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Abstract

Background—Clostridium difficile infection (CDI) may not respond to initial therapy and 

frequently recurs but predictors of response and recurrence are inconsistent. The impact of specific 

alterations in the gut microbiota determining treatment response and recurrence in patients with 

CDI is unknown.

Aim—To assess microbial signatures as predictors of treatment response and recurrence in CDI.

Methods—Pre-treatment stool samples and clinical metadata including outcomes were collected 

prospectively from patients with their first CDI episode. Next generation 16s rRNA sequencing 

using MiSeq Illumina platform was performed and changes in microbial community structure 

were correlated with CDI outcomes.

Results—Eighty-eight patients (median age 52.7 years, 60.2% female) were included. Treatment 

failure occurred in 12.5% and recurrence after response in 28.5%. Patients who responded to 

treatment had an increase in Ruminococcaceae, Rikenellaceae, Clostridiaceae, Bacteroides, 
Faecalibacterium and Rothia compared to non-responders. A risk-index built from this panel of 
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microbes differentiated responders (mean 0.07±0.24) from non-responders (0.52±0.42; p=0.0002). 

Receiver operating characteristic (ROC) curve demonstrated that risk-index was a strong predictor 

of treatment response with an area under the curve (AUC) of 0.85. Among clinical parameters 

tested, only proton-pump inhibitor use predicted recurrent CDI (OR 3.75, 95%CI 1.27-11.1, 

p=0.01). Patients with recurrent CDI had statistically significant increases in Veillonella, 

Enterobacteriaceae, Streptococci, Parabacteroides and Lachnospiraceae compared to patients 

without recurrence and a risk index was able to predict recurrence (AUC=0.78).

Conclusions—Gut microbiota signatures predict treatment response and recurrence potentially 

allowing identification of CDI patients that may benefit from early institution of alternate 

therapies.
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Introduction

Clostridium difficile infection (CDI) is a common infection in the United States with 

450,000 infections and 29,000 deaths per year 1-3, with a tremendous economic impact 

(attributable costs ranging from $8,911 to $30,049 per hospitalized patient) 4. The 

pathophysiology of CDI is complex with alterations in gut microbiota playing an important 

role in susceptibility to CDI 5. A recent study reported an increase in Firmicutes, 

Proteobacteria, and Actinobacteria and decreases in Bacteroidetes in CDI patients and an 

altered ratio of Bacteroidetes to Firmicutes was found to be significant after controlling for 

confounding factors 6. Another study demonstrated that several bacterial species within the 

Ruminococcaceae, Lachnospiraceae, Bacteroides, and Porphyromonadaceae were largely 

absent in CDI cases and highly associated with non-diarrheal controls 7. Similarly 

alterations in Ruminococcus gnavus, certain Enterobacteriaceae, Verrucomicrobia and 

Enterococcus have been related to development of CDI 7-9. Risk factors for CDI include 

increasing age, antibiotic exposure, proton pump inhibitor use, hospitalization, 

immunosuppression, and comorbidities 10-15. Among these gut microbiota changes 

associated with antibiotic use, have been best studied in animal models and provide strong 

evidence for alterations in gut microbiota composition and function in susceptibility to 

primary and recurrent C. difficile 5, 16.

The management of CDI includes use of oral antibiotics but the rate of treatment failure (up 

to 35%) and recurrence (60% or higher after 3 episodes) is concerning 17, 18. Alternate 

treatment strategies such as fecal microbiota transplant are highly effective in patients with 

recurrent CDI 19, 20. Studies have assessed clinical features which may predict CDI 

response, but there is a lack of robust clinical or microbial biomarkers predictive of response 

to primary therapy 21-23. Severe CDI and hospital admission are clinical predictors of 

metronidazole failure but these have not been validated. Increasing age, concomitant 

antibiotic use, decreased anti-toxin IgG levels, the presence of comorbidities and potentially 

the use of gastric acid suppression medications have been associated with recurrent CDI. 

Anti-toxin IgG levels are not clinically available 24, 25.
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Despite the identification of these risk factors, clinical models to predict the risk of recurrent 

CDI are not robust enough for routine clinical use and there are no models to predict 

response to initial antibiotic therapy 24, 26. Hence, there is a need for biomarkers and better 

models to predict these treatment outcomes. While the role gut microbiota alterations play in 

CDI susceptibility has been established 27, their role in determining outcomes of CDI 

treatment has not been investigated. We used next generation sequencing to characterize 

microbial communities in patients with primary CDI to identify differences in microbial 

community structure and key taxa that can predict treatment response and the risk of 

recurrence after successful treatment.

Materials and Methods

Study design

We prospectively recruited 88 patients (median age 52.7 years, interquartile range 36.9 – 

65.1; 60.2% female) with their first CDI episode (from 3/2012 – 9/2013) as identified from 

the Clinical Microbiology Laboratory at Mayo Clinic, Rochester, Minnesota and collected 

an aliquot from the stool samples that led to the diagnosis. Details on clinical data 

acquisition and analysis are outlined in supplement 1.

Sequencing and analytic methods

16S rRNA gene sequencing and data analyses

After fecal DNA isolation (MoBio, Carlsbad, CA fecal DNA kit), amplicons spanning the 

variable region 4 of bacterial 16S rRNA were generated and sequenced using MiSeq 

Illumina platform at the Mayo Clinic Medical Genome Facility, Rochester, MN. We used 

515F TATGGTAATTGTGTGCCAGCMGCCGCGGTAA and barcoded 806R primers 

AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT. The amplicons were ~400 base pairs. 

The sequencing was bidirectional but only forward reads were used in the study due to low 

quality scores of reverse sequences. We applied built-in functions of the Quantitative 

Insights Into Microbial Ecology (QIIME) pipeline for data analysis 28. The 16S rRNA 

sequencing data from the Illumina runs were trimmed, demultiplexed, chimera filtered and 

assigned to operational taxonomic units (OTUs) using packages implemented in QIIME 

1.8.0 software 28. Further details of 16S rRNA data analysis are outlined in supplement 1.

In order to study differences in alpha diversity between our cohort of patients and healthy 

subjects, we included data from healthy subjects from a previously published study (global 

gut dataset) 29. The differences in gut microbiota composition between healthy controls and 

patients with CDI have been previously described 7. We included adult US individuals and 

compared the following alpha diversity metrics with our cohort of CDI patients: 

phylogenetic diversity whole tree, observed species and Chao 1 index. The methodology 

applied in both the studies was similar as samples were stored at −80C in both studies. DNA 

extraction was done using MO BIO power soil DNA isolation kit in both studies and the 

same protocol (Earth Microbiome Protocol) was followed including bead beating the fecal 

samples and the same region of 16S was amplified using the same primers and the same 

PCR protocol 30.
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In order to identify significant associations between microbial community abundances and 

clinical metadata, we applied a linear multivariate regression model specifically developed 

for microbiome data (MaAsLin, Multivariate microbial Association by Linear models 31. We 

used default parameters within MaAsLin as described by Morgan et al 31. Clinical data were 

selected by boosting, as microbial communities are known to be high dimensional, to 

identify those most associated with each microbial feature over potential covariates. Selected 

clinical data were then used in a general linear model including clinical data as predictor and 

taxonomic relative abundances as response.

Comparisons of relative abundance of taxa between responders and non-responders, or 

between patients with and without recurrence after initial response, was performed using 

Linear discriminant analysis Effect Size (LEfSe), a non-parametric Mann-Whitney U test 

applied to detect features with significant differential abundance with respect to the groups 

compared, followed by a Linear Discriminant Analysis (LDA) to estimate the effect size of 

each differentially abundant feature 32. As proposed, an LDA score (log 10) > 2 was 

considered significant.

A risk index was built to differentiate responders from non-responders to initial treatment or 

patients with and without recurrence after initial response, based on taxonomy on a non-

collapsed OTU table. All the taxa with a LDA score (log 10) > 2 were included in the 

calculation of the risk index. In order to build the risk index to predict the patients who 

would respond or not respond to treatment, the relative abundances (arcsine square root 

transformed) of the taxa associated with the responders to treatment (based on the LEfSe 

output, all taxa with a LDA score (log 10) > 2) were summed and the relative abundances of 

the taxa associated with nonresponders to treatment (based on the LEfSe output, all taxa 

with a LDA score (log 10) > 2) were summed. Then the difference between these two sums 

(relative abundance of the taxa associated with no response to treatment minus relative 

abundance of the taxa associated with response to treatment) was calculated, thereby 

obtaining a risk index. This procedure was repeated n (overall sample size) times to obtain a 

risk index for each patient in the cohort. Therefore, a risk index was calculated for each 

patient. We had 11 risk indexes in the non-responders and 77 risk indexes in the responders, 

22 risk indexes in patients who had a recurrence and 55 risk indexes in patients who did not 

have a recurrence of CDI. The utility of a risk index to predict a clinical outcome was 

recently reported by our group 33.

A leave-one-out cross-validation procedure was also conducted. This procedure calculates 

the risk index on the n - 1 patients (taxa that differentiated patients based on the LEfSe 

output) and then tested the risk index in the held-out patient that is the risk index values are 

predicted for each patient using a panel of microbes retrained from the other patients. A 

detailed description of the leave-one-out cross validation and receiver operating 

characteristic (ROC) curve analysis are outlined in supplement 1.

Network analyses were carried out with Cytoscape using an edge-weighted spring embedded 

layout 34. Importantly, we collapsed OTUs to the genus level and eliminated OTUs present 

in fewer than 25% of samples, to reduce the very large number of multiple hypotheses tested 

in correlation network analysis. We then performed Spearman correlation of taxon-taxon 
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relative abundance and included only those links with absolute value of correlation > 0.5 and 

false discovery rate (FDR)-corrected p-value < 0.05.

In order to determine if competition for nutritional niches in the gut may play a role in 

determining response to treatment by providing C. difficile with a competitive disadvantage, 

we used Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICRUSt) to predict Carbohydrate-Active Enzymes database - glycoside hydrolase (CAZY 

GH) assignments. Details on PICRUSt analysis are outlined in supplement 1.

Results

Clinical characteristics fail to predict response to standard therapy

The rate of primary non-response following recommended treatment was 12.5%. Patients 

were treated with either metronidazole or vancomycin (Table 1). Among those who had an 

initial successful response, 28.5% had recurrent CDI. Prior antibiotic exposure was noted in 

59.1% of patients, and 78.8% of those with antibiotic exposure (or 36.1% of all 88 patients) 

were exposed to a single agent, 9.7% (or 5.7% of all 88 patients) to a combination of 

antibiotics and exact antibiotic name was unknown in the remaining 6 patients. Details on 

antibiotic use are summarized in Supplementary Table 1. Chi-square univariate analyses 

demonstrated no significant differences in any clinical variables including initial treatment in 

primary nonresponders compared to responders (Table 1).

Gut microbiota signatures prior to treatment predict response to therapy in CDI

Of the 88 fecal samples collected, a total of 1,449,211 high-quality 16S rRNA gene-

encoding sequences were identified, representing 7,470 OTUs. The mean number of 

sequences obtained per sample was 16,468 ± 4,674. Importantly, since samples contained 

between 6,987 and 35,494 sequences, diversity analyses were rarefied at 6,987 sequences 

per sample to avoid bias.

We assessed the relationship between clinical metadata and microbial measurements by 

identifying associations using MaAsLin (see methods above). This model investigated the 

relationship between microbial taxa collapsed at genus level with metadata of interest while 

accounting for other covariates. In our cohort of patients, we did not find significant 

associations between gut microbiota and the clinical characteristics (for example, Age, Sex, 

BMI, Charlson comorbidity Index) (Supplementary Table 2). A panel of 36 OTUs that were 

significantly different between primary non-responders and responders using LEfSe 

(corresponding to an LDA (log 10) > 2) were identified. Responders had a significant 

increase in relative abundance of OTUs within Ruminococcaceae, Rikenellaceae, 
Bacteroides, and Faecalibacterium, while nonresponders had a significant increase in 

Clostridiaceae, Lachnospiraceae, Blautia, Coprococcus, Streptococcus, Bifidobacterium, 

Ruminococcus and Actinomyces (Figure 1).

Furthermore, the ability of this panel of microbes to discriminate between responders and 

nonresponders using ROC curve analysis demonstrated several individual OTUs to be strong 

predictors of response (Supplementary Figure 1). A risk index of response to treatment was 

built from this panel of OTUs. The index, calculated in each patient (responders and 
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nonresponders), corresponds to the difference between the sum of the relative abundance of 

all the OTUs associated with non-response to treatment (i.e. with an LDA (log 10) > 2) and 

the sum of the relative abundance of all the OTUs associated with response to treatment (i.e. 

with an LDA (log 10) > 2). The mean risk index score was significantly different [p < 0.001, 

one-way ANOVA (Analysis Of Variance) with post-hoc Tukey HSD (Honestly Significant 

Difference)] between the responders (mean score 0.07 ± 0.2) and non-responders (0.5 ± 0.4) 

as well as healthy subjects (0.03 ± 0.1), adult US subjects from global gut study 29, with 

BMI under 25, n= 60) and non-responders (Figure 2). The risk index was not significantly 

different between healthy subjects and responders (p = 0.57, one-way ANOVA with post-hoc 

Tukey HSD) suggesting that the difference in risk index in responders and non-responders is 

not due to variability in gut microbiome among individuals.

Further, ROC curve analysis showed that this risk index was a strong predictor of treatment 

response, with an area under the curve (AUC) of 0.85. A cut-off of 0.21 was associated with 

a sensitivity of 77% and a specificity of 73% (Figure 3A). Importantly, we did not find a 

correlation between the risk index and previous antibiotic treatment in terms of response to 

treatment (Pearson's product-moment correlation= 0.09, p value= 0.37). Thus, non-response 

was not associated with prior antibiotic administration.

In order to assess our risk index, a leave-one-out cross-validation was performed, where the 

risk index was built 88 times using n-1 samples each time and then tested on the held-out 

sample. Thus, each held-out patient was treated as a new patient, independently from the 

initial cohort, on whom we tested and subsequently refined the optimal index cut-off to 

separate responders and non-responders. We showed that the risk index was a strong 

predictor of response vs. non-response (permutation test performed on the difference 

between the mean of those without response and the mean of those with response to 

treatment with 999 random permutations, p < 0.0001; Figure 3B). We also determined with 

this leave-one-out procedure that a CDI risk index threshold of 0.11 best predicts response to 

treatment, yielding a sensitivity of 70% at a specificity of 73% (mean AUC = 0.81). Thus, 

we found that our risk index, based on a panel of 36 OTUs that were significantly different 

between primary non-responders and responders using LEfSe, accurately identified patients 

with CDI, likely to not respond to conventional treatment.

OTU networks are disrupted in primary non-responders

Correlations between OTU networks at the genus level were computed to differentiate 

responders and non-responders and demonstrated a three-fold (56 versus 16, ratio = 3.35) 

decrease in the number of strong taxon-taxon correlations (absolute value of Spearman 

correlation > 0.5 and False Discovery Rate corrected p-value < 0.05) in non-responders 

compared to responders, and most of the decreased nodes between responders and non-

responders were members of the phylum Firmicutes (50 versus 10, ratio = 5) and 

Actinobacteria (7 versus 1, ratio = 7) (Figure 4).

Khanna et al. Page 6

Aliment Pharmacol Ther. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Gut microbial diversity is not significantly different in primary non-responders compared 
to responders

Unweighted and weighted UniFrac based principal coordinate analysis (PCoA) did not show 

significant differences in beta diversity between responders and non-responders (unweighted 

UniFrac distance metric: R = −0.09, p = 0.9; weighted UniFrac distance metric: R = −0.004, 

p = 0.5) (Supplementary Figure 2). Patient with CDI (responders and non-responders) had 

significantly decreased alpha diversity (p<0.001 for the 3 measures phylogenetic diversity 

whole tree, observed species and Chao 1 index; one-way ANOVA with post-hoc Tukey 

HSD) compared to healthy subjects (adult US subjects from global gut study 29). Among 

patients with CDI, although there was a trend towards decreased alpha diversity in non-

responders compared to responders, this difference was not significant for the 3 measures 

phylogenetic diversity whole tree, observed species and Chao 1 index; one-way ANOVA 

with post-hoc Tukey HSD) (Supplementary Figure 3).

Gut microbiota functional repertoire is significantly different in responders and non-
responders

We imputed functional aspects of the microbiota from 16S rRNA data using PICRUSt to 

predict CAZY-GH assignments. Based on LEfSe, we found that GH70 (dextransucrase) and 

GH38 (α-mannosidase) were increased whereas GH59 (β-galactosidase) and two 

carbohydrate-binding modules, CBM16 and CBM42 were significantly decreased in non-

responders compared to responders with LDA score (log 10) > 2 (Supplementary Figure 4).

Gut microbiota signatures predict CDI recurrence

Among the patients who initially responded to treatment, 28.5% had recurrent CDI. The 

median time to recurrence was 23 days (range 15 - 56 days). There were no significant 

differences in patients with and without recurrent CDI (Table 1) among the clinical variables 

analyzed except PPI use which predicted recurrent CDI on univariate analysis (odds ratio 

3.75, 95% confidence interval 1.27- 11.1, p=0.01) and multivariable analysis after 

controlling for age (p=0.0007) and comorbidities (p=0.0009) in separate multivariable 

models. However, PPI use was not associated with alterations in the gut microbiota 

(Supplementary Table 2).

Relative abundance of eleven OTUs was significantly different between those with and 

without recurrence. Patients with recurrence had a significant increase in Veillonella, 

Enterobacteriaceae (Erwinia), Streptococcus, Parabacteroides and Lachnospiraceae using 

LEfSe (Figure 5). Several individual microbes were strong predictors of recurrence 

(Supplementary Figure 5).

A risk index of recurrence built from this panel of microbes differentiated between patients 

with and without recurrence. This index included all OTUs that had a LDA score (log 10) > 

2, as previously described. This index was significantly different in patients who did not 

have a recurrence (mean score 0.09 ±0.08) and those who did (0.19 ± 0.12) (Mann-Whitney 

U test, p-value = 0.0001) (Figure 6A). The ROC curve analysis showed that this risk index 

was a strong predictor of recurrence, with an AUC of 0.78 (Figure 6B). Moreover, a cutoff 

of 0.13 had a sensitivity of 78% and a specificity of 68%. As described previously, a leave-
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one-out cross-validation was performed, where the risk index was built 77 times using n-1 

samples each time and then tested on the held-out sample. This procedure showed that the 

gut microbiota was a strong predictor of recurrence (permutation test performed on the 

difference between the mean of those with recurrence and the mean of those without 

recurrence with 999 random permutations, p < 0.0001; Figure 6C). This procedure also 

determined that a CDI risk index classification threshold of 0.11 best predicts recurrence 

with a sensitivity of 75% at a specificity of 69% (mean AUC = 0.75). Thus, we found that 

our risk index can identify patients with CDI who are likely to have recurrence after initial 

response. Importantly, a supervised learning method using a Random Forest model was also 

applied but was unable to accurately assign samples to their source population based on 

taxonomic profiles at the OTU level and was outperformed by the above risk index 

approach.

Pre-treatment Gut microbial diversity is not significantly different in patients with and 
without recurrent CDI

Unweighted and weighted UniFrac based PCoA did not show significant differences in beta 

diversity between patients with and without recurrence (unweighted UniFrac distance 

metric: R =−0.1, p = 0.9; weighted UniFrac distance metric: R =0.02, p =0.3) 

(Supplementary Figure 6). Moreover, there was no significant difference in alpha diversity 

based on three different metrics between CDI patients with and without recurrence 

(Supplementary Figure 7).

Gut microbiota functional repertoire is significantly different in those with and without 
recurrence

As described above, we again imputed functional aspects of the microbiota from 16S rRNA 

data using PICRUSt to predict CAZY-GH assignments. Based on the LEfSe tool, GT30 (β-

fucosidase) and a carbohydrate-binding module (CBM20) were increased in patients who 

had a recurrence compared to patients who did not with LDA score (log10) >2 

(Supplementary Figure 8).

Discussion

In this study, we report specific gut microbiota signatures associated with the initial response 

to treatment and recurrence after successful treatment in patients with primary CDI. We have 

developed a risk index based on compositional differences among patients with CDI, which 

can help predict response to treatment and recurrence in patients with CDI. This is a step 

towards identifying CDI patients who would be candidates for early alternative therapies 

such as fecal microbiota transplantation (FMT). Although a significant percentage of 

patients either fail primary treatment or recur after successful treatment, there are no robust 

models to predict these outcomes. Gut microbiota play an important role in resistance to 

colonization by pathogens such as C. difficile, and this resistance can be altered following 

disruption of normal gut microbial community structure following antibiotic use or other 

alterations in host physiology. Several mechanisms that promote C. difficile colonization 

have been attributed to alteration of gut microbiota including increase in primary bile acids, 

increased availability of nutrients such as succinate and sialic acid, and decrease in butyrate 
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producers in the gut 35, 36. Given the impact of gut microbiota in the pathogenesis of CDI, 

we profiled the microbial community in pre-treatment stool samples and identified 

biologically relevant microbial signatures that predict treatment response and risk of 

recurrent CDI.

Data on clinical predictors of response to treatment in CDI are sparse. Clinical predictors of 

metronidazole failure in CDI include severe CDI, recent cephalosporin use, CDI on hospital 

admission and intra-hospital transfer. In recurrent CDI, studies showing increasing age, 

concomitant antibiotic exposure and proton pump inhibitor use as risk factors are balanced 

by other studies with a lack of correlation between these variables and recurrent 

CDI 24, 25, 37. In our study, PPI use was the only clinical variable significantly associated 

with recurrent CDI. However, most patients had community-acquired CDI and were younger 

than patients with hospital-acquired CDI, which likely explains the lack of significant 

differences in some previously described clinical predictors of recurrent CDI such as age and 

comorbidities.

In our cohort, there was a significant decrease in overall microbial diversity in patients with 

CDI as compared to healthy individuals, but amongst patients with CDI, there was no 

significant decrease in the microbial diversity amongst those who failed primary therapy or 

had recurrence after initial success compared to CDI patients who did not have these adverse 

outcomes. We found an increase in taxa within Faecalibacterium, Ruminococcaceae, 

Bacteroides and Rikenellaceae, among others in primary responders. Interestingly, these taxa 

have been associated with colonization resistance against C. difficile in adult patients 27. 

Faecalibacterium prausnitzii is largely considered a beneficial bacterium as significant 

reductions in this taxa have been reported in patients with inflammatory bowel disease 

compared to healthy individuals 38. F. prausnitzii and members of Ruminococcaceae are 

capable of producing butyrate, similar to C. difficile 39, 40. Several studies indicate that CDI 

is accompanied by a depletion of butyrogenic bacteria 9, suggesting either an inhibitory 

effect of butyrate or the loss of a nutrient niche, which can be occupied by C. difficile. Thus, 

the presence of F. prausnitzii and Ruminococcaceae may improve the response to treatment 

by providing niche competition or direct inhibition. An increase in Bacteriodetes represented 

by greater abundance of the families Bacteroidaceae, Rikenellaceae and 

Porphyromonadaceae has been reported following successful FMT for treatment of CDI 41. 

Interestingly a higher relative abundance of Bacteroides and Ricknellaceae was seen in 

primary responders in our study, suggesting they may synergize with conventional treatment 

for exclusion of C. difficile. While the mechanism of action remains unclear, recent studies 

have shown that certain Bacteroides spp. may play a role in preventing infection with C. 
difficile 42, 43. B. fragilis influences the development of the immune response and B. 
thetaiotaomicron stimulates Paneth cells to produce antibacterial peptides, which may 

prevent pathogens from colonizing 44, 45. While indirect, these data suggest a synergistic 

role for members of the gut microbial community in augmenting treatment response.

Interestingly, even though overall gut microbial diversity is not significantly different in 

responders compared to non-responders, there is a three-fold increase in the number of 

strong taxon-taxon correlations in responders as compared to non-responders, and most of 

the decreased nodes in non-responders were members of the phylum Firmicutes. This 
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suggests that in addition to differences in individual taxa, the overall microbial community 

structure plays an important role in augmenting response to primary therapy by more 

effectively excluding C. difficile.

In patients with recurrent CDI we found increases in taxa that were different than in primary 

non-responders. Several of these have been previously associated with recurrent CDI or 

potentially promote the growth of C. difficile. There was an increase in Enterobacteriaceae, 

Veillonella and Parabacteroides among others in patients with recurrent CDI compared to 

patients without recurrence. Several studies both in mice and in humans demonstrate an 

increase of Enterobacteriaceae in CDI 7, 27, 46. A persistent expansion of Enterobacteriaceae 

has also been shown after treatment with clindamycin suggesting it may play a role in 

susceptibility to colonization with C. difficile. Parabacteroides diastonis, a succinate 

producer, has been previously associated with CDI 47, 48 perhaps since increased succinate 

availability has been associated with expansion of C. difficile. The low concentration of 

succinate present in the microbiota of conventional mice is transiently elevated upon 

antibiotic treatment or chemically induced intestinal motility disturbance, and C. difficile 
exploits this succinate spike to expand in the perturbed intestine 35. Further studies are 

needed to identify mechanisms by which these bacteria may contribute to failure of 

treatment or recurrence after successful treatment.

The primary strength of our study is the ability to predict the clinically important outcomes 

of treatment failure and recurrence in patients with primary CDI by characterizing the gut 

microbiota of pre-treatment stool samples. It is possible that strain level differences in C. 
difficile contribute to the outcome but these were not assessed in the current study. This 

study helps define a new diagnostic paradigm, but as with any initial finding, there are 

limitations. The risk index developed in our study likely needs to be prospectively validated 

in a larger cohort of CDI patients given the relatively small sample size. We did not have 

information on the patients’ dietary histories at the time of diagnosis so we were unable to 

assess how diet may influences microbial composition and CDI outcomes. Additionally, 

detailed analyses comparing microbiome changes due to prior antibiotic exposure would 

need to be considered in future studies. We also used healthy controls from a previously 

published study and there could be a study effect given the samples were run at different 

times as has been pointed out in previous studies. This is usually attributed to differences in 

DNA extraction protocol, primers and data analysis 49. However, as these were not different 

between our study and the healthy controls, we do not expect a study effect. Prior studies, 

which have investigated study effects have looked at healthy controls from different studies 

where study specific effects can be seen. However as we are investigating differences in 

healthy controls and patients with CDI, we expect the true biological effect to overcome 

inter-individual study differences. While this was not a primary aim of our study we do note 

that our findings are similar to those previously reported 7. Both these studies used Illumina 

platform for sequencing, we used Miseq and the healthy controls were sequenced on HiseqA 

cross validation has been previously published showing that the data from these two 

platforms do not introduce a bias in the results 30. The risk index determined in our study 

and applied to the healthy controls was similar in responders and healthy controls (from 

different studies) and different from non-responders, further supporting the validity of our 

finding.
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In conclusion, gut microbiota signatures can be used to predict response to and recurrence 

after initial treatment in patients with CDI. This finding will need to be validated in a larger 

cohort and future work will focus on understanding interaction of individual taxa with C. 
difficile to understand mechanisms by which they may determine outcome of treatment. 

Nevertheless, these biomarkers potentially allow identification of subsets patients that may 

be initially treated with more effective therapies such as newer antibiotics, fecal microbiota 

transplantation or defined microbial consortia instead of a prolonged therapeutic trial.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of the Operational Taxonomic Units associated with response or non-response to 

treatment using Linear discriminant analysis Effect Size analysis (LEfSe). Representative 

bacteria with relative abundance of at least 1% with significant differences are represented.
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Figure 2. 
A) Clostridium difficile Infection (CDI) Risk Index based on the differentiated Operational 

Taxonomic Units in non-responders, responders and healthy controls calculated using the 

Mann–Whitney U test: ***: p < 0.001. The boxplots denote top quartile, median and bottom 

quartile and individual dots represent individual patient samples.
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Figure 3. 
A) Receiver operating characteristic (ROC) curve analysis of the CDI risk index in pre-

treatment fecal samples collected following 10-fold cross-validation. B) ROC curve analysis 

of the CDI risk index in pre-treatment fecal samples collected following 10-fold cross-

validation of all the held-out samples from the leave-one-out cross-validation analysis. 

Following the leave-one-out procedure, the ROC curves of each leave-one-out procedure are 

in blue and the mean ROC curve of all the procedure is in black.
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Figure 4. 
Spearman correlation demonstrating taxon-taxon relative abundance including links with 

absolute value of correlation > 0.5 and False Discovery Rate-corrected p-value < 0.05. 

Network analyses displayed with Cytoscape using an edge-weighted spring embedded 

layout in responders (A) and non-responders (B). Positive correlations are shown as blue 

links between nodes and only significant correlations are depicted. The size of the node was 

based on the number of correlations associated with the corresponding taxon. The color of 

the node is based on the phylum level: Actinobacteria (blue), Bacteroidetes (green), 

Firmicutes (purple), Proteobacteria (yellow), Fusobacteria (pink) and Verrucomicrobia 

(grey). There is a three-fold decrease in the number of taxon correlations in the non-

responders and most of the decreased nodes were Firmicutes and Actinobacteria.
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Figure 5. 
Summary of the Operational Taxonomic Units associated with recurrence (n=22) versus 

non-recurrence (n=55) after successful treatment response using Linear discriminant 

analysis Effect Size analysis (LEfSe).
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Figure 6. 
A) Clostridium difficile Infection (CDI) Risk Index based on the differentiated Operational 

taxonomic units in patients with success versus recurrence. Mann–Whitney U test: ***: p < 

0.001. Boxplots denote top quartile, median and bottom quartile. B) Receiver operating 

characteristic (ROC) curve analysis of the CDI Risk Index in fecal samples collected prior to 

treatment predicting recurrence. C) ROC curve analysis of the CDI Risk Index in fecal 

samples collected prior to treatment. Following the leave-one-out procedure, the ROC curves 

of each leave-one-out procedure are in blue and the mean ROC curve of all the procedure is 

in black.
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Table 1

Clinical characteristics of all patients

Overall (n=88) Treatment responder (n=77) Treatment failure (n=11) p-value
* Treatment 

success 
with no 

recurrence 
(n=55)

Treatment 
success 

with 
recurrence 

(n=22)

p-value
**

Age (median) 52.7 53.8 49.9 0.67 55.6 49.0 0.62

Sex (% female) 60.2 59.7 63.6 0.8 58.2 63.6 0.65

BMI, mean (Kg/M2) 27.5 27.4 28.1 0.75 27.7 26.6 0.44

Charlson comorbidity index 1.32 1.32 1.27 0.53 1.34 1.27 0.49

Prior antibiotic exposure 
(%)

59.1 55.8 81.8 0.1 56.4 54.5 0.88

Community-acquired (%) 59.1 62.3 36.4 0.13 63.6 59.1 0.9

Severe CDI (%) 7 5.2 18.2 0.1 5.5 4.5 0.86

Concomitant antibiotic 
exposure (%)

28.4 27.2 36.4 0.5 27.3 27.3 1.0

Concomitant PPI exposure 
(%)

27.3 25.9 36.3 0.48 18.2 45.5 0.01

Treatment with 
metronidazole (%)

70.5 70.1 72.7 0.8 72.7 63.6 0.1

Treatment with 
vancomycin (%)

23.9 24.7 18.2 0.8 20.0 36.4 0.1

Treatment with 
vancomycin and 
metronidazole

5.6 5.2 9.1 0.8 7.3 0 0.1

CDI = Clostridium difficile infection, BMI = Body mass index, PPI = Proton pump inhibitor

*
Denotes p-value for comparison of treatment responders versus treatment failures

**
Denotes p-value for comparison of recurrent infections versus non-recurrent infection
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