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ABSTRACT
Objectives: There is no consensus on whether studies
with no observed events in the treatment and control
arms, the so-called both-armed zero-event studies, should
be included in a meta-analysis of randomised controlled
trials (RCTs). Current analytic approaches handled them
differently depending on the choice of effect measures
and authors’ discretion. Our objective is to evaluate the
impact of including or excluding both-armed zero-event
(BA0E) studies in meta-analysis of RCTs with rare
outcome events through a simulation study.
Method: We simulated 2500 data sets for different
scenarios varying the parameters of baseline event
rate, treatment effect and number of patients in each
trial, and between-study variance. We evaluated the
performance of commonly used pooling methods in
classical meta-analysis—namely, Peto, Mantel-
Haenszel with fixed-effects and random-effects models,
and inverse variance method with fixed-effects and
random-effects models—using bias, root mean square
error, length of 95% CI and coverage.
Results: The overall performance of the approaches of
including or excluding BA0E studies in meta-analysis
varied according to the magnitude of true treatment
effect. Including BA0E studies introduced very little
bias, decreased mean square error, narrowed the 95%
CI and increased the coverage when no true treatment
effect existed. However, when a true treatment effect
existed, the estimates from the approach of excluding
BA0E studies led to smaller bias than including them.
Among all evaluated methods, the Peto method
excluding BA0E studies gave the least biased results
when a true treatment effect existed.
Conclusions: We recommend including BA0E studies
when treatment effects are unlikely, but excluding them
when there is a decisive treatment effect. Providing
results of including and excluding BA0E studies to
assess the robustness of the pooled estimated effect is
a sensible way to communicate the results of a meta-
analysis when the treatment effects are unclear.

BACKGROUND
Systematic review with meta-analysis has
become an important research tool for the

health research literature which synthesises
evidence from individually conducted studies
that assess the same outcomes on the same
topic. The PRISMA (Preferred Reporting
Items for Systematic Reviews and
Meta-Analyses) Statement1 adopted the defin-
ition used by Cochrane Group2 which defines
systematic review as a review of a clearly for-
mulated question that uses systematic and
explicit methods to identify, select and critic-
ally appraise relevant research, and to collect
and analyse data from the studies that are
included in the review. Meta-analysis refers to
the use of statistical techniques in a systematic
review to integrate the results of included
studies. Therefore, the results of
meta-analyses from randomised controlled
trials (RCTs) are considered to be the best
quantitative clinical evidence in the litera-
ture.3 4 Studies included in a systematic review
are selected rigorously according to prede-
fined exclusion and inclusion criteria. Thus,

Strengths and limitations of this study

▪ A simulation study thoroughly investigated the
impacts of including or excluding both-armed
zero-event studies in meta-analyses by compar-
ing all commonly used pooling methods.

▪ The simulation parameters were chosen accord-
ing to the characteristics of meta-analyses in the
Cochrane Database of Systematic Reviews to
closely reflect the reality.

▪ Our results not only confirmed the findings from
the previous empirical studies but also added
more details on how including or excluding
both-armed zero-event may affect the estimates
of meta-analyses differently depending on the
magnitude of true treatment effects.

▪ Only OR was investigated through simulations;
thus, the findings from this study may not be
able to be fully extended to other effect measures
such as relative risk or absolute risk difference.
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all identified studies in a systematic review with available
data should be included in the meta-analysis. However,
there is no consensus among researchers whether this
principle should be fully applied and how to apply to the
meta-analyses using dichotomous outcomes.
This research focuses on the RCTs with dichotomous

outcomes, that is, the participants do or do not experi-
ence the defined event. The total number of observed
events in such a RCT is likely influenced by the event
rate, sample size and study period. When the event rate
is low, the sample size is small and the study period is
short, it is possible that no outcome event is observed in
the RCT although the probability of the event happen-
ing is not zero. A study with no outcome event observed
in either treatment or control arms is called a zero-event
study. An extreme case of the zero-event study is
both-armed zero-event (BA0E) study, which is defined as
a study in which no event is observed in treatment and
control arms, and is also known as a double-zero-event
or zero-total-event study.
When rare adverse events or rare diseases are used as

the study outcomes, it is not an uncommon phenom-
enon that no outcome events are observed at the end of
the study. In the USA, a rare adverse event is defined as
1 per 1000 patients.5 In the European Union, a rare
disease is defined as 1 per 2000 people.6 To obtain a
representative number of outcomes for a rare event
study, a large number of patients are needed. However,
very often, RCTs are either not designed primarily to
investigate adverse events or do not have the resources
to recruit the sample size required for such events. A
published review of the Cochrane Database of systematic
reviews showed that the median sample size for dichoto-
mous outcomes was 102 (IQR of 50–243).7 Therefore,
when the primary outcome in a meta-analysis is a rare
event, zero-event studies could be among the qualified
studies. Warren et al8 conducted a systematic review of
meta-analyses published between 1994 and 2006 where
rare events were a primary outcome. Among 166
meta-analyses, 65 (39%) included zero-event studies,
and 41 (25%) included BA0E studies. Among the 41
meta-analyses with BA0E studies, 19 meta-analyses (46%)
included them in the primary or sensitivity analyses, 18
(44%) excluded them and 4 (10%) were unclear. This
review also found that continuity correction was the
most used approach to incorporate zero-event studies,
and 0.5 was the common choice of the correction factor.
Of the 15 reviews in which continuity correction had
been clearly used, 14 (93%) of them used 0.5 as the cor-
rection factor.
For single-armed zero-event studies, there is consensus

on their inclusion in meta-analyses. Bradburn et al9

reported a simulation study comparing commonly used
methods of handling zero-event studies in meta-analyses.
This provides a good guideline for the subsequent
meta-analyses. However, when BA0E studies were present
in systematic reviews, the practice of handling varies.8 10

There are two major reasons why BA0E are handled
variably in meta-analyses. First, the statistical methods
and software such as RevMan (The Cochrane
Collaboration. RevMan 5.1 User Guide. 2011) Stata’s
metan module11 and Comprehensive Meta-analysis
(Altman D, Duval S, Lipsey M, et al. Comprehensive
Meta Analysis Version 3.0) handle BA0E studies differ
according to the choice of effect measures. BA0E studies
are included in the pooled results when risk difference
is used, but automatically excluded by all statistical soft-
ware used for meta-analysis when OR or relative risk
(RR) is used. Second, there is no guideline for handling
BA0E studies in meta-analyses due to the lack of empir-
ical evidence or simulation studies. Among the very
limited published articles, which examined various
approaches of dealing with BA0E studies using empirical
data, the results were ambiguous. In 2007, Friedrich et al
empirically compared the statistical methods of handling
BA0E studies in meta-analysis and recommended that
BA0E studies should be included in all analyses. They
concluded that including BA0E studies could narrow the
CI and increase the precision of the pooled estimates.12

In 2008, Dahabreh and Economopoulos13 conducted a
sensitivity analysis to re-evaluate the treatment effect of
rosiglitazone and found that including BA0E studies
changed the pooled OR of myocardial infarction (MI)
between treatment and control groups from significant
to not significant statistically. Although the above empir-
ical studies showed us that including BA0E studies could
affect the results of meta-analyses, the impact may not
be beneficial towards the truth in all scenarios. In add-
ition to the above empirical studies, two recently pub-
lished simulation studies argued that incorporating
BA0E studies using Poisson random-effects model14 or a
relatively complicated β-binomial regression15 could gen-
erate unbiased estimates for meta-analyses. However,
these two recommended statistical models may not be a
practical approach for non-statisticians who use the
standard pooling methods to conduct meta-analyses.
Since number of events observed in studies using

dichotomous outcomes is determined by event rates and
number of subjects, zero-events are more likely to occur
with the conditions of extremely low event rates or small
sample sizes even though the event rates are different
between two study groups. In the intuitive way, the arith-
metical difference between two study groups with no
observed events is null. Therefore, we hypothesise that
the inclusion of BA0E studies in meta-analysis affects the
pooled estimates of treatment effects in different ways,
depending on the presence or absence of a true treat-
ment effect. In the absence of a true treatment effect,
that is, similar event rates in both arms, the inclusion of
BA0E studies narrows the CI of the pooled estimate of
treatment effect. When a true treatment effect exists, the
inclusion of BA0E studies adds bias to the magnitude of
the pooled estimate, leading to the underestimation of
the treatment effect.
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To test the hypotheses, we conducted a simulation
study to evaluate the impact of excluding and including
BA0E studies in meta-analysis under two circumstances
—the presence and absence of a true treatment effect.
Although it is not difficult to statistically deduce that the
bias brought by including BA0E studies is affected by
the factors such as (1) low event rate, (2) large treat-
ment effect and (3) small sample size, stimulation is still
needed to quantifying the magnitude of the bias. Our
investigation focused on comparing the standard statis-
tical pooling methods adopted by the commonly used
software such as RevMan and Stata V.13.1 for
meta-analysing aggregated data. We hope our study can
provide some practical guidance to the researchers in
this area.

METHODS
OR and RR are the most commonly used effect mea-
sures for assessing the treatment effect for dichotomous
outcomes in meta-analyses. The results of these two
effect measures are similar when the event probability is
<20%.16 17 Since the event rates used in our simulation
study were much lower, we chose OR as the effect
measure to engage the Peto method in our investigation.
Bradburn et al9 have shown that the Peto method was a
better choice for rare event meta-analyses for dichotom-
ous outcomes when studies with zero-events in one but
not both arms were included.

Simulation scenarios
The simulation scenarios in our study were chosen based
on a combination of several simulation parameters.
Three types of parameters were used in this simulation
study: fixed (a single value was assigned to a certain par-
ameter), varied (multiple values were assigned to a
certain parameter) and derived (the value of a certain
parameter was calculated according to a statistical
formula). We believed that some parameters had more
impact on the simulation results than others. We chose
fixed values for the low impact parameters (unlikely to
influence the simulation results) across all simulation
scenarios, and let the values of those high impact para-
meters (more likely to influence the simulation results)

vary in certain ranges. The parameter values were drawn
from the published literature (table 1).
The derived parameters were calculated by the input

parameters according to a statistical formula. For the
fixed parameters, we tested the following values. The
numbers of studies (m) in each meta-analysis was set at
5. The review published in 2011 reported that the
median (IQR) of the numbers of studies included in the
meta-analysis in the Cochrane Database was 3 with IQR
from 2 to 6.7 For the treatment and control arm ratio
(r), we only considered 1:1 allocation. A review paper
has shown that 78% of clinical trials were conducted
with equal patient allocation strategies.20 To reduce the
number of simulation scenarios, we deliberately chose to
use the same number of patients across all studies in
each meta-analysis.
For the following parameters, we chose to input mul-

tiple values instead of constants. The control arm event
probabilities (p) investigated in this simulation were
0.001, 0.005 and 0.01. They are chosen according to the
varying definitions of rare events.5 6 The treatment
effects measured as OR were set as no effect (OR=1),
small to medium sized (OR=0.8; OR=1.25), moderately
large (OR=0.5; OR=2) and extremely large (OR=0.2;
OR=5), where OR<1 indicates lower event rates in treat-
ment arms and OR>1 indicates higher event rates in
treatment arms.18 The numbers of patients (n) in each
individual study included were 50, 100 and 250 based on
the same review mentioned above,7 which revealed that
the median (Q1, Q3) of the sample size in each individ-
ual study was 102 (100, 243). We also considered the
potential impact of between-study variance in our simula-
tion design. We set the between-study SD as 0.1, 0.5 and
1, which represented little, moderate and large between-
study variance.18 The between-study variation was applied
at the level of ORs, that is, the treatment effect.
In this simulation study, the treatment arm event prob-

abilities were calculated through the control arm event
probabilities and treatment effects (OR).

pTi
¼ ( pc=ð1� pcÞ)Vi

1þ ( pc=ð1� pcÞ)Vi

where pT=treatment arm probability, pc=control arm
probability, Ω=OR, i=1, 2, …, study.

Table 1 Simulation parameter setup

Parameter Assigned values Rationale Reference

OR 0.2, 0.5, 0.8, 1, 1.25, 2, 5 No treatment effect, small to medium,

large and extremely large treatment

effects

18

Control group event probability (p) 0.001, 0.005, 0.01 1 in 2000 rare diseases in EU;

1 in 1000 rare adverse events

6 19

Number of studies in each meta-analysis (m) 5 Median=3; IQR: 2–6; <1% >29 7

Number of patients in each individual study (n) 50, 100, 250 Median=102; IQR 50–243 7

Between-study SD 0.1, 0.5, 1 Small, moderate, large 18

Ratio of group size (r) 1:1 78% trials had equal group ratio 20
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Number of simulations
We simulated 2500 data sets for each scenario to ensure
the accuracy of our simulation results.21

Analysis methods
Five pooling procedures were used to meta-analyse each
simulated data set. They were Peto, Mantel-Haenszel
with fixed-effects and random-effects models, and
inverse variance (IV) method with fixed-effects and
random-effects models.2

Methods for including both-armed zero-events
To implement the above five pooled methods to incorp-
orate studies with BA0E in meta-analysis, a continuity
correction factor was added to each of the four cells of
the 2×2 table for a BA0E study, that is, event in the treat-
ment arm, non-event in the treatment arm, event in
the control arm and non-event the in control arm.
Continuity corrects were also used to incorporate single-
armed zero-event studies for all methods except Peto’s.
We chose to use the constant continuity factor 0.5. It is
common and plausible choice when the group ratio is
balanced between treatment and control arms.22

Evaluating simulation performance
Four measures were used to assess the performance of
this simulation study21 (table 2): (1) percentage bias,
which is calculated as the percentage of the difference
between the average of the estimated value of the treat-
ment effect and the true value of the treatment effect
(absolute bias) over the true value of the treatment
effect; (2) root mean square error (RMSE), which mea-
sures the average distance of estimated treatment effects
from the parameter value; (3) the average length of
95% CIs is also used to compare the precisions between
pooling methods; and (4) coverage, which measures the
percentage of the true treatment effects included in the
available 95% CIs over all generated data sets. The
RMSE and average 95% CI length were reported the log
OR scale. The performances of the simulation were
compared across the five pooling methods used for the
approaches of including and excluding BA0E studies in
the meta-analyses.

We also reported the inclusiveness of the approach of
excluding BA0E studies in meta-analysis, which reported
the percentage of number of studies included in the
pooling process.
Since the focus of our investigation was whether and

when including BA0E studies would introduce bias to
the pooled estimates of the treatment effect in
meta-analyses, we evaluated the simulation performance
regarding the bias in different scenarios by varying the
values of the treatment effect, control arm probability,
number of patient and between-study variance. Other
simulation performance measures (RMSE, average width
of 95% CI and coverage of 95% CI) were evaluated on a
common simulation scenario to minimise the required
amount of work.

Statistical software and program
The data sets for each simulation scenario are generated
using R V.2.15.2 (The R Foundation for Statistical
Computing; simulation code of data generating is attached
as online supplementary appendix 1). The meta-analyses
were conducted using Stata (College Station, Texas, USA).
The estimates summarising the overall performance of
this simulation were also calculated using Stata.

RESULTS
In this study, we reported 13 simulation scenarios
based on the input values of the simulation parameters
(treatment effect, control arm probability, number of
patients and between-study variance). Among all simu-
lated meta-analysis data sets, 31.5% (minimum=21%;
maximum=40%) of them were BA0E studies.

Including BA0E studies
Our simulation results supported our hypothesis that
when there is no true treatment effect (OR=1), the
approach of including BA0E studies in meta-analyses
had the best overall performance regardless of the
choice of pooling methods, which gave the smallest bias
(<0.1%; table 3 and see online supplementary appendix
2) and RMSE (figure 1 and see online supplementary
appendix 3a), and narrowest 95% CI (figure 2 and see
online supplementary appendix 3b). However, when

Table 2 Measures for evaluating simulation performance

Criteria Formula

Percentage bias ((δ/β)%) ðð �̂b� bÞ=bÞ � 100, where d ¼ �̂b� b

RMSE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð�̂b� bÞ2 þ ðSE ðb̂ÞÞ2

q

Average width of 95% CI
PB

i¼1 2Z1�ða=2ÞSE ðb̂iÞ=B, for i=1, 2 ,…, B, where B=the number of meta-analyses

conducted using simulated data sets

Coverage of 95% CI Percentage of times the 95% CI of b̂i include β, for i=1, 2 ,…, M, where M=the

number of meta-analyses conducted using simulated data sets

β, true value of estimate of interest—log OR; b̂ , estimate of β—estimates of log OR;�̂b , mean of b̂ (log OR) in the simulation;
δ, absolute bias—the difference between the mean of the estimates of log OR and log OR; Z1�ða=2Þ : ð1� ða=2ÞÞ, quantile of the standard
normal distribution; RMSE, root mean square error.
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Table 3 Impact of the treatment effect changes on bias

Number of studies=5 Number of patients=100 Group ratio=1 Control arm probability=0.001

Number of simulated data

sets=2500

Between-study

SD=0.5

Excluding BA0E studies Including BA0E studies

Positive treatment effect No treatment effect Positive treatment effect

OR=1.25 OR=2 OR=5 OR=1 OR=1 OR=1.25 OR=2 OR=5

Methods dOR %bias dOR %bias dOR %bias dOR %bias dOR % bias dOR %bias dOR %bias dOR %bias

IV random effects 1.11 −12.6 1.45 −37.9 2.28 −119.3 1.01 0.8 1.00 <0.1 1.03 −21.4 1.13 −77.0 1.56 −220.5
IV fixed effects 1.11 −12.6 1.46 −37.0 2.28 −119.3 1.01 0.7 1.00 <0.1 1.03 −21.4 1.15 −73.9 1.56 −220.5
M-H random effects 1.11 −12.5 1.45 −37.9 2.28 −119.3 1.01 0.8 1.00 <0.1 1.03 −21.4 1.13 −77.0 1.56 −220.5
M-H fixed effects 1.11 −12.6 1.46 −37.0 2.30 −117.4 1.01 0.8 1.00 <0.1 1.03 −21.4 1.15 −73.9 1.62 −208.6
Peto 1.19 −5.0 1.87 −7.0 3.68 −35.9 1.01 1.4 1.00 <0.1 1.04 −20.2 1.19 −68.1 1.92 −160.4

Negative treatment effect No treatment effect Negative treatment effect

Excluding BA0E studies Including BA0E studies

OR=0.8 OR=0.5 OR=0.2 OR=0.8 OR=0.5 OR=0.2

dOR %bias dOR %bias dOR %bias dOR %bias dOR %bias dOR %bias

IV random effects 0.88 −9.9 0.70 −40.6 0.47 −133.1 0.99 −23.2 0.97 −93.0 0.94 −370.7
IV fixed effects 0.88 −9.9 0.70 −40.6 0.47 −133.1 0.98 −23.0 0.96 −92.3 0.93 −367.4
M-H random effects 0.88 −9.9 0.70 −40.6 0.47 −133.1 0.99 −23.2 0.97 −93.0 0.94 −370.7
M-H fixed effects 0.88 −9.9 0.70 −40.6 0.47 −133.1 0.98 −23.0 0.96 −92.3 0.93 −367.4
Peto 0.80 0.2 0.54 −7.8 0.26 −30.6 0.95 −22.6 0.90 −90.6 0.92 −360.9
% bias: percentage bias OR ¼ ð1� dOR/ORÞ � 100, when OR <1. percentage bias OR = (OR/dOR=� 1Þ � 100, when OR≥1. Negative (−) bias indicates underestimating of treatment effect;
positive bias indicates overestimating of treatment effect.
BA0E, both-armed zero-event; IV, inverse variance; M-H, Mantel-Haenszel.
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there was a true treatment effect, this approach gave the
larger bias compared to the alternative approach of
excluding BA0E studies. The magnitude of the bias
increased with an increase in the treatment effect in the
direction of underestimating the treatment effects by
pulling the point estimates towards the null hypothesis
(OR=1). Compared to the approach of excluding BA0E
studies, the results obtained by including BA0E studies
had smaller or similar RMSEs when the treatment
effects were from none (OR=1) to moderately large
(OR=0.5); but when the treatment effect was extremely
large (OR=0.2), the approach of including BA0E studies
led to the larger RMSEs compared to its alternative
approach (figure 1 and see online supplementary
appendix 3a). For the width of 95% CI, the approach of
including BA0E studies constantly produced narrowed
95% CIs comparing to the approach of excluding BA0E
studies (figure 2 and see online supplementary appen-
dix 3b). The coverage of this approach was very high,
from 100% to 95% (see online supplementary appendix
3c) regardless of the changes of the treatment effects.
We also found that the bias of the pooled estimates
increased with decreasing control arm probability
(table 4) and number of patients (table 5) and increas-
ing between-study variance (table 6).

Figure 1 Comparing root mean square error (RMSE).

BA0E, both-armed zero-event; IV, inverse variance;

M-H, Mantel-Haenszel; RMSE, root mean square error.

Figure 2 Comparing width of 95% confidence interval (CI).

BA0E, both-armed zero-event; IV, inverse variance; M-H,

Mantel-Haenszel.
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Table 5 Impact of the number of patient changes in each individual study on bias

Number of studies=5

Control group

probability=0.001 Group ratio=1 OR=0.5

Number of simulated

data sets=2500

Between-study

SD=0.5

Excluding BA0E studies Including BA0E studies

n=50 n=100 n=250 n=50 n=100 n=250

Methods dOR %bias dOR %bias dOR %bias dOR %bias dOR %bias dOR %bias

IV random effects 0.73 −45.7 0.70 −40.6 0.68 −36.5 0.98 −96.8 0.97 −70.7 0.93 −86.0
IV fixed effects 0.73 −45.8 0.70 −40.6 0.68 −36.3 0.98 −96.5 0.96 −68.5 0.92 −84.5
M-H random effects 0.73 −45.7 0.70 −40.6 0.68 −36.5 0.98 −96.8 0.97 −70.7 0.93 −86.0
M-H fixed effects 0.73 −45.8 0.70 −40.6 0.68 −36.3 0.98 −96.5 0.96 −68.5 0.92 −84.5
Peto 0.58 −15.2 0.54 −7.8 0.51 −2.4 0.98 −95.8 0.95 −59.5 0.90 −80.7
BA0E, both-armed zero-event; IV, inverse variance; M-H, Mantel-Haenszel.

Table 6 Impact of the between-study variance changes on bias

Number of studies=5

Control group

probability=0.001 Group ratio=1 OR=0.5

Number of simulated

data sets=2500

Number of

patients per

arm=100

Excluding BA0E studies Including BA0E studies

SD=0.1 SD=0.5 SD=1 SD=0.1 SD=0.5 SD=1

Methods dOR %bias dOR %bias dOR %bias dOR %bias dOR %bias dOR %bias

IV random effects 0.68 −35.3 0.70 −40.6 0.88 −76.7 0.96 −92.5 0.97 −93.0 0.99 −97.3
IV fixed effects 0.68 −35.3 0.70 −40.6 0.88 −76.7 0.96 −91.6 0.96 −92.3 0.99 −97.0
M-H random effects 0.68 −35.3 0.70 −40.6 0.88 −76.7 0.96 −92.5 0.97 −93.0 0.99 −97.3
M-H fixed effects 0.68 −35.3 0.70 −40.6 0.88 −76.7 0.96 −91.6 0.96 −92.3 0.99 −97.0
Peto 0.50 −0.9 0.54 −7.8 0.80 −60.5 0.95 −89.9 0.90 −90.6 0.98 −96.4
BA0E, both-armed zero-event; IV, inverse variance; M-H, Mantel-Haenszel.

Cheng
J,etal.BM

J
Open

2016;6:e010983.doi:10.1136/bm
jopen-2015-010983

7

O
p
e
n
A
c
c
e
s
s



Excluding BA0E studies
Similarly, excluding BA0E studies for meta-analyses intro-
duced little bias on the pooled estimates (0.7–1.4%)
when there was no true treatment effect (table 3 and
see online supplementary appendix 1). When a true
treatment effect existed, the pooled estimates obtained
using this approach yielded smaller bias compared to
including BA0E studies. Again the magnitude of bias
increased in the direction towards underestimating the
treatment effects with a decrease in the control arm
probability (table 4) and number of patients (table 5)
and an increase in between-study variance (table 6).
Besides the results of RMSE and width of 95% CI
already mentioned in comparing to the approach of
including BA0E studies, we noticed that the coverage
was influenced by the changes of the treatment effects.
With the increasing of the treatment effect from none
to extremely large (ORs=1, 0.8, 0.5, 0.2), the coverage
decreased sizeably (nearly 100%, 96%, 91% and 84%)
(see online supplementary appendix 3c).

Peto method excluding BA0E studies
Among all five pooling methods, the Peto method
excluding BA0E studies produced lowest bias across all
simulation scenarios. When the treatment effect and
between-study variance were from none (OR=1; SD=0.1)
to moderately large (OR=2, OR=0.5; SD=0.5), with the
reasonable number of patients in each study (>100),
Peto method excluding BA0E studies generated the rela-
tively reliable estimates of the pooled treatment effect
(percentage bias<−8%). However, when the treatment
effect and between-study variance were extremely large
(OR=5, OR=0.2; SD=1) and number of patients in each
study was small (<50), the bias of the estimates from this
approach increased dramatically towards underestimat-
ing the treatment effects (tables 3–6 and see online sup-
plementary appendix 2).

Summary
Our simulation study verified that when there was no
true treatment effect (OR=1), the approach of including
BA0E studies consistently outperformed the approach of
excluding BA0E studies across all five pooling methods
by providing nearly unbiased results. However, whenever
a true treatment effect was present, the results from the
approach of including BA0E studies introduced larger
bias comparing to the approach of excluding them in
the direction of underestimating the true treatment
effect. Among all evaluated pooling methods for these
two approaches, Peto methods excluding BA0E studies
produced the least biased estimates when the true treat-
ment effect existed.

DISCUSSION
This simulation study investigated the impact of includ-
ing or excluding BA0E studies in meta-analyses for rare
event outcomes when OR is used as the effect measure

for pooled estimates of dichotomous outcomes. We
found that including BA0E studies provided more accur-
ate overall pooled estimates than excluding them when
there was no true treatment effect. However, when there
was a true treatment effect, the results from both
approaches underestimated the true treatment effect,
and including BA0E studies increased bias further in the
direction of underestimating treatment effects. Among
the pooling methods, Peto’s method with exclusion of
BA0E studies provided the pooled OR considerably
closer to the true treatment effect for small to moderate
treatment effects under the condition of small to moder-
ate between-study variance and relatively large sample
size.
Our simulation study confirmed the empirical findings

obtained by Friedrich et al.12 They recommended
including BA0E studies in all meta-analyses for the bene-
fits of providing conservative point estimates and increas-
ing the study integrity. However, the ‘conservative’
estimate is a double-edged sword. In the sense of
drawing the estimates towards null hypothesis, although
underestimating benefit may delay or deny patient’s
access to a new treatment23 when evaluating the benefi-
cial treatment effect for a new drug, with the patient
safety as physician’s priority concern, the conservative
result might be the safer choice. With many uncertain-
ties unchecked, quickly shifting from the standard care
to a new treatment based on the findings from a small
study (even it is a meta-analysis) can be a dangerous
move. Some studies have showed that the treatment
effect tends to be overestimates when the trials were
underpowered.24 25 On the other hand, when the result
of a meta-analysis is regarding the safety measures such
as serious adverse event, the conservative result means
underestimating the harm, which could lead to expose
patients to unnecessary danger.26 Therefore, depending
on the purpose of the systematic review (evaluating ben-
efits or harms), including BA0E studies in meta-analysis
could have different implications.
This simulation study confirmed that among all five

commonly used pooling methods, only the Peto method
without inclusion of BA0E studies produces a pooled
OR approaching the true treatment effect when sample
size is relatively large. This finding is consistent with the
simulation study conducted by Bradburn et al,9 which
evaluated performances of the common methods used
to meta-analyse the sparse data for binary outcomes.
Compared to Peto method, the other pooling methods
even without including BA0E studies still produced
biased results by underestimating the treatment effects,
that is, pulling the pooled estimates towards null hypoth-
esis. This phenomenon could be due to the extremely
low event rates used in our simulation, but this assump-
tion needs to be confirmed in future studies. In addition
to Bradburn’s findings, our simulation study also shows
that compared to the random-effects model (IV or
H-M), the Peto method as a fixed-effect model gave the
least biased estimates when the between-study variance is
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from small to moderate. The reason for the Peto
method outperforming the random-effects model is that
as Sweeting et al22 has shown in their simulation study,
the heterogeneity was difficult to estimate for the rare
event data. Therefore, the benefit of using
random-effect model does not overcome the bias intro-
duced by the IV or H-M method, which were proven by
the simulation study conducted by Bradburn et al.9

This simulation study clearly showed that including
both-armed (and even single armed) zero-event studies
in meta-analysis could severely underestimate the treat-
ment effects for beneficial and harmful events. However,
when the treatment effect is evaluating harmful out-
comes, underestimating treatment effect may lead to
more serious consequence such as compromising
patients’ safety in seeking new treatment. In reality, it is
not easy or sometimes even impossible to know whether
a true treatment effect exists or not. Therefore, a com-
prehensive approach of a series of sensitivity analyses
needs to be conducted when performing systematic
reviews that include zero-event studies. An example
could be used is Dahabreh and Economopoulos13 who
re-analysed the cardiovascular events in randomised
trials of rosiglitazone. Although, the results showed that
including BA0E studies turned the pooled odds of MI
from statistically significant to not significant. Their con-
clusion that rosiglitazone increased MI was made after
assessing the consistency of results from different
methods. The above example demonstrates that when
meta-analyses are conducted to evaluate rare events, it is
difficult to get a concordant result. To assist readers to
make their own informative decision about the results of
a meta-analysis, its methods should be communicated in
full transparency. In addition to reporting the result fol-
lowing the PRISMA guideline,1 the eligible studies with
zero-event and the methods used to deal with zero-event
studies need to be clearly described. We believe that an
extension of the PRISMA guideline on how to report
meta-analyses on rare event outcomes with zero-event
studies needs to be developed to include a section of
reporting the methods used to deal with zero-event
studies and impact on the overall estimates of
meta-analyses.
Although we chose the values of simulation para-

meters from literature review, we realise that the results
of our simulation study cannot be generalised to all
situations in meta-analysis. To reduce the simulation
scenarios to a manageable level, we used fixed values for
some parameters. We only considered the balanced
group ratio between treatment and control arms, but
only 22% of RCTs used unbalanced design among previ-
ous in a recent review.20 Within each simulated
meta-analysis data set, we fixed the number of studies to
five, each with the same number of patients. This
approach might be oversimplified. Although we chose to
investigate OR using common pooling methods, we
believe that our findings can be applied to RR under
similar condition for the estimates of OR and RR are

similar when event rates are <0.2.16 17 For the continuity
correction approach to incorporate zero-event studies,
we only used 0.5 as continuity correction factor, which
works well when the trial arms are balanced, but will
increase the bias when there is a big difference on the
numbers of patients between two arms and the treat-
ment effect are large.22

The commonly used meta-analysis pooling methods
we discussed in this simulation are based on parameter
estimation, which requires the use of continuity correc-
tion to include zero-events. Some likelihood
maximisation-based statistical models such as Poisson
regression and β-binomial regression can incorporate
both-armed or single-armed zero-events without continu-
ity correction and supposedly generates an unbiased esti-
mate of RR. The simulation from Spittal et al14 showed
that random-effects Poisson regression outperformed
the standard pooling methods when meta-analysing the
incidence rate ratio for zero-events data. We ran the
random-effects model Poisson regression on our stimu-
lated data, and there was a convergence issue. The
reason could be that there were a large proportion of
zero-event (either in one arm or in both arms) studies
presented in a relatively smaller number of studies in
each meta-analysis due to extremely low event rate. This
convergence problem may not be a problem for
meta-analyses with larger number of studies. Another
recently published simulation by Kuss15 recommended
the use of β-binomial regression to incorporate
both-armed and single-armed zero-event studies in
meta-analyses. Since this model requires further pro-
gramming on parameterisation to obtain the OR as the
effect measures, it is not a practical choice for non-
statisticians. Similar to random-effect Poisson regression
and β-binomial regression, Bayesian approach using
none-informative prior as an alternative of the classical

Table 7 Strategies in dealing with BA0E studies

Approaches Scenarios

Including BA0E studies 1. No evidence of the presence

of treatment effects

2. Strong rationale on seeking

the most conservative

estimates of the treatment

effect for beneficial outcomes

when evaluating new drugs

or interventions

3. The magnitude of the

treatment effects is unclear

when evaluating beneficial

outcomes

Excluding BA0E

studies with Peto

method

1. Evidence of the presence of

treatment effects

2. Evaluating harmful outcomes

such as mortality, mobility or

adverse events

BA0E, both-armed zero-event.
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statistical models can incorporate both-armed and
single-armed zero-event studies without continuity cor-
rection, but it requires some programming work.
Therefore, although the above full statistical models may
have the advantage of incorporating BA0E in
meta-analyses, the requirement of some special knowl-
edge or skills creates the barriers for non-statistician
users. We feel that before any new meta-analysis specia-
lised and easy ready-to-use full statistical models devel-
oped, RevMan and Stata’s metan module will remain as
the most commonly used tools in conducting
meta-analyses. With the lack of the capacity to conduct
any advanced statistical model, how to deal with BA0E
studies in meta-analyses may still present a challenge for
researchers who use these standard meta-analysis
packages. Therefore, based on our simulation results, we
developed some general strategies to deal with BA0E
studies using the standard meta-analysis methods for
rare event outcomes (table 7).

CONCLUSION
To conclude, we recommend including BA0E studies in
meta-analysis using OR as effect measure in the follow-
ing three scenarios: (1) when treatment effects are
unlikely to present, (2) having strong rational for
seeking the most conservative estimates on treatment
effect when evaluating beneficial outcomes and (3) mag-
nitudes of the treatment effects unclear when evaluating
beneficial outcomes for new treatments. We recommend
excluding BA0E studies in conjunction of Peto method
in the following two scenarios: (1) when treatment
effects are likely to present and (2) when evaluating
harmful outcomes such as mortality, mobility or adverse
events. When the above recommendations cannot apply,
it is important to present the results of meta-analyses
using approaches of including and excluding BA0E
studies so that the readers can make their informed
interpretation within the clinical content.
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