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Abstract

Background—Atherosclerosis, a response to injury, may be thought of as scarring in the artery 

wall. TGF-β and associated signaling molecules have been implicated in the pathophysiology of 

keloid scarring, Dupuytren’s Contracture and atherosclerotic plaques in independent studies.

Purpose—To test the hypothesis that excess cutaneous scarring and Dupuytren’s contractures 

predispose independently to carotid atherosclerosis.

Methods—Among 1,747 patients with plaque measurements and complete data for multivariable 

regression analysis, 57 Caucasian patients had Dupuytren’s contractures and 12 had keloid scars. 

Carotid total plaque area (TPA) was measured by 2-Dimensional ultrasound.

Results—In linear multivariable regression analysis with coronary risk factors, keloid scars were 

associated with TPA (P= 0.018), but Dupuytren’s contractures were not. Patients with keloid 

scarring were younger (P<0.0001), and more likely to be diabetic (P<0.0001)

Conclusions—Keloid scarring is a clinical clue to excess atherosclerosis not explained by 

traditional risk factors. Such patients may benefit from therapy directed at targets related to 

signalling molecules common to both the process of keloid scarring and atherosclerosis. These 

findings suggest previously unexplored possibilities for the prevention and treatment of 

atherosclerosis. The differences between Dupuytren’s and keloid scars that may identify such 

targets are discussed.

Traditional risk factors for atherosclerosis include age, sex, blood pressure (BP), cholesterol 

levels, smoking history, and diabetes. These risk factors are essentially the same in different 

levels of the arterial tree.1–4 It has become increasingly clear, however, that these risk factors 

do not completely account for the degree of atherosclerosis in many patients.5,6 It is thus 

important to identify previously unrecognized risk factors for atherosclerosis. Doing so 
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provides insights into the pathophysiology of the disease as well as the potential for new 

therapeutic approaches.

This study began with the presentation in 1994 of a young man with unusually severe 

atherosclerosis for his age. At age 31 he had required bilateral femoropopliteal bypass, 

although he did not have unusually high levels of traditional risk factors. However, he had 

been treated on seven occasions by plastic surgeons to remove keloid scar tissue. What made 

this remarkable was that he was Caucasian. As atherosclerosis shares some components with 

scar tissue – a reaction in the artery wall to injury7,8 – JDS wondered if this association may 

be more than a coincidence. As the result of this experience, excess cutaneous scarring 

became a routine part of the physical examination and functional inquiry for subsequent 

patients referred to our vascular prevention clinic. In this paper we present the results of our 

observations since this young man first presented.

The purpose of this study was to test the hypothesis that keloid scarring is a marker for 

“unexplained atherosclerosis” (UE); that is, atherosclerosis not explained by traditional 

coronary risk factors. Specifically, our aim was to determine whether keloid formation and 

Dupuytren’s contractures are independently associated with carotid plaque burden, after 

adjusting in multiple regression for traditional risk factors

We began measuring carotid total plaque area (TPA) as a measure of atheroma burden in 

19909 and, since 1995, have routinely used this measurement in the management of patients 

referred for treatment of atherosclerosis.10 Validation work from our laboratory has shown 

that both baseline TPA and progression of TPA identify patients at higher risk of 

cardiovascular events: after adjustment for age, sex, cholesterol, systolic blood pressure, 

pack-years of smoking, total homocysteine, diabetes and treatment of blood pressure and 

lipids, patients in the top quartile of plaque area had 3.4 times higher risk of stroke, death or 

myocardial infarction over 5 years and, those with progression, had twice the risk of those 

with stable plaque or regression.11 Our findings have been validated in a population-based 

study of over 6,000 participants in the Tromsø Study.12 In our earlier studies, we used 

multivariable linear regression analysis to identify determinants of carotid plaque area 

(TPA).13 We found that traditional risk factors were significant determinants of variation in 

TPA, accounting for 52% of variance in TPA.5 Patients with high residual scores in the 

regression model (i.e. those far to the right of the regression line) were recognized as having 

more carotid atherosclerosis than would be predicted by traditional risk factors. Thus, the 

term “unexplained atherosclerosis” (UE) was introduced to refer to a marked difference 

between observed and expected TPA5. This concept is illustrated in Figure 1.

Methods

Study population and data collection

We analyzed a cohort of 1,747 patients from the Stroke Prevention and Atherosclerosis 

Research Centre at the Robarts Research Institute, London, Canada. Included in the analysis 

were all those with complete data for all variables used in the regression model. For these 

patients, the following information was collected from the initial visit: age, sex, systolic 

blood pressure (SBP), total cholesterol, pack-years of smoking, presence of diabetes 
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mellitus, whether the patients were on antihypertensive therapy or lipid-lowering agents, and 

the baseline TPA.

Baseline TPA was measured as previously described.11 Briefly, total plaque area was defined 

as the sum of the cross-sectional areas of all plaques seen in the left and right internal, 

external, and common carotid arteries. Plaques were defined as localized increases in 

thickness of the intima-media complex >1 mm in thickness. Each plaque was measured in 

the longitudinal plane in which it was biggest, by tracing with a track-ball cursor its cross-

sectional area. Total plaque area is the sum of these areas for all plaques seen in the left and 

right common, internal and external carotid.

As we are reporting on the results of clinical practice from our own patients, such reports 

were exempted from a requirement for explicit signed consent by the UWO ethics review 

board in 1977.

Statistical analysis

Multivariable linear regression, using a model that we have previously described7, was used 

to assess whether the different forms of cutaneous scarring were independent predictors of 

TPA. For this model, the distribution of TPA was normalized by a cube-root transformation. 

The following variables maximally explain the variance in TPA: age, sex, SBP, total 

cholesterol, smoking history in pack-years, a history of treatment for hypertension and a 

history of treatment of for hyperlipidemia (each P < 0.05). To this model were added either 

keloid scarring or Dupuytren’s contractures.

Chi-square was used to compare non-parametric variables, and ANOVA to compare 

continuous variables across the three groups of patients: no scarring, Dupuytren’s 

contractures or keloid scarring.

All statistical analyses were performed using SPSS for Windows (Version 16). A two-tailed 

P value of 0.05 was deemed to be statistically significant.

Results

Among the patients with complete data for all the variables used in the multivariable 

regression model, 57 had Dupuytren’s contractures, and 12 had keloid scars.

The total cholesterol was not available for one patient, who was not on a lipid-lowering 

agent. For this patient, an imputed baseline total cholesterol value of 5.59 mmol/L was used 

from the mean level for patients in the database who were not on a lipid-lowering agent at 

the time of the first visit, but who subsequently received such treatment.

The adjusted R2 value for the multivariable regression model was 0.51, - 51% of the 

variance in the transformed TPA variable was explained by age, sex, SBP, total cholesterol, 

pack-years of smoking and treatment of lipids or hypertension. (The R2 for untransformed 

TPA was 0.36.) Figure 2, a cumulative probability plot of residual scores, shows that the 

regression model is very robust.
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Tables 1 and 2 show the results of adding to the regression model keloid scarring or 

Dupuytren’s as independent predictors of TPA. The presence of Dupuytren’s contracture 

was not significant as an independent predictor of TPA (p = 0.653), but keloid scarring was 

significantly associated with TPA (p= 0.018).

Baseline values for the variables used in the multivariable regression model are shown in 

Table 3. The three groups of scarring were different in age, with the keloid scarring patients 

being younger, and were all more likely to be male; those with Dupuytren’s contractures 

were predominantly male. Patients with keloid scarring were much more likely to be 

diabetic.

Discussion

Our results suggest that keloid scarring is a physical finding that may identify patients with 

excess atherosclerosis not explained by traditional risk factors. To our knowledge, this study 

represents the first association between these two processes. Patients with this form of 

scarring were shown to have increased TPA when compared to controls with similar 

traditional risk factors. Furthermore, keloid scarring was an independent predictor of TPA in 

multivariable regression. The finding of an independent association between keloid scarring 

and excess TPA despite the small number of patients with this phenomenon suggests a 

powerful biological link. Plausible links may be found in inflammation and scarring.

A weakness of our study is the small number of patients with keloid scarring. Strengths are 

the measurement of carotid plaque, as opposed to intima-media thickness, and the 

adjustment for traditional coronary risk factors in multivariable regression. Carotid total 

plaque area is biologically and genetically distinct from IMT9,14,15, and total plaque area is a 

stronger predictor of coronary events than are IMT measurements that do not include plaque 

thickness.16 Recently we showed that lipoprotein (a) is a strong predictor of carotid stenosis 

and occlusion, but not plaque area17, highlighting the importance of distinguishing between 

carotid ultrasound phenotypes. Table 3 shows that patients with Dupuytren’s had more 

plaque, but they were older, smoked more, and were predominantly male. Adjustment in 

multivariable regression makes it clear that the Dupuytren’s was not an independent 

predictor of plaque.

Atherosclerosis may be thought of as an inflammatory process.18–20 The molecular 

mechanisms of this inflammatory process are complex and involve cytokines with pro-

inflammatory and anti-inflammatory activity.20,21 Of the many cytokines involved, recent 

studies suggest that transforming growth factor-beta (TGF-beta) and vascular endothelial 

growth factor (VEGF) may play key roles in atherosclerosis, including the formation of 

carotid atherosclerotic plaques.22–27 It is interesting that these same cytokines have been 

implicated in the pathogenesis of abnormal cutaneous scarring28–34 and suggested as 

components of Dupuytren’s contracture.35,36

Atherosclerosis, a response to injury7,8, includes a major component of scarring in the artery 

wall. Dustan37 hypothesized that keloid formation may be associated with excess risk of 
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hypertension and vascular disease among blacks, and Dupuytren’s contracture has been 

associated with diabetes mellitus and its microvascular complications.38,39

Mechanisms involved in such associations include effects of transforming growth factor beta 

(TGFβ). Wang et al. demonstrated that cells derived from abnormal cutaneous scar tissue 

produce more TGFβ than normal skin cells.28 Similarly, exogenous TGFβ-1 causes a greater 

increase in collagen synthesis in keloid-derived fibroblasts compared to fibroblasts derived 

from normal dermis.30 Both Wu et al. 31 and Gira et al. 32 have shown increased levels of 

VEGF in keloids. Dupuytren’s Contracture cord and wound granulation tissue have similar 

histological features, leading to the view that DD may be a dysregulated, fibrotic wound 

healing response.40 TGFβ-1 has not only been implicated in promoting myofibroblast 

development in Dupuytren’s Contracture33.41, but primary cells derived from Dupuytren’s 

Contracture cord are reported to have an enhanced sensitivity to its effects.29

TGFβ signalling triggers long-term responses through a variety of signalling intermediates42 

and some of these molecules have been demonstrated to be components of atherosclerosis, 

keloid scarring and DD. One of these is β-catenin, a signalling molecule regulated by a 

variety of growth factors including TGFβ: β-catenin accumulation has been implicated in 

atherosclerosis43, abnormal cutaneous scarring and wound healing 44,45 and Dupuytren’s 

Contracture 46 in independent studies. Thus, it is quite possible that the changes in gene 

expression initiated by β-catenin accumulation and transcription factor transactivation may 

underlie some of the molecular mechanisms leading to the formation of keloid scar tissue, 

Dupuytren’s contracture cords and atherosclerosis. Other TGFβ signalling intermediates, 

however, may not be common components of these conditions. Connective Tissue Growth 

Factor (CTGF) is a TGFβ-inducible signalling component of keloid scar formation47 and 

atherosclerotic plaques that is not evident in microarray analyses of gene expression in DD 

tissues or primary DD cells.48 Thus, there is molecular evidence that atherosclerosis, keloid 

scarring and DD share some, but not all, of the TGFβ-mediated intermediates associated 

with the wound healing response.

Accumulation of β-catenin and CTGF up-regulation are both associated with the 

differentiation of fibroblasts into myofibroblasts.49 One intriguing possibility is that 

myofibroblasts in atherosclerotic plaques and keloid scars may be derived from similar 

cellular precursors while the myofibroblasts in DD cord may be derived from different 

precursor cells via overlapping, but different signalling pathways. This idea is suggested by 

a recent report suggesting that, while myofibroblasts in lung fibrosis are largely derived from 

resident fibroblasts, the phenotypically identical cell type is contributed by hepatic stellate 

cells in liver fibrosis and media smooth muscle cells in atheromatous plaques.50 Consistent 

with this speculation, therapies that inhibit the mammalian target of rapamycin (mTOR) 

have been shown to prevent both atherosclerotic plaque formation in an animal model51 and 

myofibroblast development by keloid fibroblasts52 in independent studies. Research focused 

on identifying the molecular pathways that promote myofibroblast differentiation in patients 

prone to keloid scar development and atherosclerotic plaque formation may therefore reveal 

additional potential targets for therapeutic interventions.
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Conclusion

Keloid scarring, but not Dupuytren’s contractures, was associated with excess 

atherosclerosis not accounted for by traditional risk factors. This discrepancy suggests that 

factors differentiating these two types of excess scarring may point to factors linking 

scarring to atherosclerosis, and thus to new potential therapeutic targets for atherosclerosis. 

Keloid scarring may be a clinical clue to excessive atherosclerosis not explained by 

traditional coronary risk factors.
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FIGURE 1. 
Unexplained atherosclerosis. Predicted plaque area (transformed) on the vertical axis, vs 

measured plaque area on the horizontal axis. The red diamonds represent patients with 

residual scores in the top 10% (>= 1.281); i.e. those with the most atherosclerosis not 

explained by traditional risk factors (“Unexplained atherosclerosis”); the green pentagons 

represent those with residual scores in the lowest 10% (<- 1.25); i.e. those with protection 

from atherosclerosis; the grey circles represent the 80% of patients with residual scores 

nearest the regression line (“Explained atherosclerosis”).
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FIGURE 2. 
Cumulative probability plot of residual scores in the regression model for keloid scarring 

(Table 1).
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TABLE 1

Multivariable linear regression for carotid total plaque area with Keloid scarring added to the model

Coefficientsa

Model

Unstandardized Coefficients Standardized Coefficients

t PB Std. Error Beta

1 (Constant) −0.405 0.050 −8.166 0.000

Age (yr) 0.017 0.001 0.572 29.798 0.000

Sex (female =1, male=0) −0.121 0.015 −0.140 −8.198 0.000

Cholesterol (mmol/L) 0.024 0.007 0.062 3.583 0.000

On hypertensive meds 0.054 0.016 0.063 3.480 0.001

On lipid lowering meds 0.107 0.017 0.124 6.496 0.000

Smoking (pack-years) 0.004 0.000 0.187 10.919 0.000

Keloid scarring 0.209 0.088 0.040 2.377 0.018

Dependent Variable: Cube root transformation of total plaque area

R2= 0.510; n=1747
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TABLE 2

Multivariable linear regression for carotid total plaque area with Dupuytren’s contractures added to the model

Coefficientsa

Model

Unstandardized Coefficients Standardized Coefficients

t PB Std. Error Beta

1 (Constant) −0.399 0.050 −8.028 0.000

Age (years) 0.017 0.001 0.571 29.409 0.000

Sex (female=1, male=0) −0.122 0.015 −0.141 −8.202 0.000

Cholesterol (mmol/L) 0.024 0.007 0.061 3.515 0.000

On hypertensive meds 0.055 0.016 0.063 3.474 0.001

On lipid lowering meds 0.109 0.017 0.126 6.568 0.000

Smoking (pack-years) 0.004 0.000 0.186 10.841 0.000

Dupuytren’s −0.018 0.040 −0.008 −0.450 0.653

Dependent Variable: Cube root transformation of total plaque area

Adusted R2= 0.509 n=1747
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TABLE 3

Baseline values of the variables used in the regression model, for the three groups of patients

No scarring Dupuytren’s Keloid P

Number 1679 57 12

Age (yr) 56.94 (1.04) 66.11 (9.85) 50.00 (14.81) <0.0001

Male % 53% 80.7% 58.3% <0.0001

Diabetic % 8.9% 5.3% 16.7% 0.0001

Smoking Pack-yr 12.51 (18.08) 16.92 (20.03) 5.58 (7.39) 0.08

Total cholesterol (mmol/L) 5.16 (1.10) 4.99 (1.16) 4.82 (0.87) 0.31

Systolic blood pressure (mmHg) 139.74 (21.47) 139.30 (21.47) 149.08 (19.29) 0.32

Antihypertensive therapy % 56.8% 42.1% 66.7% 0.069

Lipid-lowering therapy 47.65 42.1% 66.7% 0.30

Carotid plaque area (cm2) 0.85 (1.04) 1.35 (1.51) 1.03 (1.03) 0.002

*
Chi-square for percentages, ANOVA for continuous variables
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