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ABSTRACT
Objective: To determine whether characterisation of
patients’ metabolic profiles, utilising nuclear magnetic
resonance (NMR) and mass spectrometry (MS), could
predict response to rituximab therapy. 23 patients with
active, seropositive rheumatoid arthritis (RA) on
concomitant methotrexate were treated with rituximab.
Patients were grouped into responders and non-
responders according to the American College of
Rheumatology improvement criteria, at a 20% level at
6 months. A Bruker Avance 700 MHz spectrometer and
a Thermo Scientific Q Exactive Hybrid Quadrupole-
Orbitrap mass spectrometer were used to acquire
1H-NMR and ultra high pressure liquid chromatography
(UPLC)–MS/MS spectra, respectively, of serum
samples before and after rituximab therapy. Data
processing and statistical analysis were performed in
MATLAB. 14 patients were characterised as
responders, and 9 patients were considered non-
responders. 7 polar metabolites (phenylalanine,
2-hydroxyvalerate, succinate, choline, glycine,
acetoacetate and tyrosine) and 15 lipid species were
different between responders and non-responders at
baseline. Phosphatidylethanolamines,
phosphatidyserines and phosphatidylglycerols were
downregulated in responders. An opposite trend was
observed in phosphatidylinositols. At 6 months, 5 polar
metabolites (succinate, taurine, lactate, pyruvate and
aspartate) and 37 lipids were different between groups.
The relationship between serum metabolic profiles and
clinical response to rituximab suggests that 1H-NMR
and UPLC–MS/MS may be promising tools for
predicting response to rituximab.

INTRODUCTION
Early detection and initiation of an effective
treatment in rheumatoid arthritis (RA) is
critical for minimising damage caused by the
disease and improving immediate and long-
term patient outcomes and quality of life.1

Aggressive treatment is key if the damage
caused by RA is to be controlled. In particu-
lar, successful disease management requires

better tools for diagnosis and streamlining of
treatment protocols.1 2 Thus, if choosing and
initiating the right biological treatment
earlier in the course of disease could help to
reach the goal of remission, a greater effort
should be made to develop the tools neces-
sary to employ a ‘personalised’ medicine
approach, in an attempt to match patients
with the most appropriate therapy option for
their disease subtype.
Once genetic and epigenetic risk factors

and environmental triggers have led from
preclinical to clinical disease, RA may be
driven by several different factors, including
cytokines, such as tumour necrosis factor
(TNF) or interleukin 6 (IL-6), or different
cell subset, such as B cell, T cell or macro-
phages, which ultimately lead the perpetuat-
ing cycle of chronic synovitis.3 4 Given the
complexity and heterogeneity of RA, it seems
doubtful that a single cytokine or biomarker
will be sufficient for therapy discrimination.
Instead, biomarker signatures may represent
more realistic approach for the future of

Key messages

What is already known about this subject?
▸ Current methods make it challenging to accur-

ately predict rituximab response in patients with
rheumatoid arthritis.

What does this study add?
▸ This study demonstrates differential metabolism

between patients who respond to rituximab and
those who do not and identifies several metabo-
lites and pathways as potential biomarkers.

How might this impact on clinical practice?
▸ Metabolite profiles can differentiate rituximab

responders and non-responders when other
clinical measures fail to do so, thus streamlining
treatment protocols.
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personalised therapeutic protocols for those suffering
from the disease.5 Identifying these unique signatures
could make a significant difference in RA management
and attainment of disease remission. Metabolomics is the
science of identifying and quantifying the biochemical
by-products of metabolism, frequently referred to as meta-
bolites.6 7 The goal of metabolomics is to comprehensively
measure the small molecules present in a specific cell,
tissue, organ, organism or biofluids.6–8 Variations in
metabolite concentrations can serve as diagnostic or prog-
nostic biomarkers. We propose that the study of metabolo-
mics in RA can be useful to identify biomarker
signatures.9–11 Metabolomics has many applications and is
frequently used to identify single biomarkers, classify
metabolite patterns of health or disease, elucidate path-
ways involved in pathogenesis, uncover novel targets for
modulation of dysregulated pathways and to monitor treat-
ment and/or disease status.12–14 Recent studies in other
fields, such as oncology, demonstrate the applicability of
metabolomics using serum and urine samples for diagno-
sis and prognosis.15–21 The application of metabolomics to
RA is still in its infancy, but early studies have yielded
promising results.2 22–27 These studies suggest that meta-
bolomics analyses of several different biological fluids may
be useful diagnostic tools prior to initiation of treatment
and may also prove effective for earlier detection of RA.
They also suggest that metabolic profiling has the poten-
tial to effectively predict patient response to therapy prior
to administration. Here, we show that an untargeted ana-
lysis of polar and lipid metabolites from serum samples is
a promising clinical tool for predicting response to rituxi-
mab therapy and ultimately improving patient outcomes.

METHODS
Patients and clinical outcomes
The ARISE (Assessment of Rituximab’s Immunomodulatory
Synovial Effects registered at ClinicalTrials.Gov
NCT00147966) clinical trial was recently described in
detail28 and is briefly described in online supplementary
material. The primary clinical outcome was response accord-
ing to the ACR improvement criteria, at a 20% level
(ACR20), at 6 months. Patients who left the study before
6 months were considered non-responders. Secondary clin-
ical outcomes included ACR20 as well as ACR50 and ACR70
responses at monthly time points, Disease Activity Score
using a 28-joint count (DAS28)29 and changes in individual
disease activity parameters: tender joint count, swollen joint
count, physician global assessment of disease, patient global
assessment of disease, patient assessment of pain, measure
of functional status using the Health Assessment
Questionnaire (HAQ) and C-reactive protein (CRP) and
erythrocyte sedimentation rate (ESR) at monthly time
points.

Metabolomics analysis
A total of 43 samples were prepared and analysed using
nuclear magnetic resonance (NMR) and ultra high

pressure liquid chromatography (UPLC)–mass spec-
trometry (MS)/MS analytical platforms10 15 30–33 as
described in online supplementary material. Frozen sera
were obtained from the Division of Rheumatology,
Allergy and Immunology at UC San Diego School of
Medicine (San Diego, California, USA) for polar and
lipid analyses. NMR spectra were acquired with a 16.4 T
(700 MHz) Bruker Avance spectrometer (Bruker
BioSpin, Billerica, Massachusetts, USA) equipped with a
5 mm TCI cryogenically cooled probe and an autosam-
pler at 30°C. Following acquisition, spectra were pro-
cessed using NMRlab and MetaboLab.34 Metabolite
assignment and quantification were performed using
several database.31 35

UPLC–MS analysis on lipid fraction was performed on
a Q Exactive Hybrid Quadrupole-Orbitrap Mass
Spectrometer equipped with an Accela 1250 pump and
an autosampler as described in online supplementary
material (Thermo Scientific, Waltham, Massachusetts,
USA). Metabolite assignment was performed at a 5 ppm
mass accuracy range by interrogation of several data-
bases.35–40 MetaboAnalyst V.3.041 and VANTED42 soft-
ware were used for metabolic pathway analysis (see
online supplementary material).

Statistical analysis
Partial least squares discriminant analysis (PLSDA) with
venetian blinds cross-validation was performed using
PLS-Toolbox (Eigenvector Research, Manson, Washington,
USA). Polar metabolite correlation relationships were
reported in Pearson’s correlation coefficients and visua-
lised as a heat map with hierarchical clustering analysis
with Euclidean distance metric by MATLAB. Statistical sig-
nificance analysis between responders and non-responders
was performed using an unpaired Student’s t-test (statistical
significance: *p<0.1, **p<0.05 and ***p<0.01).

RESULTS
Patient characteristics
After 6 months of rituximab therapy, patients were
divided into two groups according to their response, as
determined by the 1987 ACR classification criteria. At
baseline, 14 patients were classified as responders and 9
as non-responders.28 Similarly, of the 20 patients who fol-
lowed up at 6 months, 13 were responders and the
remaining 7 were non-responders. With the exception of
ACR response, no significant differences were observed
between rituximab responders and non-responders at
baseline. Age, gender, baseline methotrexate doses, non-
steroidal anti-inflammatory drugs (NSAIDs) and prednis-
one users were all comparable between groups. In
addition, clinical disease parameters, including DAS,
HAQ, pain, joint swelling and tenderness, ESR, rheuma-
toid factor (RF), anti-CCP and CD19+ cells were similar
between groups prior to rituximab administration (see
online supplementary table S1).
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Metabolomics analysis
Polar and apolar fractions were prepared for all 43
samples and analysed by 1D 1H-NMR and UPLC–MS/
MS, respectively.31 35 38–42 Identified polar metabolites
include amino acids, ketone bodies and intermediates of
energy metabolism (see online supplementary table S2).
Interrogation of several reference libraries yielded 584
known lipid compounds from the apolar fraction.35 37–39

Several major classes of lipids were well represented
including phosphatidic acids (PA), phosphatidylcholines
(PC), phosphatidylethanolamines (PE), phosphatidylgly-
cerols (PG), phosphatidylinositols (PI), phosphatidylser-
ines (PS), sphingomyelins, ceramides, sterols,
triglycerides and free fatty acids. Conventional ester,
alkyl ether (O-prefix) and alkenyl ether (P-prefix)
linkage glycerophospholipids were identified.

Differences in metabolite profiles before treatment
Polar metabolite profiles of patient sera before rituxi-
mab therapy was accomplished using 1D 1H-NMR spec-
troscopy (figure 1A(a)). Thirteen polar metabolites
had p<0.10, seven of which achieved p<0.05 (phenyl-
alanine, 2-hydroxyvalerate, succinate, choline, glycine,

acetoacetate and tyrosine; figure 1B(a)). Mean spec-
tra (figure 1A(a)) show that most, but not all features
are diminished in responders. Pearson’s correlation
coefficients show positive relationships between iden-
tified polar metabolites. Metabolites primarily cluster
into groups according to their biological function
or chemical classification (see online supplementary
figure S1).
Apolar metabolites were isolated by UPLC–MS/MS in

negative and positive modes for the most complete lipi-
dome coverage. Thousands of features were detected in
the MS spectra, of which, 584 were matched to known
compounds reported in established libraries. Forty-one
identified compounds achieved p<0.10. Of these lipids,
15 reached p<0.05 (see online supplementary table S3).
Of the statistically different lipids, 80% (12/15) were gly-
cerophospholipids, suggesting that regulation and
metabolism of this lipid class is an important difference
between groups. Lipid species that were identified as
statistically significant were grouped according to their
classes. This revealed interesting trends among lipid
species. Relative to non-responders, responders dis-
played elevated levels of ester-linked PI and PC. In

Figure 1 (A) Mean NMR

spectra of patient sera show

differences in metabolite

intensities between responders

and non-responders before (a)

and 6 months after (b) treatment

with rituximab. Variations in

metabolite concentrations

between groups indicate unique

metabolite profiles between

responders and non-responders

at both time points. Labelled

peaks indicate significant

metabolites. (B) Concentrations of

specific polar metabolites are

different between rituximab

responders and non-responders.

The mean concentrations (±SD)

of sera polar metabolites of

patients with RA measured by
1H-NMR before (a) and after (b)

treatment with rituximab (lactate

excluded due to scale). These

metabolites represent a group of

potential biomarkers for predicting

and assessing patient response

to rituximab treatment. *p<0.1

**p<0.05. AcAc, acetoacetate;

Glu, glutamate; NMR, nuclear

magnetic resonance; RA,

rheumatoid arthritis.

Sweeney SR, et al. RMD Open 2016;2:e000289. doi:10.1136/rmdopen-2016-000289 3

Rheumatoid arthritis

http://dx.doi.org/10.1136/rmdopen-2016-000289
http://dx.doi.org/10.1136/rmdopen-2016-000289
http://dx.doi.org/10.1136/rmdopen-2016-000289
http://dx.doi.org/10.1136/rmdopen-2016-000289


contrast, ester linked PG, all PE, all PS, O/P-PC and O/
P-PI were lower in responders than non-responders (see
online supplementary table S5).

Differences in metabolite profiles following treatment
Serum collected at the 6-month follow-up was used for
metabolomics analysis. Mean 1D 1H-NMR spectra at
6 months (figure 1A(b)) show clear differences between
time points that are indicative of differential metabolic
response to rituximab as well as the effects of rituximab
on both populations despite clinical parameters. Polar
metabolite quantification at 6 months revealed seven
metabolites that attained p<0.10 between responders
and non-responders. Five of these metabolites, succin-
ate, taurine, lactate, pyruvate and aspartate achieved
p<0.05 (figure 1B(b)).

Following rituximab therapy, the composite UPLC–
MS analysis of the apolar fraction of patient sera
resulted in the identification of 69 lipid species that
achieved p<0.10. Of these, 37 metabolites resulted in
p<0.05 (see online supplementary table S4). Similar to
baseline, many of these lipid species belong to the gly-
cerophospholipid class (24/37 or 65%). Again, signifi-
cant lipids were clustered by class to identify trends.
Relative fold-changes were calculated for lipid species
that were significant between responders and non-
responders (data not shown). Six months after treat-
ment with rituximab, elevated levels of PA, PC, PS and
O/P-PG were observed in responders relative to non-
responders. Conversely, PE, PG, O/P-PI, O/P-PC and
O/P-PS were lower in responders than in non-
responders (table 1).

Figure 1 Continued
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Statistical analysis of metabolite profiles
Polar and apolar data sets were combined to capture the
relative contribution of each metabolite to the overall
differences observed between responders and non-
responders before and after rituximab treatment. At
both time points, PLSDA successfully separated respon-
ders and non-responders (figure 2). Pretreatment and
post-treatment metabolites show similar degrees of separ-
ation, particularly with respect to latent variable 1 (LV1).
Following treatment, separation is largely diminished in
regard to latent variable 2 (LV2), reflecting the observed
shifts in the metabolite profiles of both groups over
time. Despite the relatively small latent variables, clear
separation between groups is observed in both score
plots, particularly in the x-direction. The R2 values for
pretreatment and post-treatment analyses were 0.91 and
0.97, respectively (see online supplementary table S6).
Owing to the large number of apolar metabolites

identified, lipids were grouped into general classes, to
simplify analysis and draw conclusions based on metabol-
ite chemistry and biological function as opposed to
chain length or minor differences in double bond
number and location. Fold changes were calculated
using only the metabolites present in >50% of the
patient samples to ensure more robust results. This
information was then used to generate a pathway to visu-
alise global shifts in metabolite profiles as opposed to
specific changes to individual metabolites.

Pathway analysis
Polar metabolites were mapped to known metabolic
pathways using MetaboAnalyst V.3.0.41 Pathways were
ranked by their overall p values (table 1). VANTED soft-
ware42 was used to construct a metabolic pathway for gly-
cerophospholipids, which represents the majority of the
significant apolar metabolites identified at both time
points (≥65% for both). Mixed polar and apolar
pathway analysis were combined to provide a compre-
hensive picture of the global differences in metabolism
between rituximab responders and non-responders
(figure 3). Pathway analyses were performed at both
time points to reflect metabolic changes initiated by
rituximab therapy. Prior to treatment, several classes of
glycerophospholipids were downregulated in responders
relative to non-responders. Similarly, the polar

Table 1 Pathway analysis of polar compounds by MetaboAnalyst

Pathway Total compounds Hits p Value (before) p Value (after)

Glycine, serine and threonine metabolism 48 8 0.05111 0.0983

Citrate cycle (TCA cycle) 20 4 0.2849 0.0283

Pyruvate metabolism 32 3 0.7025 0.0218

Pathway p values are calculated based on differences in metabolite concentrations between responders and non-responders before and after
rituximab treatment.
TCA, tricarboxylic acid.

Figure 2 Sera metabolite profiles of patients with RA

discriminate rituximab responders and non-responders.

PLSDA score plots obtained from NMR and MS of samples

collected before (A) and after (B) treatment with rituximab

demonstrate group separation based on latent variables (LVs).

LV1, latent variable 1; LV2, latent variable 2; NMR, nuclear

magnetic resonance; MS, mass spectrometry; PLSDA, partial

least squares discriminant analysis; RA, rheumatoid arthritis.
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metabolites related to these pathways were also lower in
responders. Downregulation of the glycine, serine and
threonine pathway, which is connected to PE and PS
metabolism, is consistent with the observed relative
intensities of these phospholipid classes in responders.

Furthermore, choline, an essential component of PC,
was reduced in responders, which is consistent with the
relative downregulation of O/P-PC. Free glycerol was
also lower in responders when compared to non-
responders prior to treatment with rituximab. Taken

Figure 3 Glycerophospholipids and related metabolites are differentially expressed in sera from patients with RA before (A) and

after (B) treatment with rituximab. Pathway map connects related classes of compounds based on biological activity. Blue

indicates classes that are downregulated in responders, red indicates classes that are upregulated in responders, yellow is no

significant difference and light blue indicates not detected. Split boxes represent standard ester linkage glycerophospholipids on

the top and alkyl ethers on the bottom. CDP, cytidine diphosphate; CDP-Etn, CDP-ethanolamine; Etn-P, phosphoethanolamine;

PA, phosphatidic acids; PC, phosphatidylcholines; PE, phosphatidylethanolamines; PEM1, phosphatidyl-N-

monomethylethanolamine 1; PEM2, phosphatidyl-N-monomethylethanolamine 2; PG, phosphatidylglycerols; PM1, phosphatidyl

monomethylethanolamine; PS, phosphatidylserines; TCA, tricarboxylic acid.
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together, these data indicate that the global metabolite
signatures of responders and non-responders are dis-
tinctive before treatment with rituximab.
In many cases, treatment with rituximab either ablated

or reversed the trends observed before treatment. The
previously detected differences in the glycine, serine
and threonine metabolic pathway as well as glycerol and
choline were not observed after treatment. Instead,
changes in pyruvate metabolism and tricarboxylic acid
(TCA) cycle intermediates, namely, lactate, pyruvate,
fumarate, citrate and succinate, contributed more signifi-
cantly to differences seen between the groups following
treatment. Changes in apolar metabolites involved in
the glycerophospholipid pathway were consistent with
their polar counterparts. Interestingly, after treatment
there are distinct trends between ester and alkyl/alkenyl
ether (O/P-) linkage species for all major classes of
phospholipids. In fact, in many cases, opposite trends
were observed between linkage types for the same class
of phospholipid. These differences clearly demonstrate
that global metabolite signatures of responders and non-
responders are distinctive following treatment with
rituximab.

DISCUSSION
Sera collected from patients with RA were examined to
identify potential biomarkers to predict response to
rituximab treatment. At both time points, polar and
apolar profiles were significantly different between
patients with RA who were classified as either responders
or non-responders according to their ACR20 scores.
Prior to rituximab administration, 24 metabolites
achieved p<0.05 between patients who would later be
categorised as a responders and non-responders. When
mapped into metabolic pathways, it becomes clear that
metabolites involved in glycerophospholipid, amino acid
and energy metabolism are all important pathways that
are differentially regulated between responders and non-
responders. As expected, following rituximab therapy,
there were greater differences between responders and
non-responders, with 43 significant metabolites, likely
due to the changes induced by rituximab treatment.
Interestingly, many trends between responders and non-
responders were ablated and, in some cases, reversed
the following treatment. In addition, several metabolites
were significant in both groups when comparing time
points. This is likely due to the fact that while both
groups experienced loss of circulating B cells, there is
still a discrepancy in metabolic response to rituximab as
is indicated by the difference in clinical outcomes.
Owing to the indiscriminate depletion of circulating B
cells, some of these changes could represent the loss of
metabolic pathways important within B cells and/or
dependent on their presence and activation.
Currently, predictive biomarkers that would separate

patient populations with RA with respect to their
outcome in response to a particular therapy is an unmet

need. Several approaches have been tried to address this
issue. Most studies investigating differences in gene
expression, mRNA and protein levels in blood have
failed to successfully identify any good biomarker.43–45

Although a greater probability of clinical benefit from
rituximab in CCP+ patients and normal levels of CD19+
B cells versus CCP− patient has been described,46 the
effect is discreet and heterogeneous, so additional bio-
markers are needed. Of interest, though, type I inter-
feron signatures were found to negatively predict clinical
response to rituximab.47 To the best of our knowledge,
the metabolites that are known to be associated with
interferons are in the kynurenine pathway.48 Metabolites
in this pathway were either not detected or insigni-
ficant in our patient population. However, owing to
the signalling potential of many lipids, in particular
phosphoinositols, there may be a relationship between
interferon activation and differences in lipid profiles
that should be further investigated.
Here, we offer an alternative approach by identifying

that global biomarker signatures may represent more
appropriate approach for improving treatment protocols
and outcomes of patients with RA. Metabolites serve as
direct signatures of biochemical activity and may be
easier to correlate with phenotype.49 Perturbations in a
biological system lead to correlated changes in metabol-
ite patterns and pathways, which represent the final
response to disease status or an external interven-
tion.49 50 NMR and MS can delineate patterns of
changes and biomarkers that are highly discriminatory
for the observed disease or intervention.1 A small
number of metabolomics studies have been focused on
identifying metabolites associated with rheumatic dis-
eases, primarily for diagnostic purposes,22–24 but even
fewer have attempted to predict response to treatment.
An NMR analysis of baseline urine metabolome success-
fully discriminated patients with RA based on their
response to anti-TNF therapy.2 Here, we used a different
approach from previous studies, as we determined polar
and apolar metabolite profiles by NMR and MS.
Combining techniques provides more information about
the pathways involved and a more complete profile to
later discriminate between responders and non-
responders before treatment.
Although these findings are certainly promising, this

study is not without limitations. Most importantly, we
evaluated a small number of clinical samples. Despite
similar clinical parameters for patient inclusion, large
biological variance is expected in primary samples.
Confirmation of our results with a larger sample size
from an independent group of patients is necessary to
strengthen our conclusions and to improve statistical
confidence. In addition, analysis was performed on
peripheral blood samples. However, further studies are
needed to evaluate relationship between circulating
metabolites and synovial pathobiology. Metabolite pro-
files in blood if correlating with metabolic changes in
synovial tissue will certainly help to know more about
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RA aetiology. Furthermore, this study assessed
response to a single drug. Future studies comparing
anti-B cell, anti T-cell, anti-IL6 and anti-TNF biological
treatments simultaneously to determine whether differ-
ent therapies can be successfully distinguished prior to
initiation of treatment have the potential to further
elucidate the relationship between metabolic dysregu-
lation and RA.
Limitations exist for each approach. In vitro experi-

ments yield more statistically consistent data but fail to
accurately recapitulate the complexity of real biological
systems. Genetic and protein biomarkers also tend to be
less sensitive to biological perturbations than metabolite
profiles, however, they often fail to explain differences
observed between individuals. For these reasons, we feel
that despite the limitations of this study, we have shown
promising new data for improving protocols of patients
with RA by applying a metabolomics approach to differ-
entiate response to rituximab treatment. In addition, we
have laid a foundation for continued metabolomics
research into RA by providing baseline metabolic pro-
files for future investigation into RA specific metabolism
and the relationship between treatment and circulating
metabolites.
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