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The Mass Spec Studio package was designed to support
the extraction of hydrogen-deuterium exchange and co-
valent labeling data for a range of mass spectrometry
(MS)-based workflows, to integrate with restraint-driven
protein modeling activities. In this report, we present an
extension of the underlying Studio framework and provide
a plug-in for crosslink (XL) detection. To accommodate
flexibility in XL methods and applications, while maintain-
ing efficient data processing, the plug-in employs a pep-
tide library reduction strategy via a presearch of the tan-
dem-MS data. We demonstrate that prescoring linear
unmodified peptide tags using a probabilistic approach
substantially reduces search space by requiring both
crosslinked peptides to generate sparse data attributable
to their linear forms. The method demonstrates highly
sensitive crosslink peptide identification with a low false
positive rate. Integration with a Haddock plug-in provides
a resource that can combine multiple sources of data for
protein modeling activities. We generated a structural
model of porcine transferrin bound to TbpB, a membrane-
bound receptor essential for iron acquisition in Actinoba-
cillus pleuropneumoniae. Using mutational data and
crosslinking restraints, we confirm the mechanism by
which TbpB recognizes the iron-loaded form of transfer-
rin, and note the requirement for disparate sources
of restraint data for accurate model construction. The
software plugin is freely available at www.msstudio.
ca. Molecular & Cellular Proteomics 15: 10.1074/mcp.
O116.058685, 3071–3080, 2016.

Integrative methods in structural biology use data from
disparate sources to generate accurate models of large pro-
tein structures and assemblies (1). In this way, the reach of

classical structure providers such as x-ray crystallography
and NMR can be extended. Biophysical data with an under-
lying spatial component can be combined with “building
block” structures in a molecular modeling framework, to gen-
erate high-fidelity models of systems of impressive size and
complexity (2–5). Mass spectrometry can provide rich sets of
data in support these activities, in the form of topographical
footprints (covalent labeling, CL)1 (6–8), conformational dy-
namics (hydrogen/deuterium exchange, HX) (9, 10) and dis-
tance restraints (crosslinking, XL) (11–13). We have built in-
formatics routines within the Mass Spec Studio framework to
mine restraints from both CL and HX data (14), to support
such data-driven molecular modeling activities. In this study,
we describe a new plug-in built into the Studio for identifying
crosslinks from LC-MS/MS data sets.

Advances in instrumentation, methods and cross-linking
protocols have generated renewed interest in what is an older
technique. However, useful informatics routines are essential
for gaining access to quality crosslinking information as site
identification is not a trivial problem (15). Some noteworthy
tools that have emerged in the last few years include xQuest
(16), Merox (17), Stavrox (18), Sim-XL (19), pLink (20), XlinkX
(21), and XiQ (22). The proliferation of such tools is a strong
indication that new XL reagents and methods require dynamic
software development to accommodate the needs of chal-
lenging structural applications. For example, multiplexed
structural analysis from whole proteomes (21), a requirement
for richer sets of “molecular rulers” for de novo structure
determination (23), and integration with other sources of
structural data are three application areas that are not yet well
served by available tools.

It would be useful to develop packages that collect and
integrate concepts that have demonstrated some utility in the
detection of crosslinks (24), and support the easy addition ofFrom the ‡Department of Biochemistry and Molecular Biology,
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new concepts. In our view, there are a number of features that
should be bundled into a single solution. Any source of MS
data should be accommodated, regardless of the instrument
vendor or style of experiment. Both low and high resolution
data-dependent LC-MS/MS data have been collected in
crosslinking experiments, on both FT-MS and TOF-based
instruments (11, 25). Many software applications are re-
stricted to the analysis of processed and/or converted data
files, which seems to us unnecessary with the increasing
willingness of vendors to supply file readers directly or
through Proteowizard (26). Raw data should be handled na-
tively where possible, as it provides the greatest opportunity
for error detection and results validation. Chromatographic
data and the precursor ion profiles should be available to
support the identification exercise, or at least the validation
exercise. The output should be easily navigated for rapid hit
validation, and readily harvested for integration with visualiza-
tion and modeling activities (14).

Further, although isotopic labeling has high value in the
validation exercise (16, 27), a very large number of useful
reagents are not available in labeled format, and labeling is
not a strict requirement for accurate linkage detection (28).
Finally, and perhaps most importantly, robust probabilistic
scoring algorithms should be implemented (29), and software
design should promote the easy inclusion of alternative meth-
ods as they become available. Simple fragment-counting may
be useful, but it does not always promote sensitive site iden-
tification. In the wider context of scoring, database reduction
strategies are necessary to address the n2 time complexity of
searching for crosslinked peptides, which becomes particu-
larly acute when using nonspecific crosslinker chemistries
and nonspecific digestion enzymes (24, 28). Methods that do
not complicate the experimental workflow or compromise the
validity of a probabilistic scoring function are needed. Cross-
linkers that are cleavable in the gas phase through CID or ETD
are emerging that have been used to reduce time complexity
(21, 30), but these currently come with platform restrictions
and limitations on the choice of reagents. Concepts that treat
the second peptide in a linked pair as an open modification
are particularly useful in site identification (28, 31–33). Inte-
grating and extending these concepts within a wider platform
will be required to meet the challenges associated with non-
specific labeling and digestion protocols, however.

In this contribution we present a crosslinking plug-in for the
flexible Mass Spec Studio framework, which combines useful
components for each of the feature categories discussed
above. We extend the database reduction concept to limit
dependences on precursor ion m/z, and provide a collection
of tools for rapid results validation using the raw data.
Finally, we illustrate how the XL-MS data can be combined
in the Studio with other structural data to support modeling
activities.

EXPERIMENTAL PROCEDURES

Software design—The Mass Spec Studio was designed to capture
the growing number of experimental methods for structural mass
spectrometry, and the diverse computational strategies for identifying
and quantifying structural restraints for modeling purposes (14). A
large number of the core activities associated with mining LC-MS/MS
data are shared by most label-detection applications, therefore we
designed a composite application where loosely coupled components
allow effective use of shared tools, as well as straightforward develop-
ment of future extensions and new pluggable content. The crosslinking
software package was built as a plug-in, using an updated version of the
Studio framework (v2). As with v1 of the framework, plug-ins are either
individual components or collections of components, consisting of ob-
ject libraries, processing algorithms, user interface (UI) elements and
experiment types. During software start-up, each component is dynam-
ically loaded and assembled into the main application. Several en-
hancements to the v1 framework facilitate per-session component cus-
tomization, dependence management, as well as version control.
Updated versions of AvalonDock and Prism boost Mass Spec Studio’s
capacity to conform to the latest software design practices and pat-
terns, for scalable and sustainable .NET applications.

Fig. 1 provides a schematic of the Studio framework that we used
to develop a robust concept in crosslink detection. The new depen-
dence management in v2 makes sharing of common tools and com-
ponents more streamlined, which simplifies the development of new
plug-ins. We took advantage of this feature to refactor common
elements of our existing packages (HX-MS and CL-MS) into a new
“Structural Biology” (StructBio) resource package. The new frame-
work, therefore, supports all three structural mass spectrometry ex-
periment types. As a result, any future development of structural
biology applications or upgrades can employ a common, carefully
implemented and tested set of tools and resources. Such tools and
resources include mass calculators, digestion/fragmentation rules,
peptide identification algorithms, and molecular visualization.

XL Application—To develop a crosslink detection concept that
supports both computational and visual validation of large data sets,
we applied design concepts specifically borrowed from our HX-MS2

platform (34). This primarily involved revising our strategy for peptide
library generation and augmenting our scoring metrics for crosslink
detection and validation. These two elements are described below.

Library Creation—To generate a searchable library, a database of
linear peptides is created, using proteins known to exist in the sample
or from a whole proteome when the sample composition cannot be
inferred from other data (e.g. a prior data-dependent proteomics
experiment). For individual proteins, the sequence information and
any associated structures can be fetched automatically from the
protein data bank (PDB, www.rcsb.org). The database is expanded
according to a flexible selection of fixed or variable modifications, and
a suitable crosslinker is selected from a set of available options. New
reagents can also be designed and implemented, using a crosslinker
design wizard, with heavy and light versions if desired. Library ex-
pansion is parameterized by representing a user-defined range of
possible charge states and user-selected mass modifications. This
list automatically includes peptides singly labeled with the crosslinker,
or so-called dead-ended peptides. Multiple data-dependent LC-
MS/MS runs, from any file type, are associated with the library for
subsequent processing. An option exists to reformat the data into a
highly compressed binary file structure (.mssdata) for efficient storage
and later use in other applications, although this is not required.

Library Reduction and Crosslink Detection—We have implemented
a probabilistic scoring strategy within the Mass Spec Studio frame-
work, behind a robust library reduction method. For library reduction,
we considered a number of concepts to address the underlying n2

time complexity associated with investigating all possible pairs of
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peptides. In one case, the peptide library can be sorted by mass and
a smaller list of peptide pairs can be assembled with entries that fall
within an acceptable tolerance around the precursor ion mass (an
MS-level approach) (24, 35). A classic binary search could then speed
the analysis. In another case, assumptions can be made based on the
acquired fragment spectra (an MS/MS-level approach). For example,
one method requires that evidence of a dead-ended version of a
crosslinked individual peptide should be observable (19). This idea is
based on the assumption that crosslinking chemistries will always
generate a distribution of all product types, with the actual crosslink-
ing event itself occurring with a relatively low abundance. A third
approach extends the idea of MS/MS-level library filtering, by requir-
ing fragment evidence for one peptide in the MS/MS spectrum and
treating the other as an open modification constrained by the precur-
sor ion m/z (e.g. (28)).

In the Studio, we chose to develop an approach using MS/MS-level
filtering, based loosely on the concept of ion tags in xQuest (16). Our
approach is outlined in Fig. 2. We assume that an MS/MS spectrum of
a crosslinked peptide must possess some minimum unmodified se-
quence information for each peptide comprising the pair, which can be
scored in a probabilistic manner. That is, a population of simple se-
quence ions will exist for each peptide (possibly few and low intensity),
akin to a peptide sequence tag (36). Ions from the unmodified portions
represent one of the more abundant ion types in CID MS/MS data of
crosslinked peptides (16, 37). A library of peptides is constructed that
consists of all linear peptides having some minimum threshold score,
which we base on the E-score concept used in OMSSA (38),

E�y, �� � N�1 � ��x�0
y�1 P�x, ���N� (Eq. 1)

where P(x, �) is a Poisson distribution: x is the number of fragment
matches between an experimental MS/MS spectrum and a theoreti-

cal spectrum of a library entry, the average number of random
matches is �, y is the total number of successful fragment matches
and N is the peptide library size. The E-score provides an opportunity
for a probabilistic assessment of the ion series for the unmodified
portions of peptide, based on an underlying Poisson model of noise
in the search, which seems sensible to preserve for crosslinked
peptide detection. That is, we assume that the noise characteristics of
the search space for crosslinked peptides is not significantly different
than linear peptide noise, which is well modeled by the Poisson
distribution (38). In the initial search for library reduction, we employ
a hard filter on fragment ions in the MS/MS spectrum by requiring
strong evidence for monoisotopic ions (i.e. M peak �5 times the
intensity of an M-1 peak, if detected). The exercise is to float E as high
as possible, while preserving a time-manageable list of candidate
linear peptides for the next stage of scoring.

Precursor ion mass is only introduced after this initial reduction in
search space. It can be difficult for data-dependent experiment types
to accurately select a monoisotopic ion, particularly as peptide mass
and charge increase. We filter candidates based on the actual isotope
profile in the LC-MS data, rather than relying solely on the instrument-
generated precursor ion values. Bounded by a precursor mass toler-
ance that we set in the search, we initially accept all possible peptide
candidates with an abundant isotope at the triggered mass/charge
value, but ultimately require every high probability crosslinked peptide
to generate an isotopic distribution that maintains a minimum good-
ness-of-fit to the actual data. Our acceptance criteria allows us to
evaluate candidate crosslink peptides against all possible back-
ground peptides that may fall within the ion inclusion window (i.e.
crosslinked peptides, linear peptides, dead-end peptides or other
modified linear peptides permitted in the library construction phase).

A list of possible crosslinked peptides is assembled from the
output of the mass filtering, based on linear peptides that may coexist

FIG. 1. The architecture of Mass Spec Studio and placement of the XL package. During start-up, components are discovered and
injected (solid arrows) via the extensibility controller into the main application (a lightweight shell with minimal requirements). UI components
are inserted into predefined regions within the shell, which are provided by the user interface controller. All components depend (dotted lines)
on the Studio framework for common high-level elements related to mass spectrometry, and not for specific applications of mass spectrometry
(e.g. reading a mass spec file format is abstracted from data processing). Common resources can be shared across applications in order to
avoid re-engineering tools and features, which accelerates development of downstream components. The StructBio package is one such high
level collection of resources, shared by the HX, CL and XL plug-ins.
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in the MS/MS spectrum. The actual scoring phase implements a
strategy adopted from X!link (39) and OMSSA (38), again using an
E-score calculation, but now invoking a more rigorous evaluation of
fragment ion isotopic distributions, and increasing sensitivity in two
ways: (1) by permitting all other probable ion types in the identifica-
tion, and (2) by including a requirement that l fragments are drawn
from the top n most intense fragments,

E��y, �� � N�1 � ��x�0
y�1 P��x, ���N� (Eq. 2)

where the Poisson distribution is now

P��y, �� �
1
Q

�1 � �1 � q�x P�y, ��� (Eq. 3)

and the q value is

q �
nCl

vCl
(Eq. 4)

where nCl is the number of combinations having l calculated peaks in
the top n peaks, and vCl is the corresponding number of combinations
having l calculated peaks in the full set of v peaks in the spectrum. The
defaults are n � 10 and l � 3, as suggested by Lee (39); q is simply
a normalization factor. Of note, the N in this calculation now derives
from the reduced set of combinations emerging from the initial library
reduction and mass filtering. With this approach, the contribution of
the ions from the unmodified portions of sequence to the final score
may actually be very small, as other fragment ion types may domi-
nate. All that is required for library prefiltering are intensities of these

ions that are detectable above the noise (here 2.5% of the base peak).
We note that a filtering strategy can be implemented at this final step,
which involves a recalculation of individual E-scores for each peptide
retained in the hits. A recalculation is needed as more ion fragments
can now be included for the assessment of each peptide, using a
linearization strategy similar to one recently described (28). The user
can require that each individual peptide retains a certain minimum
score, to ensure that the deferred re-inspection of the fragment ion
isotopic distribution does not reduce confidence. Fig. 3 shows a
conceptualized version of the postprocessing peptide inspection
view.

Protein Crosslinking and Digestion: Software Performance—For
development purposes and initial performance testing, we cross-
linked bovine serum albumin (BSA) utilizing the protocol in Lietner et
al. (15), with minor modifications. Briefly, disuccinimidyl suberate
(DSS) was dissolved in dimethyl sulfoxide (DMSO), to a concentration
of 25 mM. DSS was added to a 1 mg/ml BSA solution (containing 75
mM KCl, 5 mM MgCl2, 20 mM HEPES, pH 8.3) to a final concentration
of 1 mM. Crosslinking proceeded at 37 °C for 30 min with gentle
mixing. Quenching was completed by adding ammonium bicarbonate
to a final concentration of 50 mM for 20 min at 37 °C. The sample was
dried down, and then dissolved and denatured in 8 M urea. Disulfide
bonds were reduced using 2.5 mM Tris(2-carboxyethyl)phosphine
hydrochloride (TCEP), and the resulting free cysteines alkylated using
5 mM iodoacetamide. For digestion, the sample was diluted to 1 M urea
using 50 mM ammonium bicarbonate, and 1 �g of trypsin added.
Sample was digested overnight at 37 °C before quenching with formic
acid, to a concentration of 2% (v:v). Salt was removed using a 200 �l
HyperSep SpinTip solid phase extraction tip (Thermo Scientific). After

FIG. 2. Crosslinked peptide candidate generation step involving an MS2-based library reduction strategy. A search of the full set of
possible linear peptides is conducted against each MS2 spectrum using OMSSA (38), to generate a set of peptide-spectrum matches (PSM’s)
for each MS2 spectrum. Any peptides with an acceptable E-score for a given spectrum are allowed to form crosslinked candidates. Two PSM’s
are shown for Spectrum #3 for illustration: peptide 1 and 4 are strongly represented by fragment ions from the unmodified portions of peptide
and are both accepted. Once the PSM’s are scored and selected, all possible candidates are generated and filtered by precursor mass. Hits
can include peptides that are self-linked, crosslinked, dead-ended, or simply exist as linear peptides. Candidates undergo a refined scoring
method based on a rigorous peak assignment of MS and MS2 data, and a wider set of fragment ion types.
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evaporation, the sample was reconstituted in 30% acetonitrile/0.1%
formic acid and separated by size exclusion chromatography (SEC).
SEC was completed on an Agilent 1100 chromatography system, with
a Superdex Peptide PC 3.2/30 column (GE Healthcare, Mississauga,
Ontario), equilibrated with SEC buffer (30% acetonitrile 0.1% formic
acid). Fractions were collected every minute at a flow rate of 0.1 ml/min.
All fractions were evaporated and reconstituted for LC-MS/MS.

Fractions were analyzed on a nanoLC-Orbitrap Velos (Thermo Sci-
entific, San Jose, CA). Fractions were dissolved in 0.1% formic acid
and loaded on an 8 cm x 75 �m self-packed picotip column (Aeris
Peptide XB-C18, 3.6 �m particle size, Phenomenex, Torrance, CA).
Separation was achieved with a 30 min gradient (5–60%) of mobile
phase B (97% acetonitrile with 0.1% formic acid) at 300 nl/minute.
The mass spectrometer was operated in positive ion mode, using a
high/high configuration (40), with MS resolution set at 60,000 (400–
2000 m/z) and MS2 resolution at 7500. Up to ten of the most abundant
ions were selected for fragmentation using higher energy collisional
dissociation (HCD), rejecting charge states 1 and 2, and using a
normalized collision energy of 40%.

Protein Crosslinking and Digestion: Crosslink Evaluation and Inter-
action Modeling—The new Studio plug-in was used in a crosslinking
study involving the binding of porcine transferrin (78 kDa, expressed
and deglycosylated as described previously (41)) to a bacterial trans-
ferrin-binding protein B (TbpB, 80 kDa, Actinobacillus pleuropneu-
moniae strain H49, expressed and purified also as previously de-
scribed (41)). The complex was prepared by binding a slight excess of
TbpB to holo-pTf in 50 mM sodium phosphate buffer (pH 7.4) with 50
mM NaCl and incubated for �3 h at room temperature. After incuba-
tion, the bound sample was further incubated with DSS crosslinker as
above. Approximately 10 �g of total protein was separated on SDS-
PAGE, and a band corresponding to the crosslinked proteins was
excised and subjected to in-gel tryptic digestion using established
protocols (42). The digest was analyzed by mass spectrometry as

above, and the crosslinked residues identified using our XL-MS
plug-in and Kojak (43). Crosslinked residues identified in the Studio
were tested against, and combined with, mutational data to constrain
data-driven protein docking experiments, using another plug-in avail-
able in the Studio (14), used as a customized launchpad to the
Haddock webserver (44). Mutations that reduced binding strength,
and used as markers of the binding interface included D360A, S625K,
R509A (pTf, (41)) and F68E, K61E, E112K, and F171A (TbpB, (45)).

RESULTS AND DISCUSSION

Software Performance—The DSS-crosslinked BSA digest
generated a set of 2500 MS/MS spectra enriched for larger
digest fragments. The data were searched using our Mass
Spec Studio XL plug-in against a random selection of E. coli
proteins added as noise, up to and including the full E. coli
proteome (estimated at 4300 proteins). Fig. 4A shows that
processing time for the full search was a linear function of the
database size, when using an E-score of 0.3 for initial library
reduction. A search conducted in this fashion returned 113
unique peptide candidates (cross-linked, dead-end, self-
linked and linear peptides). Hit criteria included a requirement
for a high-fidelity isotopic distribution in the MS data and an
observable ion chromatogram. The -ln transformed E� score
for the crosslinked peptide was set at 13 and each peptide
had recalculated -ln transformed E�/� values better than 10.

An E-score of 0.3 represents a moderately strong reduction
in the initial library. To determine the sensitivity of the search
speed to the E-score, we configured a scenario that partially
mimics the crosslinking of a 50-protein complex, and reana-

FIG. 3. The conceptualized UI for visual inspection of crosslinks and conflict resolution. The Studio provides a UI for navigation and
visual inspection of peptides. Peptides are selected from a list (bottom of view), containing information such as sequence, charge, peptide type,
selection status, score and validation flags. Flags are automatically generated during processing to provide additional information regarding
the quality of a crosslink candidate. Raw data is inspected using three interactive views (XIC, MS and MS2). If other candidates point to the
same MS2 spectrum, they are marked as conflicts and shown in the conflict list (right of view). Selecting a conflicting crosslink candidate will
overlap its information on MS2 spectrum view. Specific crosslink sites can be selected from the sites list, and displayed in a widget. A user
captures a decision about the selected crosslink using the status buttons underneath the crosslink site list.
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lyzed the BSA data as a function of E-score in a root library
consisting of BSA and 50 randomly selected E. coli protein
sequences (Fig. 4B). Search times remained a linear function
of E-score up to surprisingly high values, �80% of the max-
imum library size. In the linear range, calculating crosslinked
peptide combinations is much faster than generating the pep-
tide-spectrum matches (PSM’s). PSM generation is linear in
time complexity, but at a certain point in E-score, the time to
generate the number of possible combinations begins to ex-
ceed PSM generation when the library again grows large, and
time complexity transitions to n2 as expected. A high E-score
correlates with very weak sequence identification power, pre-
cisely the scenario that is needed for the library reduction
concept to preserve detection sensitivity for crosslinked pep-
tides. For example, setting the E value filter to 6000 where the
trend just begins to diverge from linearity retains peptide
candidates needing only three or more fragments. Sensitivity
would be likely be lost if a large numbers of fragments were
required for both component peptides in a crosslinked pair. In
a real situation representing a complex of 50 proteins, the set
of MS2 spectra may be larger than the set we searched here.
However, scoring has only a linear dependence on the num-
ber of spectra. A search will be bounded by �i�1

X ni
2 time

complexity, where X represents the number of spectra to be
evaluated, and ni the number of linear peptides that pass the
initial filtering step for the ith spectrum.

Fig. 4C illustrates the impact of the initial E-score filter on
the number of actual crosslinking results generated, and this
figure is the complement to Fig. 4B. Crosslinking results con-
taining only BSA fragments increase weakly, as expected
because a single protein will begin to saturate at moderate

E-scores, whereas the number of E. coli results increase dra-
matically at high E. To return sensitivity and specificity at high
E-score, we apply the filtering tools provided in the plug-in.
Fig. 4D shows the filtered output of Fig. 4C. Using a -ln
transformed E� score cut-off of 13 for identification caps the
number of BSA crosslinked peptides to a maximum of 207
and reduces the E. coli false positives to 4.8%. Specificity is
further improved by requiring that crosslinked peptides gen-
erate a minimum of evidence for both peptides (-ln trans-
formed E�/� scores of 10). Together, the two cut-offs generate
0.5% false positives at an E-score of 1000 for initial library
reduction. Our default value for the initial E-score is set at
10% of the total library size. This value can be increased by
the user depending on the objectives of the search, but we
find little benefit to decreasing the value below 10%.

To test the sensitivity and selectivity of this reduction strat-
egy, we implemented the ranked-pair search, using the pre-
cursor ion mass in place of the E-score reduction method.
This alternative method has a high sensitivity for crosslinked
peptide detection. As per Choi (35) and Petrotchenko (24), all
possible peptide pairs in the library plus the crosslinker resi-
due mass were retained, bounded by the mass tolerance in
the measurement of the precursor mass. All other features of
the workflow were preserved. There is a large reduction in the
library to be searched when high-accuracy monoisotopic
masses are used as constraints for pair selection (24), but this
method does not scale well when mass accuracy is reduced
(Table I). With a precursor ion tolerance set to a 5 ppm
window, processing time is over sevenfold greater for the
matched-pair method versus the application of a high E score
(80% of the library size). This effect more noticeable as the

FIG. 4. XL plug-in performance. A,
Total processing time to generate a set
of crosslinked peptide candidates is
measured as a function of increasing the
number of proteins in the root library,
using an E-score threshold of 0.3. in the
library prefiltering. B, Total processing
time as a function of E-score threshold,
with a database size of 51 proteins (BSA 	
50 random E. coli proteins). C, The num-
ber of total results (identified peptides of
all types) as a function of E-score thresh-
old for search configuration as in (B). D,
The same data as in (C), with the appli-
cation of results filters: a threshold for
crosslink score (-ln transformed E� score
of 13) and a threshold for component
linear peptide score (-ln transformed E�
score of 10).
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mass accuracy diminishes. The mass-pairing strategy gener-
ates a majority of candidates that derive from the random
E. coli proteins used as noise in the comparison (Table I). To
determine if sensitivity is lost using the plug-in’s filtering ap-
proach, each reduced library was searched against the MS2

data and scored with the same E� score method described in
equation (2), using the full set of sequence ion types. All 98
unique hits discovered using the mass pairing method were
found with the E-score method (supplemental Fig. S1), and an
additional 15 were discovered only by the E-score method. At
first glance, the 15 unique hits seem to indicate a lower
selectivity of the method (false positives). However, the re-
duced library for the mass-pairing method is 40-fold larger
than the library of the E-score approach, and entries are
mostly derived from E. coli. The difference could reflect an
inappropriately large search space. We note simply that the
15 unique identifications are high quality, and the strong
library reduction achieved with the E-score method does not
omit any reasonable hits otherwise found with the more per-
missive mass-pairing library reduction method. Finally, we
note that a structural analysis reveals that the large majority of
unique crosslinked sites we identified using the Studio plug-in
(78 hits) fall within an expected Euclidean distance distribution
for the DSS crosslinker (
30 Å (46)).

Detecting and Modeling Protein Interactions—We then ap-
plied the plug-in to a binding study involving transferrin (Tf)
and a transferrin-binding protein B (TbpB), to determine if the
sensitivity we observed with the prefiltering strategy could
detect interprotein crosslinks, which tend to be less abundant
than intraprotein crosslinks, and if the data could constraint
an accurate docking exercise. Gram-negative bacteria cap-
ture host iron-binding proteins in order to acquire essential
iron. TbpB receptors are a key element of iron uptake mech-
anisms for numerous pathogens from the Neisseriaceae and
Pasteurellaceae (47). TbpB’s exclusively recognize the iron-
loaded (holo) form of transferrin, and deliver it to transferrin-
binding protein A (TbpA), a TonB-dependent integral protein
that serves as the channel for free iron transport across the

outer membrane (48, 49). TbpB’s are emerging as an impor-
tant vaccine target, and they require an in-depth understand-
ing of Tf/TbpB interactions in order to engineer antigen(s) with
broad specificity. We collected DSS-based crosslinking data
on porcine Tf bound to TbpB from Actinobacillus pleuropneu-
moniae (H49), a porcine pathogen that serves as a useful
model system for human pathogens. Structures for the indi-
vidual elements of the complex have been determined (pTf:
1H76 and H49 TbpB: 3HOL), and a RosettaDock model of the
binary complex has been validated by extensive mutational
analysis and functional studies (Fig. 5A) (41, 50). A crystallo-
graphic structure of human transferrin bound to TbpB from
Neisseria meningitidis provides strong supporting evidence
for the localization of the binding site (51).

We identified 64 crosslinked peptides (41 unique ones, after
removal of multiple charge states) using the probabilistic cri-
teria presented above (i.e. a transformed E-score of �13). In
this context, the score corresponds to a calculated false
discovery rate (FDR) of 0.5%, here based on a decoy data-
base search, where the input sequences were randomized. As
additional validation criteria, individual linked peptides were
required to have a transformed score greater than �10. Most
of the crosslinked peptides are of the intraprotein variety (37,
corresponding to 33 unique residue pairs) and fall with a
spatial distribution expected for the crosslinker (supplemental
Table S1). Four interprotein crosslinks were detected, which
could be tested against the existing model for the pTf:TbpB
structure. One of the hits has an excellent E-score but it
contains a short three-residue beta peptide that scores poorly
in our validation approach. However, all four interprotein
crosslinks are consistent with the published model (Fig. 5A),
and fall within Euclidean distances of 28 Å. For comparison
purposes, we used Kojak on the same data set, constrained
to a 1% FDR based on Percolator (43). Only one of the four
interprotein crosslinks was found using the recommended
settings for the program: the crosslink involving the short
peptide. A second crosslinked peptide was found, but it fell
well outside the expected distance range and pointed to a

TABLE I
Impact of library reduction method and mass accuracy on performance

Precursor
tolerance (ppm)

Time (s)a
BSA
(hits)

E. coli
(hits)

BSA (E�)b

(hits)
E. coli

(E�)b (hits)
BSA

(E�, E��/�)c (hits)
E. coli

(E�, E��/�)c (hits)

E-score 5 73 44 30 29 2 24 0
10 101 296 103 208 11 189 0
15 124 525 263 339 12 304 1

Mass pairing 5 535 468 3362 28 4 23 0
10 1287 2504 15266 180 13 151 0
15 2520 5027 29615 265 18 215 0

a Search configured to include a library of 10 random E. coli proteins plus BSA (1701 peptides). E-score 80% of total library size. Run on a
Quad-core Intel i7–3770 3.5 GHz with 16 Gb RAM, using 7 virtual threads. Candidates peptides of all types (cross-linked, self-linked, dead-
end, linear).

b Results filtered using a –ln transformed E� score of 13 for the candidate peptide.
c Results filtered using a –ln transformed E� of 13 for the candidate peptide, with an additional –ln transformed E��/� score of 10 for

crosslinked peptides.
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residue in the distal N-terminal domain of pTf. Kojak found
more intraprotein crosslinks than the Studio plug-in (62
unique residue pairs, from 78 unique peptides), so the lower
number does not appear to arise from lower detection sensi-
tivity. The results are compared in supplemental Table S1 and
supplemental Fig. S2 for this interaction.

Finally, we revised the Studio’s molecular docking plug-in
to support crosslinking data, and we tested if the crosslinking
data was sufficient to generate a pTf:TbpB structural model
similar to the established model in Fig. 5A. The plug-in pro-
vides a tailored portal to the Haddock webserver, allowing
users to input crosslinked residues and the PDB files associ-
ated with the structural elements to be docked. The plug-in
currently supports the inclusion of differential CL-MS and
HX-MS data, useful for interface mapping (14). These data are
translated into ambiguous interaction restraints (AIRs) and
incorporated into the potential energy function that governs
the docking exercise. Here, we added a utility to incorporate
CX-MS data as unambiguous restraints (UIRs), as the linked
residues are known. Three rounds of docking were initiated. In
the first round, only the four identified interprotein crosslinks
were used, and the docked model, while locating the correct
binding domains and basic orientation, did not return an
accurate pose (supplemental Fig. S3). In the second round,
the mutational data alone was incorporated as a restraint set,
using each mutation as an active residue and defining passive
residues within 5 Å of an active residue (44). The binding
model was in good agreement with the established model
(supplemental Fig. S3), highlighting the value of interface data
in directed docking studies. The addition of the crosslinking

information to the mutational data in the third docking round
served to incrementally improve docking scores over the mu-
tational data alone, and produce a large cluster of solutions
that emulates the Rosetta model (Fig. 5B, RMSD of 5.0Å using
pTf C-lobe and TbpB N-lobe). Thus, although the crosslinking
data could locate the axis of binding and correctly orient the
two proteins around it, interface data was shown to have
higher value in developing the molecular topology of the in-
terface. We suspect that crosslinking data is limited as a
singular source of modeling data as the precision of the
“molecular ruler” is currently not very high. In this study, we
imposed a 5–25 Å C�-C� length restraint, based on a reason-
able span of the length distribution for DSS (46). The ambi-
guity in length could not be overcome with the low numbers of
interprotein crosslinks we detected in this study, but we an-
ticipate that shorter crosslinkers with alternative chemistries
will add value to such exercises.

With the incorporation of restraints from two data sources,
the Haddock-generated model shows an interaction between
TbpB and the two C-lobes of pTf, as expected (41). These
lobes close around Fe3	 in the iron-loaded holo form, bringing
them into registry with the TbpB binding surface. As crystal-
lographic structures of the heterodimers have proven difficult
to generate, data-driven modeling of human transferrin with
the many strain-specific TbpB receptors from human patho-
gens may provide the capacity and accuracy to guide antigen
engineering efforts.

Conclusion and Perspective—The Studio application for
XL-MS provides a solution for database size reduction, based
on a simple assumption that does not negatively influence

FIG. 5. Models of the pTf:TbpB interaction. A, Docked model of 1H76 (pTf) and 3HOL (TbpB) using modified routines in RosettaDock, as
published and validated through mutational analysis of key residues in the binding interface (41, 50). Crosslinks detected by the Studio plug-in
are highlighted in red bars, with a linking scheme (and distances) shown on the right. Side and top views presented. B, As in (A), but using the
crosslinking data and published mutational data in a Haddock docking exercise, launched through the Studio. Linking scheme also shown on
right. For (A) and (B), pTf is shown in green and TbpB in cyan and the lobes are labeled for each protein. All figures generated in PyMol.
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sensitivity for site determination. By requiring every putative
crosslinked peptide to present a modest subset of fragment
ions arising from a linear segment, we show that database
size can be strongly reduced without sacrificing quality hits.
This finding appears consistent with earlier explorations of the
problem. Chalkley has pointed out that confidence in the
detection of crosslinked peptides is tied to the poorest scor-
ing peptide in the pair (29), and Lee has shown that higher
quality results are possible when hit lists are filtered for each
peptide independently (39). Although it may seem surprising
that strong filtering can be achieved using a very weak E-
score threshold in the reduction step, it should be noted that
a fragment spectrum obviously must contain evidence for
a pair of linear peptides. The additional library reduction
achieved with this step is considerable.

Embedding this library reduction approach within a generic
software platform provides access to this strategy using data
from any instrument type, without file conversion. It provides
a range of tools to visualize and validate the output, using
strategies tested in HX-MS2 applications. However, our cur-
rent format for probability-based scoring may not be as valid
for certain crosslink strategies where affinity enrichment is
applied, and where the crosslinkers themselves generate ex-
tensive fragments. The Studio XL plug-in supports the detec-
tion of reporter ions that are unique to the crosslinker, but
these are not incorporated into the scoring algorithm. Such
data may be better applied as a filter of the results in the
current package. Our strategy for a probabilistic determina-
tion will be most useful when the searched data is dominated
by linear peptide “noise,” which we suggest is the usual
situation unless strong affinity enrichment methods are ap-
plied. The speed that we recover by implementing an MS2-
based reduction strategy will permit much larger searches,
including multi-protein complexes and proteome-wide analy-
ses, without requiring the use of specialized crosslinkers.
Cleavable crosslinkers will add confidence to the identifica-
tions of linked peptides, but as they need specialized frag-
mentation strategies, we present this strategy as a more
generic alternative. Perhaps most importantly, the accelera-
tion of performance that we obtained using this simple reduc-
tion strategy should permit the use of nonspecific reagents
and even nonspecific digestion enzymes, which we suspect
will be necessary to support robust molecular modeling ac-
tivities.

* The work was supported by an NSERC Discovery Grant RGPIN/
298351-2010, the Canada Foundation for Innovation (DCS) and the
University of Calgary.

□S This article contains supplemental material.
� To whom correspondence should be addressed: correspondence

to: Department of Biochemistry and Molecular Biology, University of
Calgary, Calgary, Al T2N 4N1 Canada. E-mail: dschriem@ucalgary.ca.

REFERENCES

1. Webb, B., Lasker, K., Velazquez-Muriel, J., Schneidman-Duhovny, D., Pel-
larin, R., Bonomi, M., Greenberg, C., Raveh, B., Tjioe, E., Russel, D., and

Sali, A. (2014) Modeling of proteins and their assemblies with the Inte-
grative Modeling Platform. Methods Mol. Biol. 1091, 277–295

2. Kim, S. J., Fernandez-Martinez, J., Sampathkumar, P., Martel, A., Matsui,
T., Tsuruta, H., Weiss, T. M., Shi, Y., Markina-Inarrairaegui, A., Bonanno,
J. B., Sauder, J. M., Burley, S. K., Chait, B. T., Almo, S. C., Rout, M. P.,
and Sali, A. (2014) Integrative structure-function mapping of the nucleo-
porin Nup133 suggests a conserved mechanism for membrane anchor-
ing of the nuclear pore complex. Mol. Cell. Proteomics 13, 2911–2926

3. Fernandez-Martinez, J., Phillips, J., Sekedat, M. D., Diaz-Avalos, R.,
Velazquez-Muriel, J., Franke, J. D., Williams, R., Stokes, D. L., Chait,
B. T., Sali, A., and Rout, M. P. (2012) Structure-function mapping of a
heptameric module in the nuclear pore complex. J. Cell Biol. 196,
419–434

4. Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos,
D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B. T., Sali, A.,
and Rout, M. P. (2007) The molecular architecture of the nuclear pore
complex. Nature 450, 695–701

5. Greber, B. J., Bieri, P., Leibundgut, M., Leitner, A., Aebersold, R., Boeh-
ringer, D., and Ban, N. (2015) Ribosome. The complete structure of the
55S mammalian mitochondrial ribosome. Science 348, 303–308

6. Kaur, P., Tomechko, S. E., Kiselar, J., Shi, W., Deperalta, G., Wecksler,
A. T., Gokulrangan, G., Ling, V., and Chance, M. R. (2015) Characterizing
monoclonal antibody structure by carboxyl group footprinting. MAbs 7,
540–552

7. Zhou, Y., and Vachet, R. W. (2013) Covalent labeling with isotopically
encoded reagents for faster structural analysis of proteins by mass
spectrometry. Anal. Chem. 85, 9664–9670

8. Stocks, B. B., Rezvanpour, A., Shaw, G. S., and Konermann, L. (2011)
Temporal development of protein structure during S100A11 folding and
dimerization probed by oxidative labeling and mass spectrometry. J.
Mol. Biol. 409, 669–679

9. Underbakke, E. S., Iavarone, A. T., Chalmers, M. J., Pascal, B. D., Novick,
S., Griffin, P. R., and Marletta, M. A. (2014) Nitric oxide-induced confor-
mational changes in soluble guanylate cyclase. Structure 22, 602–611

10. Rand, K. D., Zehl, M., and Jorgensen, T. J. (2014) Measuring the hydrogen/
deuterium exchange of proteins at high spatial resolution by mass spec-
trometry: overcoming gas-phase hydrogen/deuterium scrambling. Acc.
Chem. Re.s 47, 3018–3027

11. Sinz, A., Arlt, C., Chorev, D., and Sharon, M. (2015) Chemical cross-linking
and native mass spectrometry: A fruitful combination for structural biol-
ogy. Protein Sci. 24, 1193–1209

12. Sinz, A. (2006) Chemical cross-linking and mass spectrometry to map
three-dimensional protein structures and protein-protein interactions.
Mass Spectrom. Rev. 25, 663–682

13. Rappsilber, J. (2011) The beginning of a beautiful friendship: cross-linking/
mass spectrometry and modelling of proteins and multi-protein com-
plexes. J. Struct. Biol. 173, 530–540

14. Rey, M., Sarpe, V., Burns, K. M., Buse, J., Baker, C. A., van Dijk, M.,
Wordeman, L., Bonvin, A. M., and Schriemer, D. C. (2014) Mass spec
studio for integrative structural biology. Structure 22, 1538–1548

15. Leitner, A., Walzthoeni, T., Kahraman, A., Herzog, F., Rinner, O., Beck, M.,
and Aebersold, R. (2010) Probing native protein structures by chemical
cross-linking, mass spectrometry, and bioinformatics. Mol. Cell. Pro-
teomics 9, 1634–1649

16. Rinner, O., Seebacher, J., Walzthoeni, T., Mueller, L. N., Beck, M., Schmidt,
A., Mueller, M., and Aebersold, R. (2008) Identification of cross-linked
peptides from large sequence databases. Nat. Methods 5, 315–318

17. Götze, M., Pettelkau, J., Fritzsche, R., Ihling, C. H., Schäfer, M., and Sinz,
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