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Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal.The basic
approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window
function with fixed resolution. The selection of an appropriate window size is difficult when no background information about
the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow
band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the
approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This
results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple
but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic
construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank.
Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost
and achieves 87.71% of the appropriate window length selection.

1. Introduction

Time-frequency analysis is typically required to characterize
nonstationary phenomena such as speech [1, 2], biomedicine
[3, 4], vibration [5], and music [6] based signals. The
frequency contents for the analysis can be revealed if a Fourier
transform is applied to these signals [7]. However, in doing so,
all time related informationwill be lost [8].Thedeficiencywas
first addressed in [9] where the Fourier transformwas applied
to analyze small sections of a signal at a time. Over time,
this technique became popularly known as the Short Time
Fourier Transform (STFT) [10, 11]. A significant shortcoming
of the STFT is that it considers a fixed time-frequency
resolution for all types of signals [12, 13]. This approach is
not desirable for wide-band or ultrawide-band signals where
low spectrogram resolutions can be observed. Moreover,
the selection of an appropriate window size is vital for the
STFT [14]. The window size should ideally ensure that the
input signal falling within it should remain stationary [15].

However, if the window is too small, then the frequency
domain cannot be localized [16].
The low resolution can be improved by using the constant

Q transform (CQT) which is frequently used in auditory
applications [17]. Unlike the STFT, the CQT provides a
frequency resolution that depends on the geometrically
spaced center frequencies of an analysis window [18]. In
this paper, an adaptive method is proposed that provides an
effective framework of switching between STFT for narrow
band and CQT for wide-band signals, after analyzing the
input signal. No prior information about the input signal
is required in the proposed method. The proposed method
is also capable of constructing a nonuniform filter bank
according to user-defined parameters. This helps in the
removal of filter bank redundancies. The results obtained
from the proposed approach not only show an improved
spectrogram visualization but also reduce the computation
cost and show 87.71% of the appropriate window length
selection.
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2. Short Time Fourier Transform and
Constant Q Transform

The STFT is achieved by introducing a sliding window to the
nonstationary signal. This window adds a new dimension of
time to the frequency response. In the discrete time-case, this
is represented as

𝑋 (𝑛, 𝜔) =

∞

∑

𝑚=−∞

𝑠 (𝑚)𝑤 (𝑛 − 𝑚) 𝑒
−𝑗𝜔𝑚

, (1)

where 𝑛 and 𝑘 are the time and frequency domain indices, 𝑠
is the input signal, 𝑤 is the window function, and 𝑚 is the
window interval centered around zero. The STFT can also be
interpreted as a uniform filter bank [19]. The output signal
𝑋(𝑛, 𝑘) is essentially the STFT (index 𝑛) obtained at the 𝑘th
channel of the filter bank (Figure 1). The window function
is assumed to be nonzero only in the window interval. As
an example, (1) is applied to two signals. The first signal is
a composite signal bearing frequencies of 40Hz and 100Hz.
The second shows both the signals in isolation, occupying
one-half of the time window each. As can be seen from the
equivalent Fourier transform (Figure 2), the Fourier space
cannot distinguish between the two types of signals. On the
other hand, the distinction is clearly visible upon viewing the
spectrogram of the STFT (Figure 3).
The time-frequency resolution of the spectrogram is

dependent upon the chosen window size. A larger size will
result in higher spectral, but lower temporal resolution,
whereas the opposite will result in a lower spectral, but
higher temporal resolution. This relationship is described
as the Uncertainty Principle [20]. In this case, a variable
window size would be ideal as it will provide high spectral
resolution at low frequencies and high temporal resolution
at high frequencies. A good candidate for achieving this
is the constant Q transform (CQT) [21], where 𝑄 is the
quality factor and its description appears shortly. Like the
STFT, the CQT can also be interpreted as a filter bank.
The only difference is that, in the case of CQT, the filters
are geometrically spaced center frequencies such that the
bandwidth Bw

𝑘
of the 𝑘th filter is a multiple of the (𝑘 − 1)th

filter:

Bw
𝑘
= (2
1/𝑛

)Bw
𝑘−1

, (2)

where 𝑛 is the number of octaves per filter. As such, the
bandwidth Bwmin of the lowest filter is given as

Bw
𝑘
= (2
1/𝑛

)
𝑘

Bwmin. (3)

The quality factor 𝑄 is represented as the ratio of the center
frequency 𝑓

𝑘
to the bandwidth:

𝑄 =
𝑓
𝑘

Bw
𝑘

. (4)

Due to variations, the window length for the 𝑘th filter is given
as

𝑁[𝑘] =
𝑓
𝑠

Bw
𝑘

. (5)
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Figure 1: Uniform filter bank (STFT) with fixed time-frequency
resolution.

Finally, the CQT is given as

𝑋
𝐶𝑄

[𝑘] =
1

𝑁 [𝑘]

𝑁[𝑘]−1

∑

𝑛=0

𝑊[𝑛, 𝑘] 𝑥 [𝑛] 𝑒
−𝑗2𝜋𝑄𝑛/𝑁[𝑘]

, (6)

where 𝑋
𝐶𝑄
[𝑘] is the 𝑘 component of the constant 𝑄 trans-

form, 𝑥[𝑛] is the input signal, and 𝑤[𝑛, 𝑘] is the window
function of length𝑁[𝑘].Thefilter bank bearing geometrically
spaced center frequencies of the CQT is shown in Figure 4.

3. Related Work

Time-frequency analysis methods are widely used in acous-
tics [22, 23], mechanics [5], electronics [24, 25], telecom-
munications [26, 27], biomedicine [28], and other fields
involving processing of nonstationary information. Time-
Frequency representation techniques are broadly categorized
into parametric and nonparametric methods. Different para-
metric and nonparametric approaches have been studied in
literature [29–35]. This paper deals with the nonparametric
approach. An important and one of the most prevalent non-
parametric tools is the STFT [1, 36] which has been discussed
earlier in the introduction. The STFT is not desirable when
dealingwithwide andultrawide-band signalswhich results in
spectrogram resolution issues due to the size of the window
[37, 38]. A number of techniques have addressed this issue.
Spectrum analysis/synthesis can be added to the STFT as a
feature [39]. Window size decisions can then be manually
made on the basis of sinusoidal features of the signal such as
peak amplitude, frequency, and phase trajectories. As such,
two consecutive sinusoids with frequency difference Δ𝑓 can
then be separated by setting the window size as

𝑊 =
𝐵
𝑠
𝐹
𝑠

Δ𝑓
, (7)

where 𝑊 is the window size (number of samples), 𝐵
𝑠
is

the used window’s main lobe size, and 𝐹
𝑠
is the sampling

frequency. If no prior information is available regarding
an input signal, then most of the existing methods follow
the adaptive STFT that selects a window length from a
pool of window sets [40–43]. This approach involves a high
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Figure 2: (a) Time domain representation of 40Hz and 100Hz combined signal for 2 seconds; (b) Fourier transform of part (a); (c) time
domain representation of 40Hz signal for first two seconds and 100Hz signal for next two seconds; (d) Fourier transform of part (c).

computation cost and the limited pool of window sets also
reduces the chances of getting an accurate window length.
Various adaptively varying STFT approaches are pro-

posed in [44] that reduce filter bank artefacts without
compromising on time-frequency resolution. One of the
approaches accounts for the time in which signal properties
such as power and spectral shape remain preserved over the
period, that is, a stationary region. Likewise, the opposite
would be the time in which signal properties change over
a period, that is, a transient region. Identifying a region
involves integration of signal energy inside a given bank.
The window size is then selected on the basis of variation
of energies across critical banks. The general principle is
increasing the time and frequency resolution for transient
and nontransient regions, respectively. Similarly, a variable
window length is determined by estimating the local instanta-
neous frequencies in every window slice over time in [45, 46].
Non-STFT based tools for time-frequency analysis also

appear in the body of literature. Amongst these, the CQT
[17, 47, 48] and the wavelet transform (WT) [49–52] are the
most common. From the outset, bothmethods seem to be the
same. However, the difference lies in the usage of the basis
function. If the basis function can be interpreted as a win-
dowed sinusoid, then both methods are essentially the same
[53].Wavelet transform can be categorized as discrete wavelet
transform (DTW), continuous wavelet transform (CTW),

andwavelet packet transform (WPT) [54].The significance of
wavelet transform depends upon the selection of appropriate
wavelet basis because inappropriate wavelet basis will directly
hamper the results ofWT.Many publications have been seen,
describing different wavelet basis and advancement in WT
[55–60].

4. Proposed Method

Computationally, the CQT is expensive as compared to the
STFT. The asymptotic complexity for the STFT is 𝑂(𝑛 log 𝑛)
following the pattern of the FFT, where 𝑛 is the samples in the
input signal. On the other hand, the asymptotic complexity
of the CQT following (6) is 𝑂(𝑛 log 𝑛 + 𝑛𝑘 + 𝑘), where
𝑘 is the number of components. For performance reasons,
therefore, it would be better to select the STFT over CQT for
visualization of the spectrum. However, the STFT is feasible
only for narrow band signals where the filter bank with
fixed window size is used. A simple but effective switching
framework is proposed that can alternate between both
tools after analyzing the input signal using spectrum sensing
techniques. A block diagram of the proposed framework is
shown in Figure 5.
The first step involves spectrum sensing that determines

the orientation of the signal on the spectrum using the
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Figure 3: (a) Time domain representation of 40Hz and 100Hz combined signal for 2 seconds; (b) magnitude STFT representation of part
(a); (c) time domain representation of 40Hz signal for first two seconds and 100Hz signal for next two seconds; (d) magnitude STFT
representation of part (c).
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Figure 4: CQT filter bank with geometrically spaced window bins.

normalized power spectral density �̂�. The expectation 𝜇 and
standard deviation 𝜎 is extracted from �̂� as

𝜇 =

𝑁

∑

𝑖

�̂�
𝑖
⋅ 𝐴
𝑖
, (8)

𝜎 = √
1

(𝑁 − 1)

𝑁

∑

𝑖=1

(�̂�
𝑖
− 𝜇)
2

, (9)

where 𝐴
𝑖
is the amplitude of normalized Power Spectral

Density PSD �̂�
𝑖
. The expectation 𝜇 returns the frequency

where PSD is concentrated. Together with 𝜎, both give
information about the distribution of the PSD.A signal would
be considered narrow band when 𝜎 is smaller than a user-
defined threshold 𝛽. An optimum threshold can be selected

empirically such that smearing effect is minimized. After the
analysis of known narrow and wide-band signals, the value
of 𝛽 is set to be 1500. The signals having 𝜎 less than 1500
are considered as narrow band signal and the appropriate
tool; that is, STFT is selected. As mentioned earlier, STFT is
computationally less expensive and the smearing effect is not
prominent in case of narrow band signals. Signals having 𝜎
greater than 1500 are considered wide-band signal. In such
scenario, the proposed method will adopt CQT tool. Unlike
the STFT, CQT will minimize the smearing effect for wide-
band signal and improve the visualization of spectrogram.
The check will result in the selection of either the STFT or
the CQT method as

Tool =
{

{

{

STFT, 𝜎 ≤ 𝛽,

CQT, otherwise.
(10)

Upon selection of STFT, the next step is to select an appro-
priate window size as [39], where two closest sinusoids can be
distinguished using (7). However, nonstationary signals may
involve a large number of sinusoids in close proximity. This
results in a very small Δ𝑓 and consequently a large window.
This makes the STFT very similar to the Fourier transform
and will hamper temporal resolution. In order to select an



Computational Intelligence and Neuroscience 5

Power spectral
density (PSD) Normalized (PSD)

Features extraction

T

F

STFT CQT

f f̂

𝜎 ≤ 𝛽
𝜇, 𝜎

Δf̂ =
𝜇

3

Window = ⌈BsFs

Δf̂
⌉

XCQT

2XSTFT


2

𝜇 =
N−1∑
i=0

f̂i · Ai

𝜎 = √ 1

N − 1

N∑
i=1

(f̂i − 𝜇)2

f̂k = f̂1 +
k−1∑
j=1

Bwj +
Bwk − Bw1

2

Bwk = 𝛼Bwk−1

Bw1 = C

Figure 5: Block diagram of the proposed method.

appropriate window size a novel empirical model is proposed
that adaptively selects a window size by modifying (7) to

𝑊 =
3𝐵
𝑠
𝐹
𝑠

𝜇
. (11)

Equation (11) will adopt an appropriate window size
which does not lose any temporal information after the
transform, where the size of the main lobe of the window 𝐵

𝑠

can be set to 2 for a rectangular, 4 for a Hamming/Hanning,
and 6 for a Blackman window. In this work, Hamming
window is used and the value of 𝐵

𝑠
is set as 4.

The proposed method is tested over different inputs such
as a heartbeat (Figure 6), mridangam (Figure 7), multiple
sinusoids (Figure 8), radio (Figure 9), high-carrier (Fig-
ure 10), music (Figure 11), and a speech signal (Figure 12).
According to the proposed method, five out of these seven
signals are labeled as narrow band while the remaining two,
music and speech, are labeled as wide-band signals. The
proposedmodel adopts an appropriate window size for STFT
using (11). All the figures show how the adaptive window
selection improved the spectrogram visualization.The results
from each signal type are given in Table 1.
A user-defined filter bank can be constructed using an

approximation of the signal bandwidth (0.4–10KHz) and its
orientation using [61] as

Bw
𝑘
=

{

{

{

𝐶, 𝑘 = 1,

𝛼Bw
𝑘−1

, 2 ≤ 𝑘 ≤ 𝑄,

𝑓
𝑘
= 𝑓
1
+

𝑘−1

∑

𝑗=1

Bw
𝑗
+
Bw
𝑘
− Bw
1

2
,

(12)

where𝐶 is the arbitrary bandwidth,𝑓
1
is the center frequency

of the 1st filter, 𝛼 is the logarithmic growth factor, and 𝑄 is
the total number of filter banks. This will not only reduce the
number of banks but will also cover the band where a signal
may lie. An example of a filter bank is shown in Figure 13
bearing signal bandwidth of 7.2 KHz ([0.2, 7.4]KHz), 𝐶 =

0.2KHz, 𝑓
1
= 0.3KHz, 𝛼 = 1.4142, and 𝑄 = 8. The entire

process of our proposed method is listed in Algorithm 1.

5. Results and Discussion

A quantitative analysis of the proposed method is discussed
in this section. The method selects an appropriate window
length 𝑊 without prior information about the input signal.
Considering a composite signal bearing frequencies 100, 200,
400, and 500Hz, then the Hamming window length required
to provide the frequency resolution of 100Hz (Δ𝑓 = 200Hz −
100Hz) would be 𝐵

𝑠
𝐹
𝑠
/Δ𝑓 = 4 × 44100/100 = 1764.

This shows that the minimum window size required to
get 100Hz frequency resolution is 1764 samples [39]. By
increasing thewindow size the frequency resolution increases
but this will hamper the temporal resolution. The window
length is set manually to 1764 samples in order to achieve
the frequency resolution of 100Hz. Background knowledge
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Table 1: Adaptive window selection from proposed method, where 𝜇 is estimation, 𝜎 is the standard deviation, 𝛽 is the optimal threshold
(1500), and𝑊 is the window size.

Signal Type 𝜇 𝜎 Decision 𝑊

Heartbeat (Figure 6) Low 90.99 135.49 STFT 5816
Mridangam (Figure 7) Intermediate 527.61 706.89 STFT 1003
Carriers (Figure 8) Intermediate 386.13 722.57 STFT 1371
Radio (Figure 9) Intermediate 2632.8 542.37 STFT 201
High carrier (Figure 10) High 10425 1117 STFT 51
Music (Figure 11) Mixed 2170 2160 CQT Variable
Speech (Figure 12) Mixed 810.15 1302 CQT Variable

Reqiure: Non-stationary input signal 𝑥, Optimum threshold 𝛽, Bandwidth of 1st filter 𝐶,
Center frequency of 1st filter 𝑓

1
, Logarithmic growth factor 𝛼, Number of filters 𝑄

(1) procedure
(2) PSD 𝑓 fl periodogram(𝑥)
(3) Normalized PSD �̂� fl 𝑓/sum(𝑓)
(4) 𝜇 fl Expectation of �̂� (Equation (8))
(5) 𝜎 fl Standard Deviation of �̂� (Equation (9))
(6) if 𝜎 ≤ 𝛽 then ⊳ SIFT Selected
(7) Window Size𝑊 fl ⌈3𝐵

𝑠
𝐹
𝑠
/𝜇⌉

(8) Overlapping Region𝑊
𝑜
fl ⌈𝑊/2⌉

(9) FFT Pointsfl 2
⌈log
2
𝑊⌉

(10) Run STFT with𝑊,𝑊
𝑜
(Equation (1))

(11) else ⊳ CQT Selected
(12) Run CQT (Equation (6))
(13) (Optional) User Defined Bins Bw

𝑘
fl FILTERBANK(𝐶, 𝑓

1
, 𝛼, 𝑄) (Equation (12))

(14) end if
(15) end procedure
(16) return Spectogram |𝑋STFT|CQT|

2

Algorithm 1: Complete algorithm.

about the input signal is required to set the appropriate win-
dow length. The proposed method automatically calculates
an appropriate window length using (11) as:

Δ𝑓 =
𝜇

3
=
386.13

3
,

𝑊 = ⌈
𝐵
𝑠
𝐹
𝑠

Δ𝑓
⌉ = 1371.

(13)

Figure 8 shows how the proposed method adaptively
selects the window size and improve the spectrogram. Signals
that are almost invisible in default window size are explored
by proposed method. The percentage of appropriate window
length selection is 1371/1764 × 100 = 77.72%. In nature
most of the signal are nonstationary and it is not possible to
have information about all types of signal. Hence, it is very
difficult to set an appropriate window length. The proposed
method is evaluated on a number of nonstationary signals.
Mridangam is an instrumentwhich produces complex sound.
The mridangam has got some stable harmonics and the
minimum distance between two harmonics must be known

in order to select an appropriate window length. After the
analysis of mridangam signal, the first harmonic is around
200Hz and the secondharmonics is around 400Hz.Themin-
imum distance between two consecutive partials is around
200Hz. So the appropriate window length is 882 samples.
The adaptive window selected from the proposed method is
1003 samples. Hence, the percentage of appropriate window
selection is 87.93%. Figure 7 shows that the proposed method
improves the spectrogram by prominently displaying the
harmonics which is not visible in default window selection.
The proposed method is fully automatic and requires no
prior information about the input signal. After the statistical
analysis of input signal, the proposed method selects an
appropriate window size using the empirical model proposed
in this paper.
The heartbeat of normal human heart consists of 𝑆1 and

𝑆2 sounds. 𝑆1 results frommitral and tricuspid valve closure.
It is a duller, lower-frequency sound than 𝑆2 and occurs at the
beginning of ventricular systole.The approximate frequencies
from different literatures for 𝑆1 and 𝑆2 are 20–120Hz and 60–
250Hz, respectively. Hence, the appropriate window length
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Figure 6: (a) PSD of heart signal; (b) STFT with default window; (c) STFT with proposed method window selection.
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Figure 7: (a) PSD of mridangam signal; (b) STFT with default window; (c) STFT with proposed method window selection.

to provide 30Hz frequency resolution is 5880 samples. The
window selected by the proposedmethod is 5816 samples.The
percentage of appropriate window length is 98.91. Adaptive
window clearly shows 𝑆1 and 𝑆2 signals which is com-
pletely missed in the default window as shown in Figure 6.

A number of nonstationary signals are evaluated from pro-
posed method, which is summarized in Table 2.
The appropriate window length is only possible when

complete information about the input signal is known. This
is usually not possible for all types of input signal. Hence,
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Figure 8: (a) PSD of multiple sinusoidals; (b) STFT with default window; (c) STFT with proposed method window.

Table 2: Adaptive window selection from proposed method, where 𝑙
𝐴
is the appropriate length and 𝑙

𝑃
is the proposed length.

Signal Type 𝑙
𝐴

𝑙
𝑃

% achieved
Heartbeat (Figure 6) Low 5880 5816 98.91
Mridangam (Figure 7) Intermediate 882 1003 87.93
Carriers (Figure 8) Intermediate 1764 1371 77.72
Radio (Figure 9) Intermediate 176 201 87.56
Carrier (Figure 10) High 44.1 51 86.47

the proposed method is able to select an appropriate window
size without any prior information about input signal and
achieved the overall 87.71% of appropriate window length
selection.
Note that the appropriate fixed window length is selected

for narrow band signal. For wide-band signal it is not possible
to select an appropriate fixed window length because long
window length improves the spectral resolution at the cost
of temporal resolution and vice versa. The proposed method
is able to detect the wide-band signal and automatically
selects constant Q transform that provides high spectral
resolution at low frequency and high temporal resolution at
high frequency with geometrically spaced center frequencies.
The existingmethods for wide-band signal select window

size from adaptive STFT using two main approaches. (1)
Select a window size from a pool of windows using different
concentration measurements such as skewness, kurtosis, and
integrate energies [40–44]. (2) Define a benchmark 𝜏 and
adjust it according to local characteristics of input signal
using some concentration measurements such as instan-
taneous frequency and integrated energies [45, 46]. The
problemwith former approaches is that (i) they cannot obtain
the optimal window length quickly or even fail to converge to

the optimal window length and (ii) they are computationally
expensive.
In [44] the smearing of energy in spectrogram is reduced

by calculating STFT with 4 different window sizes. This
increases the computational time approximately 3 times as
compared to the proposed method. For all types of input
signals whether narrow or wide-band signals, 4 different
window sizes are used to reduce the smearing effect. The
proposed method intelligently selects STFT for narrow band
signal because for narrow band signal the fixed window
length will not produce much smearing effects and improves
the efficiency 4 times. When the input signal is wide-band
signal then smearing effect is prominent while using STFT. In
such a scenario, the proposed method selects CQT, which is
computational expensive compared to STFT but it provides
much better resolution and reduces the smearing effect.
Figures 11(d) and 12(d) show the improved time-frequency
resolution achieved by CQT.
The problem with the later approaches is that they are

computationally expensive, which decides the window length
on local characteristics of input signal. In [46] variable
STFT is proposed, which adapts variable window length
after analyzing the local characteristics of input signal. This
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Figure 9: (a) PSD of radio signal; (b) STFT with default window; (c) STFT with proposed method window selection.

0 5 10 15 20
−110

−100

−90

−80

−70

−60

−50

−40

Frequency (kHz)

Po
w

er
/fr

eq
ue

nc
y 

(d
B/

H
z)

Periodogram power spectral
density estimate

(a)

0

0.5

1

1.5

2

Fr
eq

ue
nc

y 
(H

z)

0.4 0.6 0.8 1 1.2 1.4 1.6
Time

×104

(b)

0.5 1 1.5
0

0.5

1

1.5

2

Time

Fr
eq

ue
nc

y 
(H

z)

×104

(c)

Figure 10: (a) PSD of high-carrier signals; (b) STFT with default window; (c) STFT with proposed method window selection.

is computationally expensive. The processing time for fixed
STFTof length 64 and 128 is 0.1716 s and 0.1560 s, respectively,
where the processing time of variable STFT is 0.5928 s
for the same data. This demonstrates that the computing
cost of variable STFT or any adaptive STFT which decides

window length on local characteristics is much greater than
the STFT. Variable STFT and adaptive STFT provide better
resolution as compared to STFT but the proposed method
solved the resolution problem by adapting CQT for wide-
band signal. Hence, the proposed method not only is able
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Figure 11: (a) PSD of music signal (wide band); (b) STFT with default window; (c) STFT with proposed method window selection; (d)
magnitude of CQT (better time-frequency resolution achieved with CQT).

to improve the time-frequency resolution but also reduces
the computational cost. The computing costs are compared
in Table 3.

6. Conclusion

In this paper, a general framework for effective multires-
olution signal analysis has been demonstrated. The frame-
work avoids the undesirable side effect of the STFT such
as fixed time-frequency resolution for all types of input
signals. After the analysis of input signal the method adapted
an appropriate tool, that is, STFT and CQT for narrow
and wide-band signal, respectively. The proposed method

is capable of selecting an appropriate window length for
STFT and achieved an overall of 87.71% of appropriate
window length selection. The proposed method also allows
a user to dynamically construct the filter bank according
to the parameters provided by the user, which helps in the
reduction of redundancy. The results obtained from the pro-
posed method have improved spectrogram visualization and
computing cost and achieved 87.71% of appropriate window
length selection. The proposed method is fully automatic
and required no prior information about the input signal.
The results obtained from the proposed method directly
contributes in different domains such as feature extraction,
for example, harmonic, pitch, attack, delay, and energy.These
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Figure 12: (a) PSD of speech signal (wide band); (b) STFT with default window; (c) STFT with proposed method window selection; (d)
magnitude of CQT (better time-frequency resolution achieved with CQT).
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Table 3: Adaptive short time fourier transform.

Schemes CPU time (seconds)
STFT

fix=128
0.1560

STFT
fix=64

0.1716
CQT 0.413
VSTFT/ASTFT 0.5928
Proposed method 0.2845
STFT: Short Time Fourier Transform; CQT: constant Q transform; VSTFT:
Variable Short Time Fourier Transform; ASTFT: Adoptive Short Time
Fourier Transform.

features can be used in different applications such as speech
and speaker recognition, biomedical signal analysis, and
music instrument analysis. In future, the authors are planning
to automatically build a desirable nonuniformfilter bank after
analyzing the characteristics of input signal. The filter bank
will not be limited to linear or geometrical spacing only. The
aim is to reduce the computing cost.
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