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Species habitat associations are often complex, making it difficult to assess their

influence on populations. Among coral reef fishes, habitat requirements vary

among species and with ontogeny, but the relative importance of nursery

and adult-preferred habitats on future abundances remain unclear. Moreover,

adult populations may be influenced by recruitment of juveniles and assess-

ments of habitat importance should consider relative effects of juvenile

abundance. We conducted surveys across 16 sites and 200 km of reef to identify

the microhabitat preferences of juveniles, sub-adults and adults of the damsel-

fish Pomacentrus moluccensis. Microhabitat preferences at different life-history

stages were then combined with 6 years of juvenile abundance and micro-

habitat availability data to show that the availability of preferred juvenile

microhabitat (corymbose corals) at the time of settlement was a strong predictor

of future sub-adult and adult abundance. However, the influence of nursery

microhabitats on future population size differed spatially and at some locations

abundance of juveniles and adult microhabitat (branching corals) were better

predictors of local populations. Our results demonstrate that while juvenile

microhabitats are important nurseries, the abundance of coral-dependent

fishes is not solely dependent on these microhabitats, especially when

microhabitats are readily available or following large influxes of juveniles.
1. Introduction
Identifying the habitat requirements of species and how this affects their abundance

is a central tenet of ecology. At the species level, suitable habitats provide shelter and

sustenance to promote survival and growth, while at the community level, variation

in habitat complexity can moderate key processes such as competition and pre-

dation. However, habitat degradation and fragmentation through climate change

and other anthropogenic stressors are altering species interactions and contributing

to local extinctions [1–3]. Consequently, recognizing and conserving essential habi-

tats has become a key component of ecosystem-based management [4,5].

Availability of suitable habitat is especially important for ecological specialists,

who use only a small proportion of available resources [6]. Indeed, studies on

birds [7], butterflies [8] and coral reef fishes [9] have all demonstrated that habitat

loss has a greater impact upon habitat specialists than generalists.

Habitat preferences can, however, change with ontogeny [10], which may alter

how a species responds to habitat changes at different life-history stages [11]. For

example, juveniles of many marine fishes can occupy very different habitats

compared with their adult conspecifics, with such nursery areas being critically

important for effective conservation and fisheries management [12]. While bottle-

necks in juvenile habitat may limit the abundance of adult populations [13,14], the

relative importance of juvenile versus adult habitats for regulating total population

size is often unclear [15]. Moreover, in the marine environment, the supply rate of

recruits may have a greater influence on adult abundances than habitat or density
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regulating processes [16,17]. Consequently, an appreciation

of both ontogenetic shifts in habitat use and supply rates of

recruits is needed to understand fluctuations in population

size [18,19].

Experimental work has demonstrated that density-dependent

mortality regulates populations, and that availability of suit-

able refuge microhabitats can be a key mediator of predation

and mortality rates within fish populations [20,21]. While

these and other experiments have helped elucidate the extent

of small-scale mechanisms for density-dependent regulation

of fish populations, very few studies have examined the impor-

tance of microhabitat-related drivers of population size over

spatial scales that are relevant to management [22,23]. While

rare, long-term field observations over large spatial scales

have provided key information on natural rates of recruitment,

changes in adult abundance and microhabitat availability

[24–27]. What remains to be established, however, is the

extent to which the supply of new recruits interacts with the

availability of preferred microhabitats through ontogeny to

shape the future size of fish populations.

Here, we assess the relative importance of juvenile abun-

dance and microhabitat availability for shaping population

sizes of a microhabitat specialist, the coral-dwelling damselfish

Pomacentrus moluccensis. We examine patterns in juvenile, sub-

adult and adult abundance over 6 years across the Ningaloo

region in Western Australia, alongside assessments of micro-

habitat associations and specialization at these different

life-history stages. Throughout the study period, abnormally

warm water and high cyclone activity in some years produced

strong temporal and spatial variability in coral micro-

habitat availability [28], which provided an ideal system to test

how microhabitat availability may influence the abundance of

adults relative to the supply of new recruits over space and time.
2. Material and methods
(a) Recruitment patterns
Abundance of juvenile (less than 2 cm total length, TL) P. moluccen-
sis was surveyed across 16 sites spread along 200 km of the World

Heritage Ningaloo coast of Western Australia. Five sites were in

the northern zone, and six in the southern zone, which experience

different temperature regimes and currents [29,30]. Three sites

were located in the transitional middle zone around Point Cloates

[31], while a further two sites were situated within Exmouth

Gulf (electronic supplementary material, figure S1). All sites

were on the wave-sheltered shallow (1–4 m) coral back reef,

where P. moluccensis juveniles are most abundant [32].

Juvenile P. moluccensis abundance was recorded at each site

once per annum for 6 years (2010–2015) during February/March,

immediately after the new moon to ensure surveys were completed

within the same lunar phase within and among years. Being at the

end of the Austral summer, surveys were completed shortly after

the peak recruitment season in our study region [33]. At each site,

fish counts were recorded within six to nine 1 � 30 m haphazardly

placed transects, with at least 5 m between each transect. This cov-

ered an area many times greater than mean distances (3.3 m) that

juvenile P. moluccensis typically move [34]. Per cent benthic cover

of live coral growth forms (branching, corymbose, encrusting,

foliose, plate, massive), rubble, sand, dead coral, erect fleshy macro-

algae and hard pavement was estimated within each of the same

transects, using planform visual assessments that are comparable

with line-intercept transects [35].

For all analyses, sites were used as replicates, with fish

abundance and microhabitat occurrence expressed as mean
abundance per transect. Spatial and temporal variation in juven-

ile P. moluccensis was assessed using permutational analysis

of covariance (PERMANCOVA), from a resemblance matrix

constructed using a modified Gower, base 2 measure and

9999 permutations [36]. PERMANCOVA was used instead of

ANCOVA because data were not normally distributed. Spatial

zone (Gulf, North, Middle and South) and year (2010–2015)

were entered as fixed factors. Per cent cover of corymbose

coral, a preferred microhabitat type of juvenile P. moluccensis at

Ningaloo [32], was included as a covariate. Significant results

for a given factor or interaction term were explored further

using pairwise PERMANOVA. Statistical analysis was completed

with PRIMER (v. 6.1.12) and PERMANOVAþ (v. 1.0.02).

(b) Microhabitat associations
Microhabitat associations of juvenile (less than 2 cm TL), sub-adult

(2–4 cm TL) and adult (more than 4 cm TL) P. moluccensis were

assessed annually along three to six transects at each site from

2013 to 2015. Life-history categories were based on length from

age growth curves for P. moluccensis [37]. Visual size estimates

by observers were calibrated at the start of each day by estimating

and subsequently measuring the length of rubble and small corals,

with differences between estimated and actual sizes being less than

1% (0.2 cm) and insignificant (paired t-test, t410 ¼ 1.68, p ¼ 0.09).

Microhabitat associations were determined by recording the type

of benthos (categories noted above) directly beneath each fish

when first observed. Microhabitat availability was estimated

within the same transects using planform visual assessments of

the aforementioned categories. Microhabitat specialization for

the three fish life-history stages were then assessed at each site

where 10 or more fish were observed using relativized electivity

indices that consider microhabitat use relative to availability [38].

Mean electivity indices for each microhabitat category (+95% con-

fidence interval (CI)) were calculated using annual surveys of sites

as replicates. Indices with 95% CI that were more than zero suggest

positive selection/preference for a given microhabitat type. Micro-

habitat niche breadth for each life-history stage was also calculated

for each site using the proportional similarity index of Feinsinger

et al. [39]. Values close to zero indicate smaller niche breadths

and greater specialization, while values that approach one suggest

a broader range of microhabitat associations.

(c) Predicting adult abundances
We explored the relative importance of microhabitat and abun-

dance of juvenile P. moluccensis for shaping adult and sub-adult

population sizes using a full-subsets approach and general addi-

tive models (GAM). Explanatory variables considered for adult

analysis were: per cent cover of preferred adult microhabitat

(branching corals; electronic supplementary material, table S1) at

the time of surveys (2013–2015), juvenile abundance 2 and 3

years prior to each survey year, and juvenile microhabitat (corym-

bose corals) 2 and 3 years prior to each survey year (corresponding

with time lag expected for juveniles to reach adult TL, and matur-

ity [37,40]). Explanatory variables considered for sub-adults were:

per cent cover of preferred sub-adult microhabitat (branching

corals; electronic supplementary material, table S1) at the time of

survey (2013–2015), and juvenile abundance and/or juvenile-pre-

ferred microhabitat (corymbose corals) 1 year prior to each survey

year. For both analyses, spatial zone (Gulf, North, Middle and

South) was considered as an explanatory variable. All possible

combinations of explanatory variables were considered and best

models chosen as those with the fewest variables within two

Akaike information criterion corrected for small sample size

(AICc) units of the model with the lowest AICc value [41]. AICc

weights were calculated for each model, and support for each

explanatory variable was obtained by summing AICc weights

across all models containing that variable [41]. Statistical analysis
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Figure 1. (a – c) Habitat associations and selection by different life-history stages of Pomacentrus moluccensis. Plus (þ) symbol indicates all instances of positive
selection for a given habitat type indicated by electivity indices.
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was completed in R (v. 3.2.1, R Core Development Team) using the

function ‘gamm’ from library mgcv [42] and ‘gamm4’ from the

library gamm4 [43].
3. Results
(a) Microhabitat associations
More than 60% of juvenile P. moluccensis observed during

2013–2015 were closely associated with corymbose corals,

even though these corals typically represented less than 10%

of the total available habitat cover (figure 1a). Electivity indices

(electronic supplementary material, table S1) suggest juvenile

fish preferentially associated with live corymbose corals, with

the high proportion of juveniles on either corymbose or branch-

ing corals translating to a low realized niche and high level of

specialization (figure 1). Both sub-adult and adult fish were

more closely associated with branching corals, and electivity

indices suggest these larger fish favour this microhabitat over

others (figure 1b,c). However, sub-adult and adult fish were

observed to associate with a much broader suite of microhabi-

tats than juveniles, such that their niche space expanded with

increasing body size (figure 1).
(b) Recruitment patterns
Annual abundances of juvenile P. moluccensis fluctuated by an

order of magnitude during the 6 year survey period in a pattern

that was not consistent among spatial zones (zone � year inter-

action F15,70 ¼ 2.9, p ¼ 0.001; figure 2). Within Exmouth Gulf,

juvenile abundance was highest in 2012 at greater than 30

fish per 30 m2, while the highest numbers of juveniles were

observed in 2011 within the Middle and Southern zones, and

in 2013 within the Southern zone. Juvenile numbers were

generally low (less than 10) throughout the study period in

the Northern zone. Juvenile P. moluccensis abundance was posi-

tively related to per cent cover of corymbose coral (F1,70¼ 16.4,

p , 0.001), although this microhabitat variable explained only

7% of the total variance in juvenile abundance over space and

time. Indeed, there were instances where juvenile fish abun-

dance was high but corymbose coral cover was very low and

vice versa (electronic supplementary material, figure S2).

(c) Predicting sub-adult and adult abundances
Availability of preferred juvenile microhabitat at the approxi-

mate time of larval settlement into benthic habitats had a

stronger influence upon the abundance of sub-adult and
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Figure 2. Temporal changes in abundance of juvenile Pomacentrus moluccen-
sis (lines) and per cent cover of live coral habitat (bars) across four spatial
zones of Ningaloo Reef, Western Australia. Standard errors for total coral
cover and juvenile fish calculated from 2 – 6 sites in each zone.
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adult P. moluccensis than either the abundance of juveniles or

availability of adult microhabitats, though this pattern was

not always consistent among study zones. Spatial variation

among the four zones, combined with per cent cover of

juvenile-preferred microhabitat (corymbose corals) 1 year

prior to sub-adult surveys, explained 40% of the variation in

sub-adult abundance (table 1). Abundance of sub-adults was

high within the South and Gulf zones, although there was

considerable variation in estimates from the Gulf (electronic

supplementary material, figure S3). Across all zones, corym-

bose coral cover a year before survey was a particularly

good predictor of sub-adult abundance, which increased line-

arly with the juvenile-preferred microhabitat (figure 3a,b).

The relationship between corymbose corals and sub-adults

was strongest in the northern and southern zones; however,

in the Gulf, abundance of juveniles from the previous year

was also a strong predictor of sub-adults and within the

middle zone cover of preferred sub-adult microhabitat
(branching corals) at the time of survey was positively related

to sub-adult abundance (electronic supplementary material,

table S2 and figure S4).

Spatial zones were the best single predictor of adult

fish abundance (figure 3c), owing to higher adult densities

observed in the South and Gulf versus other zones (electronic

supplementary material, figure S3). However, cover of corym-

bose coral 3 years before each survey year was also a good

predictor, adult abundance increased linearly until corymbose

coral cover was more than 15% (figure 3d). Notably, juvenile

fish abundance in preceding years and the availability of

adult microhabitat were relatively poor predictors of adult

abundance when data from all zones were considered. The

relationship between corymbose corals and adults was stron-

gest in the Middle zone, while in other zones other variables

better explained variation in adult abundance. In particular,

within the Gulf, there was a positive relationship between

juveniles 3 years before surveys and adult fish (electronic sup-

plementary material, table S2). This relationship is primarily

driven by high numbers of juveniles in 2012 and a correspond-

ing high number of adults in 2015 (electronic supplementary

material, figure S5). Within the Gulf and Middle zones cover

of adult microhabitat (branching corals) had also declined sub-

stantially over the 5 years of surveying and was positively

related to adult abundance (electronic supplementary material,

table S3 and figure S5).
4. Discussion
Nursery habitats are often advocated for conservation of

species [44], but there is little empirical understanding of

how these habitats contribute to adult populations. Identifying

microhabitat associations and assessing their importance rela-

tive to supply of new recruits is therefore critical for evaluating

factors that may influence population levels and prioritizing

areas for conservation management. Here, we demonstrate

that juvenile microhabitat availability at the time of larval

settlement is a good predictor of sub-adult population sizes

in a widely distributed and abundant coral-associated reef

fish. However, the importance of juvenile microhabitat to

future populations varies spatially, and in some areas adult

microhabitat or changes in the abundance of juveniles are

better predictors of sub-adult and adult fish abundance.

The availability of specific coral microhabitats has pre-

viously been shown to have a profound influence on the

abundance and distribution patterns of many coral-dependent

fishes [18,45,46]. But it is not always clear how ontogenetic

shifts in coral use influence contemporary populations because

the ‘nursery’ microhabitat at the time when adults were juven-

iles have not been expressly considered. By considering the

availability of corymbose corals at the time of recruitment,

we demonstrated a strong influence of nursery microhabitat

availability on the future abundance of older conspecifics.

However, unlike previous studies that have investigated the

influence of microhabitat availability on coral specialists

[45,46], we found relations between juvenile fish abundance

and per cent cover of corymbose corals were weak. In particu-

lar, in the Gulf, abnormally warm water and cyclonic activity

during the Austral summer of 2010/2011 caused extensive cor-

ymbose coral mortality [28,47], yet there was a large pulse of

juvenile P. moluccensis the subsequent year, demonstrating

abundance of juveniles may act independently of microhabitat.



Table 1. Best five models (GAM) for predicting abundance of adult and sub-adult Pomacentrus moluccensis. (Top models (,2 DAIC) are indicated in italics.
Numbers in parentheses indicate the lag in years between the level of a variable (e.g. per cent cover of live corymbose coral) and current abundances of adult
and sub-adult fish.)

model d.f. r2 DAICc AICc wt

sub-adults zone, % corymbose coral (21) 8 0.40 0 0.51

zone 6 0.26 3.04 0.11

% corymbose coral (21), juveniles (21) 7 0.30 3.29 0.10

juveniles (21) 5 0.19 4.10 0.06

% corymbose coral (21) 5 0.19 4.20 0.06

adults zone 6 0.26 0 0.36

zone, % corymbose coral (23) 8 0.34 0.57 0.27

zone, % corymbose coral (22) 8 0.31 2.57 0.10

% corymbose coral (23) 5 0.12 4.55 0.04

% corymbose coral (22) 5 0.11 5.03 0.03

branching coral cover
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Juveniles from this 2012 pulse clearly contributed to future

sub-adult and adult abundance, even though their preferred

microhabitat had gone, suggesting some level of habitat
plasticity. Pomacentrus moluccensis are known to associate

with more than 30 coral species [48] and it is assumed that

juveniles from the Gulf associated with less-preferred
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microhabitats in 2012. The ecological consequences of associat-

ing with sub-optimal microhabitats are not clear, though it is

likely that predation becomes more intense in the absence of

suitable microhabitat [19,49,50], and it is probable that adult

P. moluccensis abundances would have been higher without

the loss of corymbose coral in 2012.

As P. moluccensis grow they used a broader range of

microhabitats and became less dependent on corymbose

corals. The number of fish that survive to these older stages

will be partially dependent on predation of juveniles and

sub-adults, which may be extensive [51]. Indeed, some preda-

tors are known to target juveniles within corymbose corals,

resulting in substantial mortality [52]. Older fish are also sub-

ject to predation and tend to associate with microhabitats that

provide refuge space that matches their larger body size [46].

The importance of juvenile microhabitat to fish may therefore

diminish, as fish get larger and older. Indeed, live corymbose

coral cover at the time of recruitment is only relevant to adult

abundance when it is below 15%. This is consistent with

models that suggest availability of juvenile microhabitat has

the greatest influence on adult populations when it is scarce

[15]. Conversely, the availability of adult microhabitat, branch-

ing coral, may be a good predictor of adults when juvenile

habitat is readily available and adult microhabitat is sparse

[15], as was observed at sites within the Middle zone. Hence,

it is unlikely that a single factor drives population sizes in a

cosmopolitan manner [19,22,53]; a pluralistic scenario is most

likely, where different explanatory variables underpin local

population sizes according to the interaction between levels

of recruitment, preferred habitat availability, and the existing

abundance of conspecifics. In particular, heterogeneous

patterns of habitat loss and strong recruitment pulses can

alter the relative importance of microhabitats and juvenile

abundance for shaping future adult populations.
5. Conclusion
Nursery habitats have long been recognized as important for

the health and survival of juvenile life-history stages [49].

Here, we extend this importance to include coral microhabitats

in the future population sizes of a coral reef fish. Juvenile

P. moluccensis were found predominantly in corymbose corals,

and we find a positive relationship between juvenile microhabi-

tat availability and sub-adult population sizes. This relationship

is, however, not always consistent among different areas and

strong pulses of juvenile recruits can leave their mark on adult

abundances even when cover of preferred juvenile microhabi-

tats is very low. Relationships between adults and juvenile

microhabitats were also weak, particularly when the cover of

corymbose corals was high. Our findings demonstrate that

while juvenile microhabitats are key to the persistence of some

coral reef fish, adult microhabitats and historic abundance of

juveniles may also be important, and the relative influence of

these drivers can vary both spatially and temporally.
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