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Abstract

Measures of explained variation are useful in scientific research, as they quantify the amount of 

variation in an outcome variable of interest that is explained by one or more other variables. We 

develop such measures for correlated survival data, under the proportional hazards mixed-effects 

model (PHMM). Since different approaches have been studied in the literature outside the classical 

linear regression model, we investigate three measures R2, R2 and ρ2 that quantify three different 

population coefficients. We show that although the three population measures are not the same, 

they reflect similar amounts of variation explained by the predictors. Among the three measures, 

we show that R2, which is the simplest to compute, is also consistent for the first population 

measure under the usual asymptotic scenario when the number of clusters tends to infinity. The 

other two measures, on the other hand, all require that in addition the cluster sizes be large. We 

study the properties of the measures both analytically and through simulation studies. We illustrate 

their different usage on a multi-center clinical trial and a recurrent events data set.

Keywords

clustered survival data; explained randomness; multi-center clinical trial; recurrent events

1 Introduction

Correlated survival data arise in many areas of biomedical applications. They arise in 

multicenter clinical trials where, despite rigorously designed protocols, complex procedures 

and different clinical practices may lead to different treatment effects at different centers. 

Recurrent events are another type of correlated survival data, though with their specific 

chronological orders. Genetic studies, often by design, recruit groups of subjects who are 

family members and share the same genetic or environmental factors. As for independently 

and identically distributed (i.i.d.) data, often we would like to be able to quantify the amount 

of variation in the correlated outcomes that is explained by the predictors, which is an 

important attribute of any regression model.

The R2 coefficient of determination in classical linear regression is the definitive solution to 

such a need. For correlated outcomes data, random effects models (sometimes called 

variance components models) are a natural way of decomposing the variation in the 

outcomes into different components [1]. As an example of application in genetic 
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epidemiology, it is common to decompose the variation in a disease outcome into 

contributions from genetic, environmental, and residual components [2–4], all expressed as 

percentages that add up to one.

To date, much attention has been given to developing measures of explained variation in the 

presence of right-censored survival data. Many of the early proposals were based on 

extensions of different yet equivalent definitions of the R2 coefficient of determination under 

the multiple linear regression model [5]. These extensions are not the same outside of the 

normal linear model. A comprehensive comparison of the early proposals can be found in 

Schemper and Stare [6]. Proposals have also been made in the literature based on 

computationally intensive methods such as multiple imputation of the censored observations 

[7]. More recently Heller [8] proposed a measure of explained risk (instead of variation) 

under the Cox model, and Preseley et al. [9] applied some of these measures to surrogate 

evaluation. Recent discussions of the related concepts and recommendations can be found in 

references [10–13], with [13] also considering applications to high dimensional data such as 

gene expression. While a lot of these recent discussions have required a good measure to be 

unaffected by an independent censoring mechanism, [14] make an interesting point that 

some measures have achieved this through implicit model extrapolation, and that an 

overemphasis on independence from censoring can lead to other important properties and 

interpretations being overlooked.

For analyzing correlated survival data, mixed-effects models have been proposed that 

specify the correlation structure within the outcomes, as well as to correlate with the 

predictors. In this paper we consider the proportional hazards mixed-effects model (PHMM) 

[15, 16]. This model encompasses the commonly known frailty model, which contains 

random intercepts but not random effects on arbitrary covariates. Under the PHMM we aim 

to define both population measures of explained variation, as well as their sample based 

estimates. We explore three commonly used approaches, which include a direct 

decomposition of the variance, a ratio of sums of squares, and an information theoretical 

measure that is easily computed by transforming the likelihood ratio statistic. These 

approaches have been developed both for the proportional hazards regression model, and for 

the linear mixed effects model, therefore they are natural candidates under the PHMM. In 

the following we will first recall details of the PHMM and related quantities that will be 

used to define the measures of explained variation.

1.1 Model and notation

The PHMM extends the Cox proportional hazards model by including a vector of random 

effects terms in the log relative risk:

(1)

Here, λij (t) is the hazard function of the j-th observation in the i-th cluster of size ni, β is the 

vector of fixed effects, bi is a vector of random effects associated with cluster i with E(bi) = 

0, and Zij and Wij are covariate vectors corresponding to the fixed and random effects, 
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respectively. The event time Tij may be right-censored; we observe Xij = min(Tij, Cij), where 

Cij is the potential censoring time. Let δij = 1{Tij ≤ Cij }, and Yij (t) = 1{Xij ≥ t} be the “at-

risk” indicator at time t. It is usually assumed that for every covariate with a random effect 

there is also a corresponding fixed effect, so that Wij is a subset of Zij except possibly for a 

‘1’ in the first entry that models the random cluster effect on the baseline hazard. For 

notational convenience we assume that Wij consists of a ‘1’ followed by the first p 
coordinates of Zij ∈ ℝp+q. In general the random effects can be seen as cluster by covariate 

interactions [16]. Thus, the data consist of the triples (Xij, δij, Zij), i = 1, …, m, j = 1, …, ni. 

The random effects b1, …, bm are independent of each other, and assumed to be N (0, Σ); 

they are also assumed to be independent of the covariates Z.

The following quantities under the PHMM are relevant to our development later. Conditional 

on the bi’s, at each time t we have a probability distribution on the set of subjects at risk, 

given by:

(2)

The term πij (t; β, b) can be interpreted as the probability that the j-th subject in cluster i 
fails at time t given the risk set and that exactly one failure occurs at that time. Evaluating πij 

at time t = Xij and taking the product of such terms over the observed failure times (δij = 1) 

forms the partial likelihood conditional on collection  of random effects:

(3)

The above was used in [15] to form the penalized partial likelihood under the PHMM. It is 

shown that the discrete probability distribution {πij (t; β, b)}i=1…m,j=1…ni converges weakly 

to the conditional distribution of Z given T = t and the bi’s, in the same way that an 

empirical distribution converges to the underlying distribution function [17]. Under the 

classic Cox model this conditional distribution has been used to construct time-dependent 

ROC curves [18].

The model parameters θ = (β, Σ, λ0) can be consistently estimated by the nonparametric 

maximum likelihood estimator (NPMLE), which has been shown to have optimal 

asymptotic and numerical properties [19]. The NPMLE can be computed using an MCEM 

algorithm, and is available in the R package ‘phmm’. At convergence of the algorithm, the 

posterior distribution  of bi, where yi represents the observed data from cluster i, 
can be used to produce empirical Bayes “estimates” of the random effects. In doing so we 

are viewing the realized values of the bi’s like parameters, estimated via a degree of 

shrinkage; this notion is closely related to the conditional inference discussed in references 
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[20, 21]. We will make use of the empirical Bayes estimates  when defining 

some of the measures below.

Finally, model (1) is known to be equivalent to the linear transformation mixed-effects 

model [17]

(4)

where g(·) = log Λ0(·) is a monotone transformation, and E has the fixed (and known) 

extreme value distribution with variance π2/6. The general semiparametric transformation 

model with mixed effects in the form of (4) was considered in Zeng and Lin [22].

In the next section, we present measures of explained variation, both population and sample 

based, and discuss some of their properties. Simulation studies are carried out in Section 3, 

and the measures are applied to real data in Section 4. Section 5 contains some discussion 

and conclusion.

2 Measures of explained variation

In the context of the semiparametric regression models like (1) or (4), the specified part of 

the model only concerns the prediction of the ranks of the T ’s given the Z’s. The actual 

scale of the failure times as reflected in the observed data is not modeled, and is estimated 

by the nonparametric baseline hazard or the nonparametric transformation. In addition, in 

the presence of clustering in the data, the analysis is often concerned with how much 

variation is explained by the covariates or even the clustering itself.

2.1 First measure: direct decomposition of variation

The explained variation in a response A by its predictors Z can be defined based on the well-

known formula Var(A) = E{Var(A|Z)} + Var{E(A|Z)} [10]. The first term in the 

decomposition can be seen as the expected residual variance in A after using Z to ‘explain’ 

A, and the second term as the variability explained by the conditional distribution of A given 

Z, often modeled by the regression. Under model (4) we consider A = g(T). The proportion 

of explained variation is then

(5)

where π2/6 is the error variance, and Z, b, W are generic versions of Zij, bi, Wij, i.e. random 

variables (or vectors) with the same distributions. While a version of (5) in the presence of 

only fixed effect was briefly mentioned in Kent and O’Quigley [23] those authors did not 

recommend its use in practice, although Choodari-Oskooei et al. [11] included it in their 
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comparison study. We note that (5) has been used in the genetic epidemiology literature to 

quantify the genetic versus environmental contributions to disease onset [3, 4, 24].

Evidently, estimation of Ω2 can be accomplished by estimating the variance of the so-called 

linear predictor η = β′Z + b′W. In the Appendix we derive the algebraic expression based on 

moments related to random vectors. This eventually leads to the following expression:

(6)

where µ and Σ with a subscript denote the expectation and covariance matrix of the random 

vector indicated, b1 is defined by , Z1 is the first p components of Z that have 

both fixed and random effects, and . We can estimate β and Σb in (6) under the 

PHMM using the previously mentioned R package ‘phmm’, and estimate the mean and 

variance of Z using the corresponding sample moments. This leads to an estimate of Ω2:

(7)

2.2 Second measure: a sum of squares approach

The second approach was used in Q’Quigley and Flandre [26] and Q’Quigley and Xu [10] to 

define R2 measures under the Cox model. The motivation is that in classical linear 

regression R2 can be expressed as a ratio of sums of squared residuals. A well-known type of 

residual under the proportional hazards regression is the Schoenfeld residual [25]. 

O’Quigley and Xu [10] also extended the Schoenfeld residuals to ‘residuals’ of the 

prognostic index. Under the univariate Cox model, η has a one-to-one correspondence to the 

covariate Z, assuming that β ≠ 0. We now extend this method to the PHMM setting. Note 

that under model (1) or, equivalently model (4), the predicted ranks of Tij ’s have a one-to-

one correspondence to the prognostic indices . 

In this sense η is like a ‘surrogate’ for the actual, possibly censored outcome T . This fact 

has been used in the prediction context by, for example Huang and Harrington [27], to select 

the penalty parameters.

In order to define the relevant residuals, we first need to define the expected prognostic 

index at a given failure time t, using the probability distribution defined in (2):
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(8)

Here we view the realized values of b as parameters, to be estimated via the empirical Bayes 

shrinkage under the PHMM. At each failure time, we can then compare the value of η 
predicted by the model as in (8) with the one actually observed. Having estimated β and the 

bi’s, the estimated prognostic index for the ijth observation is . This gives 

the residuals

(9)

whenever δij = 1.

To form what is equivalent to a total sum of squares, we consider a ‘null’ model in order to 

contrast with the full model in question. When the interest lies in quantifying the amount of 

variation in the survival that is explained by both the covariates and the clustering itself, the 

latter modeled by the random intercept b0, the corresponding null model is given by β = 0 

and b = 0, and the hazard function is simply λ(t|Z, b) = λ0(t). Let ℛ(t) be the risk set at time 

t and  its size. Under this null model all subjects in the risk set have the 

same probability for failure: . The expected η at 

time t is then just the simple average over the risk set:

(10)

We note that the β = 0 and b = 0 values only affect the probabilities πij (t) here, while the 

values of  are still defined by  and  as they were under the full model. 

This is because the estimated prognostic index  serves as the ‘surrogate’ for the possibly 

censored failure time Tij, whose variation we are trying to explain. The ‘null’ residuals are:

(11)

We can now define the coefficient of explained variation using the residual sum of squares 

under the full and the null models:
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2.3 Third measure: explained randomness

The third approach is based on the notion of explained randomness using the Kullback-

Leibler (KL) information gain [28], and it has been applied to the proportional hazards 

regression model [23, 29, 30]. A commonly encountered pitfall in the literature when 

defining such a measure, sometimes called the generalized R2 [31], is ignoring the original 

definition based on the KL information and simply taking an ad hoc transformation of the 

likelihood ratio statistics; this in particular can lead to erroneous definitions in the presence 

of censored data [30]. Here we develop the explained randomness measure for the PHMM.

As discussed in Kent [28] when using the explained randomness to capture the dependence 

between two random variables, there is a certain degree of symmetry in using the conditional 

distribution of one variable given the other, or vice versa. In the special case of bivariate 

normal, no matter which way one conditions, the explained randomness is equal to the 

correlation coefficient squared. In the context of the semiparametric proportional hazards 

regression, predicting ranks of the T ’s given the Z’s is equivalent to predicting the Z’s given 

the T ’s [10]. In this way, it is natural to consider the conditional distribution of Z given T; 

this is also consistent with the partial likelihood inference procedure, as well as the residuals 

considered in the Section 2.2.

As before θ denotes the unknown parameters under the PHMM. The KL information is I(θ) 

= E (log{f (Z|T, b; θ)}), where f (·) is the conditional density or probability function of Z 
given T and b, and the expectation is taken with respect to the true underlying distribution. 

For two nested models indexed by θ ∈ Θ0 ⊂ Θ1, let θi = arg max{I(θ); θ ∈ Θi} (i = 0, 1), 

and Γ = 2{I(θ1) − I(θ0)}. If Θ0 is the subset of model distributions for which T and Z are 

independent, we can think of Γ as measuring the information gained from modeling 

dependence. In that case Kent [28] called exp{−2I(θ0)} the total randomness in Z, and 

exp{−2I(θ1)} the residual randomness of Z given T . The proportion of explained 

randomness is then

(12)

The expectation in I(·) is typically unknown, but can be estimated by the empirical 

distribution of the data in general [28]. For a random sample of size n (without censoring) Γ 
can be estimated by 1/n times the likelihood ratio statistics for testing Θ1 versus Θ0. As 

described in the Introduction, under the PHMM the conditional distribution of Z given T and 

b is estimated by {πij (t; β, b)}i=1…m,j=1…ni, and the log partial likelihood conditional on b 
is given by (3). Under the null model β = 0, b = 0, the log partial likelihood becomes 
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. In the presence of right-censoring, the effective sample size 

is  which is the total number of events; K is also the number of terms in the log 

partial likelihood. Using an empirical distribution assigning mass 1/K to each observed 

failure to further approximate the expectation in I(·) [30], the estimated information gain is 

then

(13)

Our measure of explained randomness is based on this information gain:

(14)

2.4 Properties of the measures

As mentioned earlier the semiparametric PHMM only models explicitly the association 

between the covariates and the ranks of the failure times, beyond which the actual failure 

times as reflected via the baseline hazard function are not modeled. In this way it is natural 

to view the measures of explained variation under the PHMM as equivalent to a type of 

(squared) rank correlation. For rank correlations in general, Kendall and Gibbons [32] 

described their desirable properties, which include: (1) the value of the (squared) measure 

should lie between zero and one; (2) should increase with the strength of association, as 

reflected by the regression effects in a regression model; (3) the absence of such association 

should manifest itself in a value of the measure close to zero, and perfect association should 

manifest itself in a value close to one. In the following we briefly discuss the properties of 

the three approaches proposed in this section; further investigation is also carried out 

through simulations in the next section.

The simple form in our definition of Ω2 makes a number of these properties apparent. From 

(6) we see that Ω2 is between 0 and 1, and increases with each of the terms 

, and . The latter is best understood with a single 

covariate Z at first; in this case the three terms are, respectively, β2Var (Z), 

 (assuming b is the random effect for Z), and Var (Z) Var (b). We see 

that Ω2 increases with the strength of the fixed regression effect |β| and the strength of the 

random effect as reflected by Var (b), together with |µZ | and Var (Z). It is well-known that 

the classic R2 in linear regression increases with Var (Z), reflecting the confidence in the 

regression line when the covariate spread has a wide range. A bit more generally, if we 

assume that the covariates in Z1 (those with both fixed and random effects) are uncorrelated 

and that the random effects are also uncorrelated, then 

, 
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 and 

. This shows that Ω2 is an 

increasing function of the strengths of the individual fixed effects |βi|, the variances Var (Zi), 

and the strengths of the individual random effects Var (bi) together with |µi|. Finally, it is also 

immediately seen that in the absence of association, i.e β = 0 and Σb = 0, then Ω2 = 0; and as 

any of the regression effects approaches infinity, fixed or random (as reflected by its 

variable), Ω2 approaches one.

The measures  and  defined in Sections 2.2 and 2.3 are not intended to estimate Ω2. 

While their population version can be written out as population limits or expectations that 

the sample quantities converge to as shown in [10], these expressions tend not to provide 

immediate insights into their properties. Certain analytical properties of  and ρ2 have 

been studied under the classic Cox model [10, 29, 30]. While some of these properties carry 

over under the PHMM, others do not. More specifically, for  a sum of squares 

decomposition holds asymptotically, i.e. the total sum of squares  is the 

residual sum of squares  plus a regression sum of squares given by 

 when both m → ∞ and ni → ∞, so that the bi’s as 

well as β are consistently estimated [21]. On the other hand, with the bi’s estimated by the 

 we cannot guarantee that  or ρ2 is always positive when both the true fixed effects 

and the true random effects are very close to zero, although in the simulation studies in the 

next section we show that they are almost always between zero and one, and increase with 

the strength of the fixed as well as the random effects.

Finally, all the measures are clearly not affected by any linear transformation of the 

covariates or monotonically increasing (i.e. rank preserving) transformation of the failure 

times. Asymptotically R2 (as m → ∞) is consistent for Ω2 which does not depend on 

censoring. Following the discussion in [10],  should only depend weakly on censoring, 

and could be made completely independent of censoring if the squared residuals are 

weighted by the inverse probability of censoring. On the other hand, ρ2 can be more affected 

by censoring due to the maximum follow-up time [30].

3 Numerical and simulation experiments

We now further investigate the performances of the measures through numerical simulation 

studies. In particular, we would like to know how well the analytical properties described in 

Section 2.4 hold in finite samples, how close the sample based measures are to their 

population equivalents, how the measures are affected by the variances of the random 

effects, and how they are affected when the covariates are correlated. In addition, we would 

also like to know in finite samples how the measures are affected by censoring, by the 

covariate distribution once the variance of the distribution is fixed, and by the baseline 

hazard function.
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In general, the data were generated as follows. For a fixed value of β, the survival times Tij 

were generated according to λij (t) = exp(βZij + b0i + b1iZij), where Zij ~ N (0.5, 0.25), b0i, 

b1i ~ N (0, 0.25). Independent censoring times Cij were generated from a uniform 

distribution on the interval (0, τ ), where τ was chosen so that there was about 25% 

censoring. The PHMM was then fit to the dataset using the phmm() function in the R 

package ‘phmm’. Simulations were carried out for 17 equally spaced values of β = 0, 0.25, 

0.5, …, 4. For each scenario the simulation was repeated 100 times.

In Figure 1 we compare the three proposed measures and their population values. While the 

population value for R2 is Ω2 given in (5), the population value for  as well as ρ2 do not 

have closed-form expressions, and are obtained by using Monte Carlo simulation with a 

large sample size of 200 clusters with 50 observations in each cluster (200×50). These three 

population measures are marked by points with a square, circle, or triangle. The fact that 

they increase with |β| translates to improved predictive capability as |β| increases. Note that 

even when β = 0, the measures of explained variation are non-zero. This is because the 

model still retains the random effects, which explain part of the variation in the data: λij (t) = 

λ0(t)exp(b0i + b1iZij).

From the figure it is clear that the three population measures are different quantities; they do, 

however, reflect similar strengths of predictability in our opinion, differing from each other 

by at most 10% in all cases. The sample-based measures are plotted using different line 

types, as noted in the figure caption. In comparing the left (200×5) versus the right (20×50) 

panels of Figure 1, we see how the sample sizes affect the accuracy of these measures in 

estimating their population equivalents. In particular, we see that in the left panel R2 

accurately estimates Ω2, while the other two measures, both relying on the estimated , are 

not good estimates of their population equivalents due to the small cluster size of 5. On the 

other hand, in the right panel  and  are much closer to their population equivalents, 

while R2 is a bit less accurate in estimating Ω2 than in the left panel due to the smaller 

number of clusters 20. Note that the number of clusters is the sample size that affects the 

frequentist model parameters, while the cluster size affects the accuracy of .

It was previously noted in Section 2.4 that the population coefficient Ω2 is an increasing 

function of the variance components. In Figure 2 we set either Var(b1i) = 0 (left panel) or 

Var(b0i) = 0.25 (right panel). The other random effect then has standard deviation σ which 

varies between 0 and 2. We observe that for a fixed value of β, Ω2 increases with σ and, even 

with β = 0, Ω2 can be quite large if the variance component is large.

Figure 3 illustrates Ω2 with two covariates. The covariate vector Z has a bivariate normal 

distribution with mean µZ = (0.5, 0.5)′, diag(ΣZ) = (0.25, 0.25), and , 0, 

and , respectively. To enhance presentation we have also printed the values of Ω2 in 

the plots as percentages; for example, ‘25’ means that Ω2 = 0.25 for that particular 

configuration. The figure suggests that geometrically, as a function of β, the level curves of 

Ω2 are concentric ellipses, so that Ω2 increases with β along the principal axes of the 

ellipses; these axes correspond to the eigenvectors of ΣZ.
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Similar results to Figure 2 and Figure 3 have also been observed for the other two population 

measures (data not shown).

In supplement materials we also investigate the dependence of the measures on the amount 

of censoring, the covariate distribution once the variance of the distribution is fixed, and the 

baseline hazard function. Within the scope of our investigation it is seen that the covariate 

distribution (given fixed variance) and the baseline hazard function have little effect on the 

measures. Censoring also has little effect on all the measures except , which increases 

noticeably if the amount of censoring is over 50%.

4 Applications

4.1 E1582 multi-center lung cancer trial

In Xu and Vaida [16] illustrated the application of the PHMM using a multi-center clinical 

trial in lung cancer conducted by the Eastern Cooperative Oncology Group (E1582). There 

were 579 patients from 31 institutions randomized to one of two chemotherapy regimens. 

The overall survival time was observed along with five relevant binary baseline covariates: 

treatment, presence of bone metastasis, presence of liver metastasis, ambulatory 

performance status, and weight loss prior to treatment. Gray [33] developed tests for 

variation across groups in survival data and showed that, for this dataset, there is significant 

variation by institution in the treatment effect. Xu and Vaida [16] and Xu et al. [34] fitted the 

PHMM to the data, and discovered random effects of bone metastases, which had even 

larger variance than the random effects for treatment. In the Bayesian variable selection 

context Dunson and Chen [35] concluded that after accounting for the random bone 

metastases effects, there was no direct evidence of institutional variation in treatment effects. 

This was then followed by a correspondence from Gray [36] and a further discussion in Lee 

et al. [37].

In the following we consider the explained variation for this data set, which can be seen as 

another angle of variable assessment in light of the earlier debates. We first consider 

univariate analyses allowing for random effects if necessary, taking into account the 

potential clustering structure in the data. In Table 1 we present the PHMM fits for treatment 

and bone metastases separately, each with a random effect. The initial fits of the PHMM to 

the other three covariates separately all had their variances of the random effects converging 

to zero during the EM iterations [16], and is hence presented with results from the regular 

Cox model fits without random effects. From the table we see that with or without the 

random effects, each covariate only explains a small percentage of variation in overall 

survival, indicating that each binary variable alone does not make a good predictor for 

survival, which is probably the case in reality. In comparing the three measures, we see that 

 and  gave slightly higher values than R2, consistent with our numerical findings of the 

previous section.

In the next step we incorporate all five covariates, as we typically would in a clinical 

analysis of prognostic variables. In terms of random effects we consider allowing none, 

treatment only, bone metastases only, or both treatment and bone metastases random effects 

(Table 2). For the ease of discussion here let us first focus on the R2 values. It is seen that in 
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terms of explained variation, the five fixed effects of the covariates together explain about 

9% of the variation in overall survival, with allowing for random effects explaining a couple 

of percentage points. It is also seen that the random bone metastases effect explains 2% 

more variation than the random treatment effect, and that adding the random treatment effect 

to the random bone metastases effect does not appear to explain much additional variation. 

In Lee et al. [37] the authors also discussed the distinction between a relatively weak random 

effect (treatment) and a relatively strong random effect (bone metastases), and their impact 

on Bayesian variable selection. Our observation here appears consistent with those 

discussions.

The two other measures  and  again have slightly higher values than R2, although in 

our opinion all three measures reflect a somewhat similar degree of explained variation by 

the covariates. Note the data structure is such that each of the 31 institutions varies between 

a size of 1 to 50 patients, with an average of just under 20 patients per institution. In 

referencing to the discussion of the simulation section, 31 is effectively the sample size for 

R2, and sample size for estimating the bi’s used in  and  varies between 1 to 50 with 

the average just under 20. As with any real data we do not know the true values but in this 

case it may be reasonable to speculate that the truth lies somewhere between the R2, and the 

 and  values.

4.2 CGD recurrent events data

The second application is from a placebo-controlled clinical trial in patients with Chronic 

Granulomatous Disease (CGD), and the data are available in the Appendix of Fleming and 

Harrington [38]. CGD is a genetic disorder in which the functioning of the immune system 

is impaired, leading to chronic and serious infections. In this trial, 128 patients were 

randomized to placebo or treatment with gamma interferon. For each patient the time to 

initial and any subsequent serious infections were recorded, for a total of 203 records. This 

gives an average of less than 2 observations per cluster, which is quite different from the 

lung cancer data structure above. For this reason in the following analyses we only consider 

R2 and not the other proposed measures. In addition to treatment status, the covariates 

include pattern of inheritance (x-linked or autosomal recessive), age, height, weight, 

corticosteroid use at time of study entry (yes/no), antibiotic use at time of study entry (yes/

no), hospital category (US - NIH, US - other, Europe - Amsterdam, or Europe - Other) and 

sex.

Following [16] we fit the PHMM with Xij given by the j-th observed time since the last 

infection (or since study entry for the first infection) for patient i, and with a random effect 

on the baseline hazard to account for the correlation among the repeated infections. Table 3 

displays the univariate fits for each covariate with a random intercept. For example, the 

treatment assignment has a log relative risk of −1.17 indicating that the gamma interferon 

group has lower risk of developing repeated infections, with the hazard of only exp(−1.17) = 

0.31 times the placebo group. The other variables may increase or decrease the risk of 

repeated infections by itself though not necessarily statistically significant, when not 

adjusting for other variables since these are univariate analyses (the coefficients for hospital 

category are not shown since there are more than one). The variances of the random 
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intercepts are substantial in all univariate models ranging from 1.09 to 1.45. The proportion 

of explained variation as reflected in R2 values is about 46% in all cases, which is also quite 

high given that only a single fixed effect plus a random intercept is included in any of the 

models. For comparison purposes we also fit the classic univariate Cox model without the 

random intercept. The estimated fixed effect for each covariate does not change much with 

or without the random intercept (data not shown). However, for each covariate, without the 

random intercept the variation explained (R2∗) is typically quite small, except for treatment 

which explains about 15% of the variation in the outcome. This indicates that the addition of 

the random intercept in the univariate models help to explain a relatively large portion of 

variation in the outcome.

Table 4 shows a set of nested PHMM fits to the data. The covariates become significant as 

they are added to the multivariate model, and the coefficients of the final model including all 

variables were given in Vaida and Xu [16]. From the table we see that as more covariates are 

added after treatment has been included in the model, the variance of the random intercept 

decreases while the R2 value stays around 46-47%. This illustrates the fact that the random 

intercept captures the heterogeneity not reflected in the covariates that are included in the 

model, and that even after all the covariates have been included there still is additional 

individual heterogeneity, with the variance of the random intercept remains at 0.62. We also 

contrast the results with a set of nested Cox model fits without the random intercept (R2∗). It 

is seen that with each additional covariate the R2∗ increases, to a maximum of 31% when all 

the covariates are included. However compared to R2 = 0.47 there is still variation that is 

captured by the random intercept term.

The above illustrates the application of the R2 measure in clinical settings, both for 

quantifying the proportion of explained variation, and possibly as a method to aid in model 

selection.

5 Discussion

Measures of explained variation, as the name suggests, quantify the amount of variation in 

an outcome variable of interest that is explained by one or more other variables, i.e. 

covariates in a regression setting. Such quantification is useful in scientific research, as we 

have repeatedly experienced with our biomedical collaborators. Here we distinguish between 

measures of explained variation and measures of goodness-of-fit, and focus on the former in 

this paper. In other words, the measures proposed in this paper are not designed to be 

sensitive to departures from model assumptions; to the contrary, we believe that ideally such 

measures should be robust to model misspecification, provided that the model is not too far 

from the truth.

We have used a very simple definition of Ω2 as a measure of explained variation, where 

consistent estimation of Ω2 (i.e. R2) only requires consistent estimation of the usual 

parameters under the PHMM and the first two moments of the covariate vector. As a special 

case it can be used for the classic Cox regression model with no random effects. Heller [8] 

used a similar definition under the classic Cox model on the risk scale instead of the 

variance scale we consider here. Kent and O’Quigley [23] mentioned a similar definition but 

Honerkamp-Smith and Xu Page 13

Stat Med. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



did not go on to recommend its use. In light of its straightforward definition and simple 

computation, as well as desirable properties as illustrated in this paper, we recommend it for 

general use under the Cox model, with or without random effects. A similar measure was 

recently used in [39] under the accelerated failure time model.

We have also considered other possible definitions for the same purposes, namely  and 

ρ2. These are generalizations of existing approaches in the literature to the PHMM. Our 

investigation here shows that for the sample based versions to be good approximations of 

their population equivalents, the cluster sizes need to be reasonably large, as they all require 

good ‘estimates’ of the realized random effects. Other than the sample size requirement, all 

measures considered in this paper have desirable properties including: 1) being consistent 

with the semiparametric nature of the PHMM, i.e. invariance under any monotonic 

transformation of the time scale, 2) increasing with the strength of association as reflected 

by the magnitudes of the fixed effects and variances of the random effects, 3) having 

interpretation as explained variation or explained randomness. In addition, while the three 

population measures (as illustrated in different colors in the figures) are not the same, they 

reflect, in our view, a similar amount of variation explained by the predictors.

We have also investigated a second estimator of Ω2, but due to limitation of space it is 

included only in the supplemental materials. The idea is to use the estimated linear predictor 

 as in our second measure, and then use the sample variance of the ’s to estimate Var 

(β′Z + b′W) in Ω2. Since this measure makes use of the estimated bi’s, its performance is 

similar to  and ρ2.

Sometimes we may be interested in the following question: having accounted for the 

clustering in the data using b0, how much variation is explained by the covariates? A slightly 

different measure of explained variation than what we have focused on so far can be used to 

answer this question. For this purpose, we may define

(15)

In addition, partial coefficients of explained variation [10] often arise when one wants to 

know how much additional variation can be explained by some additional covariates, after a 

first set of covariates have already been included in a model. In general a partial coefficient 

can be defined as , where  and  are the measures 

already defined under the two models, with and without the additional covariates, 

respectively. Since each of our previously defined measures is of the form 1 − v/v0, where v 
and v0 are the estimated residual variation under the full and the null model, we can then 

write  and . This gives ; in other words, this 

is equivalent to considering a new “null” model with the first set of covariates, and a full 

model with the additional covariates.
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APPENDIX

In order to derive (6) we first express η as the inner product of two independent random 

vectors. Define the following vectors in ℝp+q+1:

where 0 ∈ ℝq in the third expression is a vector of zeros. With  and  we have 

η = U ′V. The expectations of U and V are

where µZ denotes the expectation of Z. The covariance matrices are

where Oa×b is an a × b matrix of zeroes. Brown & Rutemiller [40] provide a formula for the 

variance of the inner product of two independent random vectors: 

. Thus the variance of η is 

. This gives (6), where Ω2 is a function of 

the population parameters β, µZ, ΣZ, and Σb.
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Figure 1. 
Squares, circles and triangles are the population measures; solid, dashed and dotted lines (of 

the same colors) are the corresponding sample measures R2,  and , respectively.
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Figure 2. 
Ω2 increases with σ2 = Var(b0) (left) or σ2 = Var(b1) (right; Var(b0) = 0.25).
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Figure 3. 
Ω2 (as percentage) with two covariates.
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Table 1

Univariate fits of the lung cancer data; σ2 is the variance of the random slope.

Covariate β σ 2 R 2 Rres
2

ρ2

Trt −0.28 (0.10) 0.05 (0.03) 0.03 0.07 0.06

Bone 0.35 (0.14) 0.19 (0.12) 0.05 0.07 0.09

Liver 0.45 (0.09) – 0.03 0.05 0.05

PS −0.58 (0.10) – 0.03 0.06 0.05

Wtlss 0.27 (0.09) – 0.01 0.02 0.02

Stat Med. Author manuscript; available in PMC 2017 October 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Honerkamp-Smith and Xu Page 22

Table 2

Multivariate fits of the lung cancer data; all five fixed covariate effects are included.

Random effects σ 2 R 2 Rres
2

ρ2

None – 0.09 0.13 0.13

Treatment 0.07 (0.05) 0.11 0.16 0.17

Bone 0.14 (0.08) 0.13 0.17 0.18

Treatment
+ Bone

0.05 (0.08)
0.13 (0.12)

0.13 0.19 0.21
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Table 3

Univariate fits of the CGD recurrent events data; σ2 is the variance of the random intercept.

Trtmt Inherit Age Steroid Antibio Sex Hosp (4 cat)

Coeff −1.17 (0.35) 0.25 (0.38) −0.03 (0.02) 1.12 (0.92) −0.55 (0.51) −0.25 (0.47) –

σ 2 1.09 (0.45) 1.45 (0.58) 1.36 (0.45) 1.40 (0.49) 1.43 (0.61) 1.45 (0.59) 1.38 (0.45)

R 2 * 0.46 0.47 0.47 0.47 0.47 0.47 0.47

R 2 0.15 0.01 0.04 0.01 0.01 0.01 0.04

*
Without the random intercept.
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Table 4

Nested model fits of the CGD recurrent events data; with (R2) or without (R2*) the random intercept.

Covariates Random intercept R 2 R2*

Treatment 1.09 (0.45) 0.46 0.15

Trtmt, Steroid 1.09 (1.52) 0.47 0.16

Trtmt, Steroid, Age 0.94 (0.94) 0.47 0.21

Trtmt, Steroid, Age, Antibio 0.90 (0.34) 0.47 0.22

Trtmt, Steroid, Age, Antibio, Inherit 0.85 (0.32) 0.46 0.23

Trtmt, Steroid, Age, Antibio, Inherit, Hosp 0.76 (0.41) 0.47 0.27

All** 0.62 (0.44) 0.47 0.31

**
All the fixed covariate effects are significant.
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