Skip to main content
. Author manuscript; available in PMC: 2017 Sep 2.
Published in final edited form as: J Org Chem. 2016 Aug 12;81(17):7824–7837. doi: 10.1021/acs.joc.6b01481

Table 1.

Reaction Conditions Optimization in Alkaloid-Catalyzed Heterodimerization of Ketenes.a graphic file with name nihms-813507-t0005.jpg

entry catalyst addition time of AcCl (h) solvent % Yield (conv) % eeb
1 TMSQ 1 THF 0 -
2 TMSQ 1 CH2Cl2 (40) nd
3c MeQ 1 CH2Cl2 (50) nd
4d MeQ 1 CH2Cl2 (65) nd
5 MeQ 8 CH2Cl2 65 83e
6 TMSQ 8 CH2Cl2 57 94e
7 (DHQ)2PHAL 8 CH2Cl2 38 93
8 QT 8 CH2Cl2 <5 nd
9 NBzQ 8 CH2Cl2 43 13
10 PhQ 8 CH2Cl2 39 61
11 BzQ 8 CH2Cl2 55 72
12 MeQd 8 CH2Cl2 64 98e
13 MeQd 8 THF 47 91
14 MeQd 8 PhCH3 35 89
15 MeQd 8 CH2Cl2 (−78 °C) 50 91
16 MeQd 8 CH2Cl2 (0 °C) 20 36
17 MeQd 8 CH2Cl2 (rt) 15 5
a

Only one heterodimer regioisomer observed by GC-MS and 1H NMR analysis of crude for entries 5,6 and 12 (Z:E ratio >97:3 as determined by GC-MS and 1H NMR analysis).

b

ee determined by chiral HPLC.

c

entry 1–3: 0.13 M concentration of acceptor ketene in solvent.

d

entry 4–17: 0.25 M concentration of acceptor ketene in solvent.

e

MeQ and TMSQ afforded the (R)-enantiomer of 3a, while MeQd provided the (S)-enantiomer of 3a.