 as t1.

Because the choice of t1 is for estimation of the accrual rate at t2, one may only consider 

accrual data starting from a t0* in [t0, t2] such that the accrual in [t0*, t2] is relatively stable 

and apply a change point analysis to find out whether there is a change point for λ(t) within 

[t0*, t2]. Change point analysis is a method to find one or more locations where a parameter 

of a statistical model changes its value. Such analyses have been applied to data collected 

from the fields of finance, econometrics, software development, and medicine. 5-10 Akman 

and Raftery (1986) studied the change point problem in a continuous time Poisson 

process. 11 Hinkley (1970) discussed the maximum likelihood method for estimating a 

change point in a sequence of random variables and the likelihood ratio test statistic. 9 

Testing the existence of one or more change points in the means, of a sequence of 

independent Poisson-distributed random variables, was investigated by Henderson and 

Matthews (1993) and the general approaches for change point problems were discussed in 

Bhattacharya (1994). 7,12
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For a pre-determined t0*, consider the sequence of independent Poisson random variables 

{yk=x(t0*+k), k=1,2, ..., n=t2- t0*} with means E[yk]=μk. If these yk 's are generated from a 

homogeneous Poisson process, then μk 's are equivalent. However, if the corresponding 

Poisson process is non-homogeneous, μk 's would change with k. Assuming that μk's change 

only once, that is, μ1=μ2=...= μτ≠ μτ+1=...= μn, where τ is the change point. The likelihood 

function is

With τ fixed, the MLEs for (η1, η2) are .

Therefore the logarithm of the profile likelihood of τ is

The MLE of τ is . One of the regularity conditions for the 

maximum likelihood method for data with change point is that τ /n converges to a constant, 

as the sample size n→∞.

Under the circumstance that the likelihood function lpl(τ) has multiple modes, the MLE is 

often chosen as the one that is not close to either end of the period. Subsequently, it is of 

interest to test whether  is truly a change point. The likelihood ratio test for the 

following hypothesis testing: H0 : μ1 = μ2 = ... = μn against HA : μ1 = μ2 = ... = μτ ≠ μτ+1 = ... 

= μn, with , is:

where , and .

When n→∞, 2log(LRT) approximately follows the χ2 distribution with one degree of 

freedom under the null.

4. APPLICATION TO THE NSABP TRIAL B-38

To illustrate the proposed method, we considered the accrual data of the motivating study, 

the NSABP B-38 trial. Its target sample size was 4800 and 172 sites contributed patients on 
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this study. The first patient was enrolled on November 3, 2004. On March 20, 2007, 4465 

patients had been randomized and the NSABP Biostatistical Center needed to make a 

projection on the trial closure date. A crude mechanism was used to predict T based on the 

average daily accrual during the 3-month period before March 20, 2007. Then, 3 more days 

were added and the accrual closure date was determined as May 3, 2007. At the end of the 

designated closure date, a total of 4894 patients were randomized in B-38 resulting in the 

accrual of about 100 more patients than necessary and several millions of dollars extra in 

treatment and follow-up expenses.

Here we applied the proposed method to determine t1 in (1), estimated the accrual rate on t2 

or March 20, 2007, and subsequently predicted the accrual closure date based on accrual 

data up to March 20, 2007.

With t varying from March 7, 2005 and February 20, 2007, we considered the fit of a 

Poisson model for the assumed identically and independently distributed sequence {x(t+1), 
x(t+2), ..., x(t2)}. The p-values of the goodness-of-fit statistic G2 and the ratio between the 

sample variances and sample means are plotted in Figure 2.

This figure shows that the ratio of sample variance to mean is relatively close to 1 and the p-

value of G2 is relatively large around the end of 2006. After all, an ad-hoc estimate of t1 is 

December 29, 2006 with a ratio of 1.01 and p-value at 0.429 for the goodness-of-fit test.

Because our focus was to estimate the accrual rate at t2, we were only concerned with the 

last change point in accrual rate prior to t2. In the change point analysis, we considered the 

sequence of daily accrual counts between July 15, 2005 and March 20, 2007. The maximum 

likelihood estimate of the single change point happened to be December 29, 2006 as well. 

The test statistic for whether December 29, 2006 was truly a change point or not had value 

2log(LRT)=6.83 (p<0.001).

These results implied that December 29, 2006 was an appropriate choice of t1. Subsequently 

the estimate of the daily accrual rate between t1 and t2 was  and . The predicted 

closure date by using E(T) yielded a predicted date at April 19, 2007. The corresponding 

predicted accumulative accrual was 4809 with a standard deviation at 16.3. The predicted 

closure date by using the 95 percentile of T, t0.05, yielded a predicted date at April 23, 2007. 

This implies that had we chosen April 23, 2007 as the trial closure date, we would have 

about 95% confidence that the accrual target would be achieved. The corresponding 

predicted accumulative accrual was 4829 with a standard deviation at 16.9.

As an empirical comparison, we also considered hypothetical scenarios when any day, from 

April 18 of 2007 to May 3 of 2007, had been chosen as the accrual closure date. The 

calendar dates and corresponding days from November 3 of 2004 are displayed in the first 

two columns of Table 1. For each hypothetically chosen closure date t3, we calculated the 

actual cumulative accrual up to day t3-5 plus the actual accruals during the last week (from 

April 27 to May 3 of 2007). These numbers reflected the empirical total accruals had any of 

those dates been chosen as the closure date and are presented in the last column of Table 1. 

The results suggest that had we applied our method and chosen April 23, 2007 as the closure 
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date, we would have enrolled about 75 less patients than using May 3, 2007 as the accrual 

closure date. The savings in patient management would exceed 1.5 million dollars.

5. DISCUSSION

Patient accrual in multi-center clinical trials approximately follows a Poisson process 

because each institution has little chance to enroll a patient during a single day and accruals 

over time are generally independent. In the NSABP B-38 accrual data, the correlogram 

analysis, as described in the textbook by Diggle (1990), was performed and the results 

showed very little serial correlation if any. 13

A few continuous-time Poisson process-based methods have been developed for predicting 

trial closure time but they required the actual times of day when each patient is enrolled. 2-4 

In most multi-center clinical trials when counts by daily accrual are available and ad-hoc 

methods are usually applied to determine the trial closure date. To ensure that the target 

sample size is reached, some conservative measures are implemented. This type of approach 

is crude and usually leads to unnecessarily excessive accrual. Here we proposed a flexible 

discrete-time Poisson process-based method to model the overall accrual process and 

provided straightforward estimates of the mean and quantiles of the date when accrual 

would exceed the target size. The proposed method relies on an accurate estimate of current 

accrual rate and assumption on the future accrual pattern. Because the accrual pattern can be 

irregular in the beginning and we are not really concerned with accrual rates during that 

period, we look for a critical date when the accrual follows a homogeneous discrete-time 

Poisson process afterwards. Goodness-of-fit measures and change point analysis were both 

considered to determine an appropriate choice of this critical date. In the application on the 

B-38 accrual date, these two approaches actually resulted in the same critical date.

To predict the date when accrual would exceed the target size in B-38, we assumed that 

accrual had followed a homogeneous discrete-time Poisson process till the last few fast 

accrual days prior to the closure date where the accrual would exceed. The length of this fast 

accrual period Δ and the accrual inflation factor ϕ could either be obtained or estimated from 

past similar trials on similar patient population. In similar trials as B-38 where Δ and ϕ are 

totally unknown, one can perform sensitivity analysis to present the projected closure dates 

under plausible choices of Δ and ϕ. For the B-38 application, the projected closure dates by 

using the 95 percentile were 623, 622, 620 and 617 days after initiation of accrual for ϕ =1, 

1.5, 2, and 2.5, respectively. Based on the analysis of the B-38 data, the closure date 

identified would have been 10 days sooner than that was actually selected and the over-

accrual would have been reduced by 80% from 94 to only 19 patients.

In practice, some investigators may opt to choose the change point t1 as the date when a 

large percentage of the participating sites started putting patients in the trial. In the NSABP 

B-38 study, 75% of the 172 eventual participating sites had enrolled patients on July 18, 

2005; 90% had enrolled patients on December 29, 2005; and 95% had enrolled patients on 

May 8, 2006. By choosing these dates as the change point t1 and the acceleration rate ϕ as 2, 

the projected closure dates by using the 95 percentile are 623, 622 and 621, respectively. 

Based on the empirical data presented in Table 1, the over-accrual would vary from 72 to 49. 
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This phenomenon reflects that even though the most majority of the sites had started 

enrolling patients but it would take a few more months for them to reach their regular 

accrual capacity. The change-point analysis provided a more accurate assessment of the 

point when the patient accrual reached a stable rate late phase.at its
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Figure 1. 
Daily accrual in the NSABP B-38 trial.
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Figure 2. 
Plots of the goodness-of-fit p-values and the ratios between the sample variances and sample 

means of Poisson sequences against potential locations of the change point.
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Table 1

Potential choices of the accrual closure dates and the corresponding empirical accrual sizes

Calendar Dates Days from initiation of accrual (t3) Observed cumulative accrual by t3-5 plus observed accrual during the fast 
accruing final week

April 18, 2007 615 4793

April 19, 2007
* 616 4802

April 20, 2007 617 4811

April 23, 2007
** 618 4819

April 24, 2007 619 4832

April 25, 2007 620 4842

April 26, 2007 621 4849

April 27, 2007 622 4860

April 30, 2007 623 4872

May 1, 2007 624 4881

May 2, 2007 625 4888

May 3, 2007 626 4894

*
Predicted accrual closure date using E(T)

**
Predicted accrual closure date using t0.05
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