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Abstract

Birthweight and gestational age are closely related and represent important indicators of a healthy 

pregnancy. Customary modeling for birthweight is conditional on gestational age. However, joint 
modeling directly addresses the relationship between gestational age and birthweight, and provides 

increased flexibility and interpretation as well as a strategy to avoid using gestational age as an 

intermediate variable. Previous proposals have utilized finite mixtures of bivariate regression 

models to incorporate well-established risk factors into analysis (e.g. sex and birth order of the 

baby, maternal age, race, and tobacco use) while examining the non-Gaussian shape of the joint 

birthweight and gestational age distribution. We build on this approach by demonstrating the 

inferential (prognostic) benefits of joint modeling (e.g. investigation of `age inappropriate' 

outcomes like small for gestational age) and hence re-emphasize the importance of capturing the 

non-Gaussian distributional shapes. We additionally extend current models through a latent 

specification which admits interval-censored gestational age. We work within a Bayesian 

framework which enables inference beyond customary parameter estimation and prediction as well 

as exact uncertainty assessment. The model is applied to a portion of the 2003–2006 North 

Carolina Detailed Birth Record data (n=336129) available through the Children's Environmental 

Health Initiative and is fitted using the Bayesian methodology and Markov chain Monte Carlo 

approaches.
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1. Introduction

In this paper, on the merits of improved flexibility and interpretation (similarly argued by 

Tassone et al. [1]) we further investigate proposals in the spirit of Gage [2] and Ananth et al. 
[3] to use birthweight and gestational age as a joint outcome. In addition to illuminating the 
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inferential (prognostic) uses and benefits of joint modeling, we clarify the advantages of 

bivariate covariance adjustment over, for example birthweight conditional on gestational age 

analyses, and extend the current proposals by providing a model that recognizes interval-

censored gestational age (to the nearest completed week). Our approach is described and 

implemented in a Bayesian framework which enables inference beyond customary 

parameter estimation and prediction and exact assessment of uncertainty. It is demonstrated 

using the North Carolina Detailed Birth Record (NCDBR) database.

In Section 1.1, we briefly review the relevance and progress of birthweight and gestational 

age analyses, and position our work in this literature. Section 1.2 describes our motivating 

application data, the NCDBR. Section 2 reintroduces the finite mixture of bivariate 

regressions model specification for the joint variable birthweight and gestational age [2, 4, 5] 

and extends the model to allow for the common interval censored form of gestational age. In 

Section 3, the consequences of analyses using intermediate variables (e.g. birthweight 

conditional on gestational age analyses) are highlighted in contrast to joint analyses. Section 

4 addresses model identifiability concerns. Finally, in Section 5 the inferential benefits of the 

bivariate model are demonstrated (e.g. in examination of disparities within the general 

population), as well as recovery of `conditional' results.

1.1. The birthweight and gestational age tradition

Low birthweight (LBW, <2500 g) and Preterm birth (PTB, <37 weeks gestational age) have 

long been associated with many adverse birth and developmental outcomes (e.g. [6, 7]). 

However, the joint role of birthweight and gestational age, while recognized, is not well 

understood. Often, Small for Gestational Age (SGA, smallest 10 per cent of birthweights for 

a gestational age) is used as a proxy for birthweight and gestational age's joint information. 

While LBW, PTB, and SGA are used prospectively as indicators of potential birth 

complications, their physiological importance is not so clear cut; as Grimes [8] relates, these 

classifications achieve relevant sensitivity to adverse birth outcomes (Type I error) at the cost 

of specificity (Type II error), often not corresponding to medical signs of abnormalities. For 

instance, Wilcox [9] notes that interventions aimed at reducing LBW have not yet met with 

success despite the widespread interpretation of LBW as a cause of adverse birth outcomes 

(e.g. [10]).

Work seeking to understand variables, such as LBW, PTB, and SGA, has thus far proved to 

be very productive, though it has perhaps not yet made its way into common practice. For 

instance, Wilcox [11] has brought attention to the varied relevance of LBW by sub-

population (partially as a byproduct of arbitrary specification), and Platt et al. [12] and 

Hernández-Díaz et al. [13] have provided complementary constructive advice concerning 

once puzzling `birthweight paradoxes' (e.g. the `smokers' paradox) as they relate to `at risk' 

denominators and bias inducing statistical paradoxes, respectively. The former [12, 14–16] is 

particularly notable since it clarifies the difference between treating gestational age as a time 

axis versus a covariate (which does not capitalize on the temporal nature of gestational age). 

Namely, covariate strategies imply comparisons within gestational age week strata which is 

prognostic in nature whereas time axis strategies compare among the `at risk' population 

which is more traditionally `causal' in nature. Our emphasis, however, relates more to the 
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latter [13] since it shows that the use of intermediate variables may introduce bias and thus 

provide an impetus for joint modeling.

One area of research frequently pursued is the exploration of LBW and PTB as adverse birth 

outcomes themselves, and some effort has been spent in carefully modeling these contexts 

(e.g. [9, 17–22]). The proposal to study birthweight and gestational age as a joint variable 

soon followed as the natural course of this tradition, and has appeared in several places, 

notably, [2] and [3]. Models for the joint birthweight and gestational age variable have 

subsequently been incorporated as sub-models in analyses of further adverse birth outcomes 

(e.g. fetal death), as in [4, 5]. These models introduce a logistic regression conditional 

birthweight and gestational age to model a trivariate outcome. As gestational age is again 

used as a covariate rather than as a time axis these models are prognostic in nature as 

indicated by the discussion from Platt et al. [12].

This work pursues the original proposal to study birthweight and gestational age jointly and 

re-emphasizes that they are intimately related and thus natural candidates for a joint 

outcome. Further, jointly modeling birthweight and gestational age provides a means to 

bypass the potential difficulties associated with conditional modeling while at the same time 

facilitating understanding and interpretation of these important indicators of pregnancy 

health.

1.2. Data application: NCDBR

Through a negotiated data sharing agreement with the NC state center for health statistics, 

the Children's Environmental Health Initiative (CEHI) at Duke University has access to the 

NCDBR. These data include birth certificate information about all NC births from 1990 to 

2007 (n=1862405 births). We limit our study to birth records from 2004 to 2006, 

(n=371924). We further restrict our data set to women who self-declare as non-Hispanic 

white (NHW), non-Hispanic black (NHB), and Hispanic (H) mothers, aged 15–44, who 

report no alcohol use during pregnancy. We only consider singleton births with no 

congenital anomalies, birthweight greater than 399 g, and gestational age from 24 to 42 

weeks. Finally, we proceed with a complete case analysis using the variables' birthweight, 

gestational age, reported smoking, infant sex, reported marital status, maternal race, 

maternal age (15–19, 20–24, 30–34, 35–39, 40–44, and the referent 25–29), maternal 

education (middle-school or less, some high school, some college, at least college, and the 

referent high school), and first birth infant. Thus our final data set has n=336129 

observations. The population characteristics of this data set is given in the table in the final 

column labeled `Overall'. This research was conducted according to a human subjects 

research protocol approved by the University's institutional review board.

Birthweight is reported in pounds and ounces and converted to grams for the analysis. 

Gestational age is reported as a clinical estimate of the number of weeks' gestation 

completed. Gestational age is thus a (censored) integer valued response. Figure 1 displays 

the histograms of the birthweights for each gestational age from 24 to 42, a conditional 

description. Figure 2 displays the same data in `bivariate' form. Both figures reveal the 

strong dependence between the birthweight and gestational age with the latter revealing that 

a simple bivariate Gaussian specification may not suffice.
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2. Joint birthweight and gestational age model

2.1. Likelihood specification

The unique shape of the joint birthweight and gestational age distribution (see Figure 2) can 

be flexibly modeled using finite-mixture models [23, 24] as discussed in [2, 4, 5]. We use 

the s-component mixture model specified by normal distributions

(1)

i.e. each component is specified as a marginal times conditional form which allows, within 

component, the quite natural interpretation of birthweight conditional on the gestational age. 

In (1), for individual i, bi, and gi are the (continuous) variables' birthweight and gestational 

age, respectively, and  is the vector of risk factors with coefficients βk and intercept μk. The 

mixing weights (which sum to 1) are πk, and the variances are given by the σ2's. As shown 

in Section 5.1, we found justification for allowing coefficient parameters to differ by 

component.

The `centering' (see [25]) of gi in (1) results in the equivalent bivariate regression mixture 

model specification

with

where

Model (1) provides the framework to treat birthweight and gestational age as a (continuous) 

joint variable. The bivariate regression structure incorporates covariates  into the 

component means (though not in the mixing proportions as proposed in the univariate case 
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in [26]). The mixture portion of the model provides a flexible structure to model the 

resulting residuals for bi and gi given , i.e. .

The mixture structure for the residuals provides aggregated bivariate structure for 

birthweight and gestational age. The local-scale structure within each component is modeled 

by ρk which depends on β*k, σb|g,k, and σg,k. Both covariate coefficients and resulting 

birthweight and gestational age residuals are component dependent due to the component-

varying parameters. The covariance structure Sk also varies by component. Finally, 

conditional models may be recovered from our joint specification; e.g. the conditional 

distribution bi|gi can be derived from (1) and is , where 

qk(gi)=πkfk(gi).

2.2. Additional specification

In contrast to Gage et al. [2, 4, 5] who use direct maximum likelihood (ML) estimation, we 

employ the data augmented form for finite mixture models and introduce latent indicators 

vi~MN(π1,⋯,πs), , denoting the component to which (gi,bi)′ belongs. The 

resulting model is marginally equivalent to the original specification:

(2)

Under this specification, ML estimation of model parameters proceeds through the 

Expectation-Maximization (EM) algorithm, whereas full Bayesian posterior inference 

proceeds by specifying priors and utilizing Markov chain Monte Carlo (MCMC) 

methodology. The details can be found in [23] and [24]. Whereas Gage [2] uses a 

bootstrapping approach to estimate parameter uncertainty, we pursue full Bayesian inference 

via a Gibbs sampling algorithm to directly provide parameter estimates and the associated 

uncertainty [27, 28]. To complete our specification, we employ the following conjugate and 

assumed mutually independent prior distributions for the model parameters:

(3)

where μk has been incorporated into βk. This specification avoids the use of Inverse-Wishart 

prior specifications for the covariance matrix of birthweight and gestational age.

2.3. Censored continuous gestational age

Within the proposed framework we can readily deal with the often ignored issue of interval 

censorship of gestational age. Gestational age is reported in many ways, though all are 

typically interval censored. A standard reporting measure of gestational age is as Last 

Menstrual Period (LMP), which is reported as days since LMP. On the other hand, our 
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gestational age data is reported as an integer representing the clinical estimate of the number 

of completed weeks of gestation (no uniform definition exists and the meaning of `clinically 

estimated gestational age' varies by state). We imagine gi to be the true gestational age (a 

continuous variable) which we are unable to observe. We assume that the observed  is an 

interval-censored version of gi. For the NCDBR data, we observe the number of complete 

weeks hence . Defining , we assign ui∈[0,1) to take the role of an 

unknown parameter. If  is interpreted differently we would modify this specification 

accordingly. For instance, if we had LMP gestational age we could introduce a Berkson 

measurement error model, centering true gi around the observed gestational age in days.

Upon specification of a prior, ui may be seamlessly incorporated into the posterior sampling 

scheme. The simple prior we use is ui~U[0,1). However, it may be argued that, given , the 

distribution for gi is likely to put more mass on days later in the week, i.e. the probability of 

birth increases on a daily basis, particularly for preterm and early term gestational ages. 

Thus, a more general beta prior for ui is an alternate choice. Using ui~Beta(ai,ri) specifies a 

non-conjugate prior for this model, requiring a Metropolis-Hastings or Importance sampling 

step in the model fitting. The truncated conjugate prior  may also be 

considered.

Recognizing the censored nature of reported gestational age measurements allows us to: (1) 

treat gestational age as a continuous parameter; (2) acknowledge the uncertainty associated 

with censorship of gestational age; and (3) allow the data to inform us about the actual effect 

of the censorship (ui).

Clinically estimated gestational age and LMP measurements are known to have error, 

indeed, with certain sub-populations possibly having more or less accurate reporting of the 

gestational age  than others. The model presented here assumes that the reported clinical 

estimate of gestational age is accurate. For our data, clinical estimates of gestational age for 

many sub-populations are considered to be relatively reliable post 2000, whereas for the 

remaining sub-populations this may not be so. The nature, effect, and size of such bias in our 

model is unclear. However, this consideration, in part, influenced our data restriction to the 

years 2004–2006. Alternative measures of gestational age such as ultrasound are more 

precise, but LMP and (many) clinical estimations of gestational age remain much more 

prevalent. As such, models that can account for measurement error are still needed.

3. Bivariate modeling vs conditional modeling

A wide range of literature cautions against the `fallacy of controlling for an intermediate 

outcome' [13, 29–37]. The apparent alternative to exclude intermediate variables from 

analyses does not seem reasonable in the birthweight and gestational age context. For 

example, in the context of a `birthweight conditional on gestational age' analysis, ignoring 

gestational age entails a large loss of information, as evidenced by Wilcox and Skjaerven 

[17]. Unfortunately, as is now understood, adjusting for an intermediate variable can result 

in the other observed covariate effects being wrongly boosted, attenuated, or even reversed. 

This happens for two reasons: (1) indirect effects of covariates which were mediated through 
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gestational age are no longer attributed to the covariates (see, e.g. the reduced effect of 

smoking in [3]) and (2) spurious associations are artificially induced by back-door criteria 

violations caused by conditioning on an intermediate variable (e.g. Berkson's and Simpson's 

paradox). These issues were noted by Gage [2] and the above citations connect this rightful 

concern to the additional literature.

Using the data subset described in Section 1.3, we demonstrate the extent of change brought 

about by these issues in regression coefficients using ordinary least squares. Table I shows 

the coefficients resulting from birthweight regressions with and without gestational age as a 

covariate. Nearly all coefficients change between regressions, some (e.g. smoking and NHB 

mother) are attenuated, whereas others (e.g. Infant sex and H mother) are boosted; some 

coefficients even have sign changes. The direction and extent of difference suggests that the 

behavior of lost mediated effect is due to controlling for gestational age. However, the 

difference may instead be due to the interference of spurious relationships artificially 

induced by back-door criteria violations. Because the relative contributions of back-door 

effect and lost mediated effect cannot be separated, intermediate variables should be used as 

covariates if coefficients are to retain their meaningful interpretation. Ignoring an 

intermediate variable (e.g. gestational age) is not necessary, however, if one employs joint 

modeling techniques. The modeled bivariate relationship of birthweight and gestational age 

replaces the use of either as an intermediate variable in a conditional model.

4. Identifiability

4.1. Alternative non-identified parameterization

Correlation between MCMC posterior draws of parameters can render attempted posterior 

sampling useless (see, e.g. [25, 38]). The `centering' of g in our model curbs such 

unattractive circumstances. If we do not `center' in (1), and replace  with 

only gi, we have that . It follows that 

μb,k,β*,k and βb,k will tend to drift as only the sums they are involved in are identified.

4.2. More identifiability and number of components

Model (1) is invariant under re-ordering of the labels k, i.e. k! differently parameterizations 

result in identical models. This well-known conundrum for mixture models known as `label 

switching' is discussed in [39]. Often, order constraints on parameters (e.g. θi<θj for i<j) are 

utilized to identify components. This was our initial approach; however, under usual 

specifications of our model, the constraints never came into play: While label-switching is 

common in univariate normal mixture models, we observed no such label-switching in our 

mixing. This appears to be the result of the mixing relative to the `high-dimensional' nature 

of the proposed mixture model. In essence, for label switching to occur, components 

parameters (e.g. two `intercept' parameters, one `slope' parameter, two variance parameters) 

must be exchanged with their counterparts in another component.

When `many' (i.e. s=4 or more) components are specified, the posterior becomes multimodal 

(within the symmetric multimodality induced by label switching) and mixing across the 

posterior modes becomes poor. With s=4 components, the observed parallel posterior chains 
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(with different initial value specifications) did not meet and instead each exhibited 

intermittent periods of apparent stability punctuated by sporadic—often slightly less 

favorable (as judged by log-likelihood)—re-configurations (rarely returning to the original 

configuration). The re-configurations amounted to slight changes in the component location 

and almost no detectable difference in the covariate coefficients. Thus, the mixing issue 

appears to be primarily one of location of the residual components. Nevertheless, the 

posterior chains showed several different plausible models, none of which appeared 

preeminent, and across which mixing was poor (indeed, we did not uncover label switching 

which would indicate good mixing). It is possible that a Metropolis step within the Gibbs 

sampler we employed could improve mixing, but we have not experimented with this. This 

same circumstance of `numerous adequate models' no doubt exists under ML estimation, but 

is more easily uncovered through Bayesian analysis since in ML estimation only a single 

model is returned once the maximization algorithm has `converged' (i.e. stopped making 

meaningful changes to the likelihood) to some mode.

Model selection involving competing unconverged chains (models) is a difficult issue. One 

pragmatic (though somewhat ad hoc) approach might use an EM algorithm to find the best 

initial values (as judged by largest likelihood), and then proceed with full Bayesian inference 

using the stable part of the chain. Various competing `models' may then be pragmatically 

chosen using minimum posterior predictive loss in cross-validation [40], or naive Bayesian 

information criterion (BIC). Although it is not theoretically appropriate to use BIC in the 

finite mixture model setting (even for converged chains), it has seen some application and 

success [23], and hence we pursue this criterion. For both three-component (s=3) and two-

component (s=2) models, we did not observe the mixing issues described above. Indeed, 

proper identification of a two component (s=2) model is shown in [41]. Thus, we assumed 

that these models (chains) had converged and compared them using the BIC criterion which 

for our data set strongly suggested the superiority of three-component (s=3) models to two-

component (s=2) models. Our choice to avoid comparison to any four component (s=4) 

models was driven by the mixing issues described above, and is thus an artifact of the 

operational fitting of the model rather than a judgement of clinical significance or a model 

choice criterion.

5. Model demonstration

This section demonstrates our three component (s=3) model using the subset of data 

described in Section 1.2. A wide range of alternative prior and initial value specifications 

produced only slightly varied results in the three-component (s=3) case, and thus we restrict 

our demonstration to specifications of Table II. Burn in was set at 5000; results of this 

section were generated from the subsequent 100 000 MCMC draws provided by the Gibbs 

sampler directly available under our specification. The mixing of individual chains did not 

show lack of convergence.

Where useful, we illustrate inference under our model through a series of `prototypical' 

individuals, A–H. A–H represent the possible configurations of NHB/NHW, reported 

smoking, and reported marital status, for a 25- to 30-year-old mother at the high school 
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education level with a male infant. The covariate configurations of A–H are given in Table 

III.

5.1. Bivariate regression

One benefit of using a bivariate regression model is that a single model produces coefficient 

estimates of the relationship between birthweight and gestational to covariates (and each 

other) simultaneously. Further, the mixture model framework provides s=3 regressions (not 

just one), with each component supporting a separate regression. This allows for improved 

flexibility in the variety of shapes that may be captured by the model as well as the potential 

to uncover the differential strength of covariate effects across components as shown in Table 

IV. The ability to explicitly model and detect how relationships differ by component sub-

populations may be contrasted with Table I.

5.2. Mixture sub-populations

As was the emphasis in [2], a benefit of the mixture model approach is that the components 

provide a natural classification mechanism. In finite mixtures of regressions, this 

classification is an augmentation of the covariate set because the mixture feature of the 

model is defined on the residuals. After covariance adjustment, the leftover structure defines 

the components and the corresponding memberships. The location and shape parameters for 

the three components are given in Table V. The component configuration (distributional 

location) is governed by the covariates (which creates flexibility in modeling), as in Figure 3 

which shows a general lowering in birthweight and lengthening of gestational age towards 

shorter ages for individual A relative to individual H.

Under our latent indicator specification (Section 2.2), the components are formed by 

repeatedly stochastically assigning every individual observation i membership in one of the 

components. Specifically, for each posterior iteration t, every individual i is randomly 

assigned to a component  according to probabilities of 

component membership (under the current iteration of the model: θ(t)) determined by the 

residual resulting from bi,gi, and ; the memberships then inform the components for the 

next iteration, and θ(t) in general. The posterior distribution of vi,k expresses the propensity 

for individual i to join component k, and allows us to learn about the propensities of 

individual i, or perhaps the propensities of a collection of individuals. We can also learn 

about the overall composition of covariates across components, as in Table VI.

Table VI was generated from 1000 random assignments of every individual i to a component 

according to their posterior distribution vi,k. In each one of the 1000 complete assignments, 

covariate distribution was calculated, and from these 1000 samples, the mean and 95 per 

cent credible intervals for the covariate distribution were determined. Table VI shows that 

the distribution of the covariates is relatively uniform among components. Thus, there seems 

to be no combination of the specified covariates that strongly interact to inform component 

membership; membership is driven by a factor that has not been identified. Despite the 

inability to predict component membership from the specified covariates, component 3 is 

Schwartz et al. Page 9

Stat Med. Author manuscript; available in PMC 2016 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with elevated vulnerability to adverse birth outcomes and, hence, is the natural 

sub-population to focus on for exploration of risk.

To the extent that covariates are balanced between the three components there would seem to 

be no benefit in incorporating covariates to influence the mixing proportions since the 

covariates do not provide further information beyond the overall proportions. However, 

Gage et al. [26] found that covariates did affect the mixing proportions in a univariate 

mixture model for birthweight.

5.3. Prediction

Bivariate predictions can be made from the model, as well as predictions from the induced 

distributions of gi|bi,zi and bi|gi,zi. Bivariate predictions are given by:

(4)

Tables IV and V give some indication of bivariate predictions, but they provide estimates 

and credible intervals for parameters, rather than predictions; calculating equation (4) at 

each posterior iteration t provides the correct estimates and uncertainties.

Predictions of birthweight given gestational age (or vice versa) may be conditional on any 

continuous value, e.g. birthweight conditional on the `true' gestational age, and not only 

integer (censored) gestational age, as given by:

(5)

(6)

where

In equations (5) and (6) above μ has been incorporated into β for compactness which has 

generated the byproduct . The conditional prediction (distribution) of gestational age given 
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birthweight while not a standard consideration may have uses, e.g. in imputation of missing 

values and detection of mismeasured gestational ages.

A related conditional prediction is the small for gestational age cutpoint SGA(gi), which is 

found through area prediction in the conditional model of birthweight given gestational age:

(7)

In Tables VII–IX conditional predictions of birthweight given gestational age, gestational 

age given birthweight, and the SGA cutpoint are given for individuals A–H (see Table III). 

Prediction and interval curves are available for the three conditional predictions described 

above, but are only demonstrated for the SGA cutpoint in Figure 4 which contrasts SGA for 

individuals A and H. The differences in predictions seen in Tables VII–IX are due to the 

different covariate configurations of individual A–H which result in different joint 

birthweight gestational age distributions (as in Figure 3).

5.4. Bivariate distribution

Our model provides a bivariate distribution to capture the empirical joint distribution of 

birthweight and gestational age (e.g. recall Figures 1 and 2). Such a parametric model allows 

us to incorporate covariates and provide a joint surface from which to proceed with 

inference, e.g. see Figure 5. We are not limited to the previously discussed conditional 

inferences, as we can address joint inference associated with the joint distribution.

Table X provides estimates of the probability of both LBW and PTB for individuals A–H, 

using

(8)

Again for individuals A–H, Table X provides probability estimates for two age inappropriate 

(AI(gi)) birthweight classifications: AI(35) (less than 2000 g for 35 and 36 weeks gestational 

age) and AI(37+) (less than 2500 g for greater or equal to 37 weeks gestational age). These 

probability estimates are provided using an expression similar to (8).
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6. Discussion and future work

Our demonstration has highlighted the gradient of differences between individuals A–H with 

respect to the joint variable birthweight and gestational age. Specifically, we have quantified 

a gradient of impacts associated with the characteristics of individual A through the referent 

individual H. For example, we demonstrate in Figure 3 how the overall joint distribution is 

less favorable for A than H. As indicated in Table IV, race is the primary variable associated 

with distribution location difference (of up to approximately −320 g and approximately 

−1.75 weeks gestation), with the strongest differences appearing in the tail of the joint 

distribution. Smoking is also a major driver accounting for location difference (of up to 

approximately −230 g and approximately −0.35 weeks gestation) and tends to affect 

birthweight in the main mass and gestational age in the tail of the distribution. Marital status 

contributes additional difference (of up to approximately −80 g and approximately −0.5 

weeks gestation) for unmarried women, primarily in the tail. Further detail of the varying 

impacts of individual covariates across the joint distribution is given in Table IV and may be 

contrasted with Table I. Again, as discussed in Section 3, our joint variable framework 

provides these coefficient estimates (Table IV), free of the problem of treating birthweight or 

gestational age as intermediate variables.

Because of the gradient of distributional differences from individuals A through H, there is a 

resulting gradient of differences SGA and expected birthweight conditional on gestational 

age, with the curves separating by as much as approximately 400 g in places. An analogous 

gradient occurs in the percentage of PTB and LBW infants (with up to an approximately 

twofold prevalence increase), and the percentage of age inappropriate births for gestational 

ages 35 and 37+ (with up to approximately fivefold and approximately eightfold prevalence 

increases, respectively).

Our model provides a joint distribution of birthweight and gestational age conditional on 

covariates, and hence readily accommodates inference concerning disparities in birthweight 

and/or gestational age in a richer way than previously considered. Further work may provide 

even more opportunities. Certainly thorough attention to mis-measurement in gestational age 

and further exploration of the role of covariates in the model's mixing proportions are 

warranted. Given the longitudinal nature of birth record data, a dynamic perspective could 

also be considered to investigate whether and how the joint distribution is changing over 

time. A spatial component could be brought into the modeling to accommodate birth records 

that have been geocoded and hence learn about the possible spatial structure underlying the 

data.
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Figure 1. 
Histograms of birthweight by gestational age (g, 24–42) for the data subset described in 

Section 1.2.
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Figure 2. 
A log-scale heatmap version of a bivariate histogram of birthweight and gestational ages for 

the data subset described in Section 1.2.

Schwartz et al. Page 16

Stat Med. Author manuscript; available in PMC 2016 September 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A posterior point estimate of the component configuration for individual A. The ellipses 

correspond to contours containing ≈86.5 per cent of mass associated with the component. 

The thickness conveys the relative proportions in the mixture distribution (see Table V).
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Figure 4. 
Conditional predictions of the small for gestational age cutpoint SGA(g) (the 10th percentile 

cutpoint of birthweight at gestational age g) for individuals A and H. The single gestational 

age axis is separated into three plots so that the 95 per cent credible intervals may be 

examined. The predictions were generated from the conditional distributions implied by the 

joint distributions represented in Figure 3. Table IX provides the related results for other 

individuals.
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Figure 5. 
Point estimate of the surface of the mixture distribution for birthweight and gestational age 

for the referent individual H. The orientation of this plot is a nonstandard ≈180° rotational 

form. As a result, birthweight increases from top to bottom and gestational age decreases 

from left to right. Posterior 95 per cent credible intervals of the surface tightly fit this curve, 

and so were not included in this image.
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Table I

Birthweight (standard) regressions with/without gestational age included; 95 per cent confidence intervals are 

also included.

Covariate Birthweight regression coefficients

Intercept −3578.8 (−3606.9,−3550.7) 3385.5 (3379.7,3391.4)

Reported maternal smoking −187.8 (−192.5,−183.0) −227.2 (−233.4,−221.0)

Male infant 126.2 (123.4,129.0) 114.1 (110.3,117.8)

Mother reported not married −36.2 (−39.8,−32.5) −39.6 (−44.4,−34.7)

Non-Hispanic black mother −176.5 (−180.3,−172.7) −233.7 (−238.7,−228.6)

Hispanic mother −70.2 (−75.1,−65.2) −24.3 (−30.8,−17.9)

Mother complete MS −30.1 (−36.9,−23.3) −25.9 (−34.7,−17.0)

Mother complete some HS −30.2 (−34.9,−25.5) −39.2 (−45.3,−33.0)

Mother complete some college 26.5 (22.3,30.6) 27.3 (21.8,32.7)

Mother complete college 28.5 (23.9,33.0) 65.4 (59.4,71.3)

Maternal age 15–19 −35.4 (−41.2,−29.5) −26.9 (−34.5,−19.2)

Maternal age 20–24 −27.0 (−31.0,−22.9) −14.0 (−19.4,−8.7)

Maternal age 30–34 18.1 (13.9,22.2) 0.8 (−4.6,6.3)

Maternal age 35–40 21.9 (16.5,27.2) −15.3 (−22.3,−8.3)

Maternal age 41–45 −0.4 (−11.2,10.3) −58.7 (−72.8,−44.6)

First birth infant −120.1 (−123.3,−116.9) −93.9 (−98.1,−89.7)

Gestational age 180.2 (179.5,180.9)
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Table II

Initial values and prior specifications for the results of a three-component (s=3) model, used throughout in 

Section 5.

Comp. 1 Comp. 2 Comp. 3

Initial values

π 0.34 0.33 0.33

μ b 3000 2500 1500

μ g 40 37 33

250 000 250 000 250 000

2 2 2

β

Prior hyperparameter values

p 1 1 1

μ b 3000 2500 1500

μ g 40 37 33

β 0 μb, μg, μb, μg, μb, μg, 

Σ 0 1000/ 1000/ 1000/

a 1 1 1

r 1 1 1
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Table III

Individuals A–H provide eight risk factor sets for mothers used for demonstration in Section 5 and Tables VII–

X; all mothers are 25–30 years old and at the high school education level with a male infant.

Individual A B C D E F G H

Mother reported not married 1 0 1 0 1 0 1 0

Non-Hispanic black mother 1 1 0 0 1 1 0 0

Reported maternal smoking 1 1 1 1 0 0 0 0
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Table IV

Birthweight and gestational age regression coefficients with 95 per cent credible intervals for each mixture 

model component.

Covariate Component k=1 Component k=2 Component k=3

BW Reported maternal smoking −205.0 (−211.6,−198.4) −227.8 (−241.3,−214.6) −85.1 (−116.3,−53.9)

Male infant 137.2 (133.2,141.2) 80.7 (72.4,88.9) 52.6 (29.7,75.7)

Mother reported not married −26.4 (−31.5,−21.2) −40.3 (−51.0,−29.7) −83.6 (−109.8,−57.3)

Non-Hispanic black mother −188.4 (−193.7,−183.0) −231.0 (−241.8,−220.0) −318.0 (−344.9,−291.2)

Hispanic mother −49.1 (−56.1,−42.1) 44.0 (29.6,58.5) 111.3 (76.5,145.9)

Mother complete MS −26.3 (−35.8,−16.9) −8.8 (−27.7,10.1) 23.5 (−18.5,65.1)

Mother complete some HS −35.9 (−42.5,−29.4) −24.9 (−38.0,−11.7) 10.8 (−20.6,42.0)

Mother complete some college 20.1 (14.4,25.8) 47.2 (35.4,59.2) 49.6 (20.4,78.7)

Mother complete college 27.8 (21.5,34.2) 125.9 (112.9,139.0) 201.5 (169.6,233.1)

Maternal age 15–19 −51.1 (−59.1,−43.0) 8.5 (−7.5,24.4) 43.8 (8.0,79.3)

Maternal age 20–24 −29.6 (−35.3,−24.0) 12.2 (0.7,23.7) 71.0 (42.3,100.0)

Maternal age 30–34 18.6 (12.8,24.5) 7.6 (−4.6,19.9) 17.1 (−12.9,46.9)

Maternal age 35–40 25.2 (17.7,32.8) −41.6 (−57.1,−25.9) −15.2 (−50.2,19.4)

Maternal age 41–45 2.3 (−12.6,17.1) −88.4 (−116.5,−60.1) −35.4 (−83.2,12.8)

First birth infant −55.1 (−59.6,−50.6) −116.9 (−126.3,−107.6) −162.0 (−186.5,−137.7)

Residuals gestational age 104.7 (102.0,107.5) 146.7 (143.0,150.4) 146.2 (143.1,149.2)

GA Reported maternal smoking −0.06 (−0.08,−0.04) −0.36 (−0.41,−0.31) −0.30 (−0.50,−0.11)

Male infant −0.01 (−0.02,−0.00) −0.12 (−0.16,−0.09) −0.09 (−0.22,0.05)

Mother reported not married 0.07 (0.06,0.08) −0.07 (−0.11,−0.03) −0.47 (−0.63,−0.31)

Non−Hispanic black mother −0.03 (−0.05,−0.02) −0.43 (−0.47,−0.39) −1.75 (−1.91,−1.59)

Hispanic mother 0.19 (0.17,0.21) 0.42 (0.37,0.47) 0.52 (0.30,0.73)

Mother complete MS 0.08 (0.06,0.11) −0.07 (−0.14,0.01) −0.04 (−0.33,0.24)

Mother complete some HS 0.01 (−0.00,0.03) −0.11 (−0.16,−0.06) −0.04 (−0.23,0.16)

Mother complete some college −0.04 (−0.05,−0.02) 0.07 (0.03,0.12) 0.20 (0.02,0.38)

Mother complete college 0.05 (0.04,0.07) 0.39 (0.34,0.44) 0.94 (0.74,1.13)

Maternal age 15–19 −0.01 (−0.03,0.01) 0.09 (0.03,0.15) 0.08 (−0.15,0.31)

Maternal age 20–24 0.02 (0.01,0.03) 0.11 (0.06,0.15) 0.39 (0.21,0.57)

Maternal age 30–34 −0.04 (−0.06,−0.03) −0.04 (−0.09,0.00) 0.12 (−0.06,0.31)

Maternal age 35–40 −0.09 (−0.11,−0.07) −0.21 (−0.26,−0.15) −0.02 (−0.24,0.20)

Maternal age 41–45 −0.10 (−0.13,−0.06) −0.39 (−0.51,−0.28) −0.22 (−0.59,0.14)

First birth infant 0.40 (0.39,0.42) −0.19 (−0.23,−0.16) −0.60 (−0.75,−0.46)
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Table V

Location and shape parameter estimates with 95 per cent credible intervals for each mixture model 

component.

Component k=1 Component k=2 Component k=3

pk 0.716 (0.708, 0.724) 0.249 (0.241, 0.257) 0.035 (0.034, 0.036)

175073 (173 808, 176 345) 127073 (123 911, 130 318) 131820 (124 370, 139 481)

0.96 (0.95, 0.97) 2.48 (2.42, 2.54) 13.23 (12.78, 13.67)

μ b,k 3514 (3507, 3521) 3103 (3088, 3118) 1899 (1864, 1934)

μ b,k 39.59 (39.58, 39.61) 38.26 (38.20, 38.32) 33.29 (33.07, 33.51)

ρ k 0.238 (0.232, 0.2425) 0.544 (0.533, 0.555) 0.826 (0.816, 0.835)

Stat Med. Author manuscript; available in PMC 2016 September 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Schwartz et al. Page 25

Table VI

The compositional makeup of each mixture model component as observed in posterior sampling.

Component composition Component 1 Component 2 Component 3 Overall

Subcomponent size 240679.77 (2 401 180, 241 
120)

83702.95 (83 301, 84 277) 11746.28 (11 600, 11 905) 336 129

Reported maternal smoking (per cent) 11.6 (11.6, 11.7) 12.0 (11.8, 12.2) 14.3 (13.9, 14.7) 11.8

Male infant (per cent) 51.0 (50.9, 51.1) 51.1 (50.9, 51.4) 53.1 (52.4, 53.8) 51.1

Mother reported not married (per cent) 38.1 (38.0, 38.2) 38.8 (38.5, 39.1) 44.5 (44.0, 45.2) 38.5

Non-Hispanic black mother (per cent) 23.3 (23.2, 23.3) 23.9 (23.7, 24.1) 30.8 (30.3, 31.3) 23.7

Hispanic mother (per cent) 16.4 (16.3, 16.5) 16.5 (16.3, 16.8) 15.0 (14.6, 15.6) 16.4

Mother completed MS (per cent) 7.2 (7.1, 7.2) 7.3 (7.2, 7.5) 6.8 (6.5, 7.2) 7.2

Mother completed some HS (per cent) 15.9 (15.8, 16.0) 16.3 (16.1, 16.6) 18.0 (17.5, 18.4) 16.1

Mother completed some college (per cent) 22.1 (22.0, 22.2) 22.1 (21.8, 22.3) 22.3 (21.8, 22.9) 22.1

Mother completed college (per cent) 26.1 (26.0, 26.2) 25.6 (25.4, 25.8) 23.0 (22.4, 23.4) 25.9

Maternal age 15–19 (per cent) 11.4 (11.4, 11.5) 11.7 (11.5, 12.0) 13.2 (12.8, 13.5) 11.6

Maternal age 20–24 (per cent) 27.1 (27.0, 27.2) 27.4 (27.1, 27.6) 26.8 (26.4, 27.5) 27.1

Maternal age 30–44 (per cent) 22.1 (22.0, 22.2) 21.8 (21.6, 22.2) 21.8 (21.3, 22.3) 22.0

Maternal age 35–39 (per cent) 10.1 (10.0, 10.2) 10.0 (9.8, 10.2) 10.9 (10.6, 11.2) 10.1

Maternal age 40–44 (per cent) 1.9 (1.8, 1.9) 1.9 (1.8, 2.0) 2.4 (2.2, 2.6) 1.9

First birth infant (per cent) 40.8 (40.7, 40.8) 41.3 (41.0, 41.5) 45.0 (44.3, 45.8) 41.0

Final column labeled `Overall' shows the characteristics of the original population.
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Table VII

Conditional expectation of birthweight given gestational age along with 95 per cent credible interval for 

individuals A–H at gestational ages 34, 37, 39, and 40 weeks.

A B C D

34 2039.2 (2018.3, 2059.7) 2.0547 (2.0308, 2.0779) 2103.8 (2076.6, 2130.3) 2113.3 (2085.9, 2140.1)

37 2579.5 (2564.9, 2594.2) 2.6160 (2.6005, 2.6316) 2743.8 (2729.8, 2757.7) 2780.0 (2767.2, 2792.9)

39 3008.7 (3001.0, 3016.5) 3.0415 (3.0333, 3.0498) 3183.5 (3176.3, 3190.6) 3216.3 (3209.6, 3223.2)

40 3130.9 (3122.8, 3139.1) 3.1632 (3.1545, 3.1719) 3309.8 (3302.3, 3317.4) 3341.5 (3334.4, 3348.6)

E F G H

34 2126.6 (2103.6, 2149.0) 2131.9 (2106.8, 2156.2) 2142.0 (2111.9, 2171.6) 2146.5 (2119.5, 2173.2)

37 2752.5 (2740.7, 2764.3) 2788.9 (2777.1, 2800.9) 2914.3 (2901.7, 2926.7) 2950.3 (2940.1, 2960.6)

39 3197.5 (3191.4, 3203.5) 3230.5 (3224.2, 3236.8) 3371.4 (3365.2, 3377.6) 3404.6 (3399.3, 3410.0)

40 3324.6 (3318.2, 3330.8) 3356.4 (3349.9, 3363.0) 3501.9 (3495.4, 3508.3) 3533.2 (3527.8, 3538.6)
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Table VIII

Conditional expectation of gestational age given birthweight along with 95 per cent credible interval for 

individuals A–H at birthweights 1500, 2500, 3500, and 4000 g.

A B C D

1500 32.41 (32.21, 32.62) 32.26 (32.03, 32.48) 31.77 (31.54, 31.99) 31.78 (31.55, 32.00)

2500 38.26 (38.22, 38.29) 38.17 (38.13, 38.21) 37.95 (37.91, 37.99) 37.88 (37.84, 37.92)

3500 39.76 (39.73, 39.78) 39.67 (39.65, 39.69) 39.66 (39.64, 39.68) 39.58 (39.56, 39.60)

4000 40.06 (40.04, 40.08) 39.98 (39.96, 40.01) 40.00 (39.98, 40.02) 39.92 (39.90, 39.94)

E F G H

1500 31.41 (31.22, 31.60) 31.41 (31.20, 31.61) 31.41 31.19 31.63 31.47 (31.28, 31.67)

2500 37.90 (37.87, 37.94) 37.83 (37.79, 37.87) 37.60 37.56 37.65 37.54 (37.50, 37.58)

3500 39.67 (39.66, 39.69) 39.59 (39.57, 39.61) 39.56 39.55 39.58 39.49 (39.47, 39.50)

4000 40.01 (39.99, 40.03) 39.93 (39.91, 39.95) 39.95 39.93 39.96 39.87 (39.86, 39.89)
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Table IX

SGA cutpoint predictions and 95 per cent credible interval for individuals A–H at gestational ages 34, 37, 39, 

and 40.

A B C D

34 1579.9 (1557.9, 1601.2) 1594.9 (1570.2, 1619.0) 1642.5 (1613.8, 1670.4) 1651.8 (1622.7, 1679.9)

37 2112.1 (2096.8, 2127.2) 2146.6 (2130.6, 2162.5) 2276.2 (2261.6, 2290.7) 2310.5 (2297.1, 2323.8)

39 2483.1 (2475.2, 2491.1) 2516.0 (2507.6, 2524.5) 2660.6 (2653.1, 2668.0) 2693.4 (2686.3, 2700.5)

40 2599.3 (2590.9, 2607.7) 2632.1 (2623.1, 2641.0) 2780.4 (2772.6, 2788.1) 2812.7 (2805.3, 2820.0)

E F G H

34 1666.0 (1641.8, 1689.7) 1670.9 (1644.3, 1696.7) 1679.5 (1647.4, 1711.0) 1683.8 (1654.6, 1712.7)

37 2285.8 (2273.2, 2298.1) 2320.3 (2307.7, 2332.8) 2446.8 (2433.8, 2459.9) 2480.8 (2469.9, 2491.7)

39 2674.3 (2667.9, 2680.6) 2707.2 (2700.6, 2713.8) 2850.6 (2844.1, 2857.1) 2883.6 (2878.0, 2889.3)

40 2794.6 (2788.0, 2801.1) 2827.0 (2820.2, 2833.8) 2974.2 (2967.5, 2980.8) 3006.1 (3000.4, 3011.8)
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Table X

Probability estimates and 95 per cent credible intervals for LBW and PTB, AI(35) (less than 2000 g for 35 and 

36 weeks gestational age), and AI(37+) (less than 2500 g for greater or equal to 37 weeks gestational age) for 

individuals A–H at gestational ages 34, 37, 39, and 40 weeks.

A B C D

LBW+PTB (per cent) 9.55 (9.27, 9.83) 8.97 (8.69, 9.27) 6.49 (6.29, 6.69) 6.01 (5.83, 6.19)

AI(35) (per cent) 0.88 (0.83, 0.93) 0.78 (0.73, 0.84) 0.44 (0.41, 0.47) 0.39 (0.37, 0.42)

AI(37+) (per cent) 1.52 (1.45, 1.60) 1.34 (1.27, 1.41) 0.64 (0.60, 0.68) 0.55 (0.52, 0.59)

E F G H

LBW+PTB (per cent) 6.90 (6.73, 7.07) 6.44 (6.27, 6.61) 4.61 (4.49, 4.74) 4.26 (4.15, 4.36)

AI(35) (per cent) 0.42 (0.39, 0.45) 0.37 (0.35, 0.40) 0.21 (0.20, 0.23) 0.20 (0.18, 0.21)

AI(37+) (per cent) 0.59 (0.56, 0.62) 0.51 (0.48, 0.53) 0.23 (0.21, 0.24) 0.20 (0.18, 0.21)
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