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A stochastic model of randomly accelerated
walkers for human mobility
Riccardo Gallotti1, Armando Bazzani2,3, Sandro Rambaldi2,3 & Marc Barthelemy1,4

Recent studies of human mobility largely focus on displacements patterns and power law fits

of empirical long-tailed distributions of distances are usually associated to scale-free

superdiffusive random walks called Lévy flights. However, drawing conclusions about a

complex system from a fit, without any further knowledge of the underlying dynamics, might

lead to erroneous interpretations. Here we show, on the basis of a data set describing the

trajectories of 780,000 private vehicles in Italy, that the Lévy flight model cannot explain the

behaviour of travel times and speeds. We therefore introduce a class of accelerated random

walks, validated by empirical observations, where the velocity changes due to acceleration

kicks at random times. Combining this mechanism with an exponentially decaying distribu-

tion of travel times leads to a short-tailed distribution of distances which could indeed be

mistaken with a truncated power law. These results illustrate the limits of purely descriptive

models and provide a mechanistic view of mobility.
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U
nderstanding individual mobility has important implica-
tions for traffic forecasting1, epidemics spreading2,3

or the evolution of cities4–6. With the development
of Information and Communication Technologies7, the
investigations’ focus shifted from the traditional travel diary
surveys8–10 to several new data sources. In particular, it became
possible to follow individual trajectories from mobile phone
calls11–13, location-sharing services14–16 and microblogging17, or
directly extracted from public transport ticketing system10,18,
global positioning system (GPS) tracks of taxis10,19–23, private
cars24–26 or single individuals27,28. For most data sources, the spatial
position r is the most reliable quantity. This information can be used
for studying two different aspects of human mobility: how far and
where we are moving. The second question is far more complex
than the first and can be approached with several different tools,
from aggregated origin–destination matrices29 for mobility
prediction30 or land use analysis31 to individual mobility networks
and patterns suitable for describing the natural tendency to return
frequently to a few locations (such as homes, offices and so
on)11,12,24–26,32. On the other hand, the first question, generally
characterized by the distribution P(Dr) of the individuals’
displacements Dr across all users, although apparently simple is
still far from being completely understood. Indeed, even if the study
of the distribution P(Dr) has become a trademark for recent works
on human mobility, there are still no consensus about the functional
form of this distribution. At a large scale (national or inter-urban),
one may observe a long tail behaviour9,11,12,14,15,17,20,22,33

characterized by a power law decay for long displacements. At a
smaller (urban) scale, the distribution seems to have an exponential
tail10,13,19,21,22,24,25. The unclear nature of this probability
distribution makes its interpretation difficult and dependent on
the data set used, the scale and possible empirical and fitting
errors34. It is therefore necessary to obtain data as clean as possible
and to propose a model that can be tested against empirical results.
So far, essentially power law fits were used and led the authors to
draw conclusions about the nature and mechanisms of the mobility,
but this way of proceeding could actually lead to erroneous
conclusions. Similar unresolved controversy also exists in the study
of animal’s foraging movements: relying only on a fit of the
empirical data, the same distribution can be understood in different
ways, leading to contrasting conclusions on the nature of the
underlying process35–38.

Remarkably enough, what appears to be under-evaluated in the
study of human mobility is the relevance of travel itself. Human
travelling behaviour can in general be described as a sequence of
rest times of duration t and jumps Dr in space12. These two
processes need to be separated for modelling human mobility,
since costs are in general associated to trips while a positive utility
can be associated to activities performed during stops1. However,
proposed models usually neglect the role of travel time and the
moving velocity and assume instantaneous jumps. This is
essentially a consequence of the limitations inherent to data
sources: phone calls or social networks capture the spatial character
of individuals’ movements39, but are limited by sampling rates or
by the bursty nature of human communications40,41 and are thus
not suitable for an exhaustive temporal description of human
mobility.

In this paper, we show that the observed truncated power laws
in the jump size distribution can be the consequence of simple
processes such as random walks with random velocities42. We test
this model over a large GPS database describing the mobility of
780,000 private vehicles in Italy, where travels and pauses can be
easily separated, as the transition is identified by the moment
when the engine is turned on or off (but we introduce a lower
threshold of 5 min in the elapsed time, to distinguish real stops
from accidentally switched off of the engine during a trip).
This allows us to evaluate accurately not only the displacements
Dr, but also travel times t, speeds v and rest times t.

Results
The current empirical view. Several studies suggested that the
displacements’ distribution P(Dr) has a fat tail, and power law fits
display a wide range of exponent values depending on the data set
and the fitting form used (see Table 1). We note that, strictly
speaking, the distribution cannot be scale-free since displacements
are always limited in space43. Thus, human movements could
possibly be identified as truncated Lévy flights only11,44. In
contrast, displacements at the urban scale consistently display an
exponential tail19,24,25. Short tails also emerge when studying the
distribution P(t) of travel times t of individual trajectories
originating in different cities. For private cars’ mobility, as in the
data set studied here, we observe that P(t) is indeed characterized
by an exponential decay P tð Þ / e� t=�t as in refs 9,19,28,45 (see

Table 1 | Parameter values for the fit of the displacement distribution with a truncated power law found in previous studies.

Data source Trajectories b j Dr0

Dollar bills33 464 K 1.59 N 0
Mobile phones11 100 K 1.75 400 km 1.5 km
Mobile phones11 206 1.75 80 km 1.5 km
Mobile phones12 3 M 1.55 100 km 0
Location sharing14 220 K 1.88 N 0
GPS tracks27 101 [1.16,1.82] N 0
Location sharing15 900 K 1.50 N 2.87 km
Location sharing15 900 K 4.67 N 18.42 km
Taxis19 12 K 0 4.29 km —
Taxis20 7 K 1.2 10 km 0.31 km
Mobile phones13 3 M 0 [2, 5.8] km —
Travel diaries9 230 1.05 50 km 0
Tweets17 13 M 1.62 N 0
Location sharing16 521 K 0 300 km —
Taxis21 34 K 0 [2, 4.6] km —
Taxis23 1,100 [0.50, 1.17] [4.5, 6.5] km 0

This list includes studies on different data sources and spatial or temporal scales. Only fits consistent with the function P ðDrÞ¼ DrþDr0ð Þ�bexp � Dr
k

� �
proposed in ref. 11 are presented here. The case

k¼N is associated to non-truncated power laws, while b¼0 to exponential distributions. When Dr0¼0 this parameter was omitted in the fit, and we set b¼0 when this value is not defined. Further
studies propose: (i) a polynomial form close to an exponential behaviour for private cars24; (ii) two different behaviours for urban and inter-urban trajectories for cars and taxis22,25; and (iii) a lognormal
distribution for individual GPS tracks28.
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Fig. 1), where �t is the average travel time that may vary among
cities (see Supplementary Note 1 and Supplementary Fig. 1). For
public transportation, we also observe a rapidly decreasing tail for
the travel times between metro stations (see ref. 18 and
Supplementary Fig. 2). A short tail is expected for these
distributions, since the total daily travel time spent in public46 or
private transportation45 has an exponential tail (see Supplementary
Note 1 and Supplementary Fig. 3 for the analysis of the
distribution P(t) of rest times t).

We have therefore ambiguous empirical results and purely
descriptive models, leading to a very unclear view of human
mobility. Here we investigate the statistics of displacements
starting from simple assumptions about the dynamics that
governs mobility. In contrast with empirical and descriptive
approaches, we start by modelling this mechanism and show that
our predictions are consistent with data. To model mobility, we
must understand the relationship between the duration of a trip
and its average velocity. Velocity is a natural quantity for
describing the mobility, and classical traffic modelling focuses on
predicting its average value in freeways or in cities with different
vehicle’s densities47. The relevance of velocity appears to be
underestimated in recent studies even when the hierarchy of
transportation networks is suggested to be at the origin of the fat
tail48. As discussed above, this omission is a consequence of data
sources limitations. To go beyond descriptive approaches, it is
necessary to obtain richer data such as the large GPS database
used here.

Random uncorrelated accelerations. A first remark is that
apparent truncated power laws can result from interrupting at
random times simple processes49 such as random walks in the
velocity space. To illustrate the problem with this simple
approach, we consider the evolution of the velocity v described
by a Brownian motion with diffusion coefficient D

_v ¼
ffiffiffiffi
D
p

x yð Þ ð1Þ

where y is time and x is a white noise. This random acceleration
model has been the subject of many theoretical studies (see ref. 50
and references therein) and provides here an interesting null
model. We define the displacement for a given time time t as
Dr tð Þ¼

R t
0 vdy

�� ��¼�vt where �v40 is the average velocity. To

compute the displacement distribution, we use the fact that �v is
a Gaussian variable and that the travel time distribution is
approximatively exponential P tð Þ� e� t=�t . Using a saddle-point
approximation (see Supplementary methods), we obtain a
stretched exponential distribution for large displacements

P Drð Þ / Dr� g exp �CDrd
� �

ð2Þ

with g¼ 3/4, d¼ 1/2 and C a free parameter. We show in
Supplementary Fig. 4(a) the best fit with C¼ 0.49 km� 0.5. At this
stage, this model offers an already reasonable description of the
empirical pattern usually described by a truncated power law with
three parameters11 which results here from the combination of a
random walk and a random duration model. In addition, this
simple random model (equation (1)) implies a relation51 between
the travel time t and the average velocity modulus of the form

�vj jh ipt1/2. However, for both private cars (see Fig. 2) and public
transportation (see Supplementary Fig. 5(a) and Supplementary
Note 2), we find that average speed grows linearly with the travel
time. This important empirical observation invalidates our first
simple model (which might still be relevant for describing different
mobility patterns, such those of animals52) and one has to
understand the origin of this uniform acceleration. Our idea here is
that this behaviour results from the optimal use of the hierarchical
nature of the transportation networks for longer trips. Indeed, it is
likely that faster transportation modes or faster roads are used
more frequently for longer trajectories25,53. In the following, we
propose a stochastic model based on this idea, which correctly
predicts both travel speed and displacement distributions.

Random acceleration kicks. In contrast with the assumption
underlying equation (2), accelerations are not uncorrelated: in
Fig. 3a, we indeed observe that an average trip can be separated into
a first half where one uses progressively faster roads and a second
half with deceleration until the velocity reaches back the base speed
at time t. We use this simple representation in a stochastic model
(see the schematic in Fig. 3b) and make the following assumptions.
The transportation network is modelled by n layers Ln,
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Figure 1 | Travel time distribution in the six largest Italian cities. The

probability distribution P(t) is well fitted by an exponential function. As

demonstrated by the data collapse shown here, differences among cities

are encoded in a single parameter: the average travel time �t.
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Figure 2 | Acceleration of private transportation. Empirical average

speeds (blue dots) versus the duration of the trip for our GPS data set. The

red solid line represents a constant average acceleration �vh i¼ v0þ at with

v0¼ 17.9 km h� 1 and a¼ 16.7 km h� 2. For t42 h the speed reaches a

saturation at �vh iE55 km h� 1 imposed by the finite number of layers

(see Methods section and Supplementary information). The dashed line

represents the best fit with �vj jh ipt1/2 (as predicted by the simple random

model equation (1) with uncorrelated accelerations).
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corresponding to different travel speeds vn (we neglect saturation
effects, see Methods section and Supplementary methods). The
speed differences between layers are taken constant and equal to dv,
and the speed on layer Lk is then vk¼ v0þ kdv. An individual starts
then her trip of duration t in the layer L0 with base speed v0, and we
assume that there are two phases in a trip, acceleration and
deceleration, of roughly the same duration. In both the ascending
and descending phases, we define a Poissonian process where all
individuals have the same probability per unit time p to jump to the
successive layer and to change their speed.

Within this model, we can estimate the maximal speed
vm¼ v0þ k(tm)dv, where k(tm) is the number of jumps at mid
trajectory tm¼ t/2, and get approximatively the average speed
�vE(v0þ vm)/2. Since the process is Poissonian, we have
hk(tm)i¼ ptm and the average speed is given by

�v tð Þh i ¼ v0þ
pdv

4
t ð3Þ

where the brackets denote the average over the Poisson variable k.
The average speed thus grows linearly with t, in agreement with
empirical observations. Remarkably enough, this model allows us
to predict also the shape of the conditional probability
distribution P �v tjð Þ. Indeed, the number of jumps k is distributed
following the Poisson distribution P kð Þ¼ e� llk

k ! with l¼ pt/2.
Using the Gamma function as the natural analytic continuation of
the factorial k!¼G(1þ k), we obtain the distribution

P �v tjð Þ ¼ 1
dv0

exp � p0tþ �v� v0
dv0 log p0tð Þ

� �

G 1þ �v� v0
dv0

� � ð4Þ

where p0 ¼ p/2 and dv0 ¼ dv/2 are free parameters fitted using
empirical speeds (see Fig. 4). The shape of the displacement
distribution P(Dr) can then be computed as a superimposition of
Poisson distributions (see Supplementary Fig. 4(b)) and is given by

P Drð Þ ¼
R1

0 dt
R v2

v1
d�vd Dr��vtð ÞP tð ÞP �v tjð Þ

¼
R1

0
dt
�tt

exp � p0 þ 1
�tð Þtþ log p0tð ÞDr=t� v0

dv0ð Þ
dv0G 1þ Dr=t� v0

dv0ð Þ
ð5Þ

where d(x) is the Dirac delta function. This equation (5) is our
main analytical result and its exact form cannot be exactly

computed, but the limiting behaviour for large Dr is again
equation (2) (see Supplementary methods). In particular, this
distribution is not fat-tailed, in clear contrast with Lévy flights
which have divergent moments and are governed by large
fluctuations. Therefore, all phenomena associated to Lévy flights
such as superdiffusion, for example, are not expected from our
model. In Fig. 5, we compare the empirical P(Dr) with our
prediction and show that the proposed random acceleration model
(together with the exponential behaviour for P(t)) is in excellent
agreement with data.

Discussion
The identification of an approximate power law behaviour of a
complex system is rarely scientifically useful by itself43 but needs
to be model-informed. Since multiple competing models can
explain the same pattern40,41, it even risks to swamp future
research with years of replicating the same, and possibly wrong,
pattern analysis (see Table 1). Proposing models with simple,
reasonable assumptions and processes can help in identifying the
fundamental constituents of the problem, and provide predictions
that can be tested and trigger future research and improvements.
In the case of human mobility, the random acceleration model
proposed here allows for a deeper quantitative understanding,
leads to predictions in excellent agreement with data, and
brings evidence that the long-standing interpretation with Lévy
flights is incorrect. The central idea of our model is the existence
of a hierarchical organization of transportation layers
with different velocities. The main ingredients that describe the
variability of P(Dr) among cities (see Supplementary Note 3 and
Supplementary Fig. 6) are different travel times (Supplementary
Fig. 1), the base speed, the speed gap between layers, and the
effective acceleration (Supplementary Fig. 7), which is
proportional to the jumping rate to a different layer. An
important assumption in this model is that these quantities are
constant, but this is not necessarily true. Deviations observed in
empirical distributions at the urban level suggest the need for
more elaborate velocity models, able to include spatial and
temporal inhomogeneities of transportation systems by allowing
v0, p and dv to vary across cities or during the day.
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Figure 3 | Empirical evidence and schematic representation of the model. (a) We compute for different trips the empirical average free-flow speeds

hvfreei for the used roads, measured in the absence of congestion (see Methods section). We then aggregate the trips according to their duration t, and we

plot the evolution of the relative average free-flow speed hvfreei/hvfreeimax, where hvfreeimax is the maximal average free-flow speed reached at yEt/2.

We observe symmetrical curves with a progressive increase of velocity in the first half of the trip, a short flat central part followed by a deceleration. The

curves do not collapse, since longer trips have a larger fraction of their trajectory spent at a maximal speed. The maximal speed hvfreeimax is reached at the

middle of the trip and increases from 79 km h� 1 for trips with a duration t¼0.5 h to 106 km h� 1 for a duration of t¼ 1.5 h. (b) Schematic representation of

the random acceleration model (equation (3)). Each trajectory starts with an acceleration phase, where the speed increases by constant kicks equal to dv.

These kicks happen at random times with an uniform probability per unit time p. When approaching the destination, there is a deceleration phase with

random kicks of � dv (with the same probability p). The symmetry of the problem implies that the maximal speed vm is reached on average at tm¼ t/2 and

depends on dv and p: vm¼ v0þ k(tm)dv, where k(y) is the number of kicks after a time y and follows a Poisson distribution of average hk(y)i¼ py.

The average speed �v of the trajectory is evaluated by estimating the shaded area and leads to �v¼ (v0þ vm)/2.
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Methods
Private transportation data. We compute spatial displacements and travel times
for private car transportation from a database of GPS measures sampling the
trajectories of private vehicles in the whole Italy during the month of May 2011.
The data are collected for insurance reasons by a device installed on the vehicles
and are mainly related to private vehicles, since taxi cabs or delivery companies use
their own GPS systems and do not contribute to it. A small percentage of vehicles
belongs to private companies and are used for professional reasons. This database
includes E2% of the vehicles registered in Italy, containing a total of 128,363,000
trips performed by 779,000 vehicles. Records contain information about the engine
starts and stops, and travel times include the time spent looking for parking.
We introduce a lower threshold of 5 min in the elapsed time to define the end of a
trip and to distinguish real stops related to an activity. When the quality of the
satellite signal is good, we have an average spatial accuracy of the order of 10 m, but
during a trip, the error fluctuations may increase up to 30 m or more54. The error
in temporal resolution is negligible.

We have applied correction and filtering procedures to exclude from our
analysis data affected by systematic errors. Approximately 10% of the data were
discarded for this reason. When the engine is switched on or when the vehicle is
parked inside a building, there are errors due to signal loss. In such cases, we use
the redundant information given by the previous stopping point to correct 20% of
the data. When the engine was off for o30 s, the subsequent trajectory is always
considered as a continuation of the same trip, except if the vehicle is going back
towards the origin of the previous trajectory segment.

For privacy reasons, the drivers’ city of residence is unknown. Therefore, it has
been necessary to associate to each car an urban area using available information.
We do that by identifying a driver as living in a certain city if the most part of its
parking time is spent in the corresponding municipality area. For each driver we
then consider all trips both within and outside this ‘residence’ urban area.

Measuring the free-flow speed. Each trajectory is sampled at a spatial scale at
most equal to 2 km or, in highways, at a time scale of 30 s. Using trajectory
reconstructions55,56, we estimate for each road the average speed for all the
trajectories passing through that road. Using the distribution of the travel speed,
the free-flow speed of a road is defined as the speed corresponding to the 85% of
percentile. As a matter of fact, the free-flow speed corresponds to trajectories
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in the interval [v0, vmax], with v0¼ 17.9 km h� 1 and vmax¼ 130 km h� 1 and for t¼ 5, 10, 15, 20, y, 180 min (see Methods section). Each plot refers to a

different trip durations (t¼ 5, 15, 30, 60, 120, 180 min). The dots are the empirical data whereas the solid line is the fit obtained using equation (4). The

best fit value of the parameters are p0 ¼ 1.06 jumps per hour, dv0 ¼ 20.9 km h� 1 (and v0¼ 17.9 km h� 1). We therefore get dvE40 km h� 1 for the speed

gap, in excellent agreement with the progression of the most common speed limits in Italy: 50 km h� 1 (urban), 90 km h� 1 (extra-urban) and 130 km h� 1

(highways). These results suggest that a multilayer hierarchical transportation infrastructure can explain the constant acceleration observed in both public

and private transportation.
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dv0 ¼ 20.9 km h� 1 estimated from the fit of P �v tjð Þ in Fig. 4; and (iii)
�t¼0.30 h coming from the average of the travel times for all selected trips

(see Methods section). This remarkable prediction has a quality

comparable with the commonly used direct fits by a truncated power law

with three free parameters (see Supplementary Fig. 4).
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carried out during the night and the choice of 85% of percentile takes into account
the individual heterogeneity: in many cases there are individuals driving at a speed
much larger than the average and that are neglected in the computation of an
average free-flow speed.

In Fig. 3a, we have computed the free-flow velocity for the used roads in
each trajectory and for different travel time durations (0.5±0.1 h, 1.0±0.1 h and
1.5±0.1 h).

Details of the model. The model proposed here assumes that urban mobility is
performed at a baseline speed of v0E18 km h� 1. Very short trips hardly reach the
base speed v0 that we impose in our model. For this reason, in all the measures
proposed in this paper, we considered only trips longer than 1 km and with
duration larger than 5 min.

The upper bound of 130 km h� 1 limits the number of jumps to
k¼ (130 km h� 1� v0)/dvE3. We have a jumping rate of order p0E1 jump per
hour and we expect significant deviations from our prediction for trips longer than
4 h. For such long trips, one cannot in principle approximate the area below the
step function in Fig. 3b with a triangle. Indeed, the Poisson fit in Fig. 4
overestimates the frequency of trips faster than 110 km h� 1 for t¼ 120 and
180 min. In Supplementary methods, we show that if the acceleration kicks are
limited by a finite number of layers, the speed grows linearly for small times and
saturates to a finite limiting speed (see Supplementary Fig. 8). This saturation can
be clearly observed at national level (see Fig. 2) and for five out of six of the cities
represented in Supplementary Fig. 7.

Fitting the model parameters. The parameters are computed according to the
following procedure. First, we estimate the value of v0 from a linear fit of the curve
�vh i(t) (Fig. 2 and Supplementary Fig. 7) in the interval [0, 2] h. Then, the study of

the surface generated by the curve P �v tjð Þ for different durations t is limited to the
speed interval [v0, 130] (in km h� 1) and the time interval [2.5, 182.5] min. The
values of speeds are binned at integer values in km h� 1, whereas trip durations are
binned at intervals of 5 min (the centres of the bins fall at t¼ 5, 10, 15, y,
180 min). Finally, we estimate the parameters p0 and dv0 of equation (4) by
minimizing the sum of the square errors for all curves (for all t bins)
simultaneously. In Fig. 4 we show the fits of six sections of the surface. The last
parameter needed is the average travel time �t and has been measured separately for
each city (see Supplementary Fig. 1). To predict consistently the curve P (Dr),
the value �t¼ 0.30 h used in Fig. 5 and Supplementary Fig. 6 refers to the trips
considered only (Dr41 km and t45 min).

Data availability. Anonymized displacement lengths and travel times for the
private cars’ data are available from the authors upon request.
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35. Edwards, A. M. et al. Revisiting Lévy flight search patterns of wandering
albatrosses, bumblebees and deer. Nature 449, 1044–1048 (2007).

36. Edwards, A. M. Overturning conclusions of Lévy flight movement patterns by
fishing boats and foraging animals. Ecology 92, 1247–1257 (2011).

37. Petrovskii, S., Mashanova, A. & Jansen, V. A. A. Variation in individual walking
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