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Several studies have shown associations between shorter telomere length in

blood and weakened immune function, susceptibility to infections, and

increased risk of morbidity and mortality. Recently, we have shown that

malaria accelerates telomere attrition in blood cells and shortens lifespan

in birds. However, the impact of infections on telomere attrition in different

body tissues within an individual is unknown. Here, we tested whether

malarial infection leads to parallel telomere shortening in blood and tissue

samples from different organs. We experimentally infected siskins (Spinus
spinus) with the avian malaria parasite Plasmodium ashfordi, and used real-

time quantitative polymerase chain reaction (PCR) to measure telomere

length in control and experimentally infected siskins. We found that exper-

imentally infected birds showed faster telomere attrition in blood over the

course of infection compared with control individuals (repeatedly measured

over 105 days post-infection (DPI)). Shorter telomeres were also found in

the tissue of all six major organs investigated (liver, lungs, spleen, heart,

kidney, and brain) in infected birds compared with controls at 105 DPI. To

the best of our knowledge, this is the first study showing that an infectious

disease results in synchronous telomere shortening in the blood and tissue

cells of internal organs within individuals, implying that the infection induces

systemic stress. Our results have far-reaching implications for understanding

how the short-term effects of an infection can translate into long-term costs,

such as organ dysfunction, degenerative diseases, and ageing.
1. Introduction
Telomere length has been proposed to be involved in organismal health and

ageing [1–3]. Several lines of evidence suggest that loss of genome integrity

and accumulation of DNA damage, including telomere shortening, are impor-

tant factors involved in tissue degeneration during ageing [4]. Telomeres

comprise nucleoprotein complexes that cap and protect the ends of chromo-

somes. The DNA component of telomeres consists of tandem repeats of

(TTTAAG)n that shorten as a function of replication in most human somatic

cells as they age [5]. Thus, telomere length is an indicator of the replicative

age of a cell. Only in germ cells, stem cells, and white blood cells, telomere attri-

tion is counteracted by the action of the enzyme telomerase. However,

persistent chronic stress owing to intrinsic and extrinsic factors (e.g. chronic

and inflammatory diseases) inhibits telomerase activity [6–8].

Gradual telomere loss appears to be a normal part of the ageing process in

many species. However, accelerated telomere attrition is a feature of mamma-

lian pathology [9], including cancer [4], immune dysfunction [10], stroke [11],

cardiovascular disease [12], and diabetes [13]. Recent studies have also reported
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Figure 1. Malaria parasite intensity (Plasmodium ashfordi) over the course of
infection measured by microscopy showing that individuals differ in their
peak parasite intensity and that all birds had passed the peak parasite inten-
sity (and thus the acute phase of infection) before day 105 post-inoculation.
Each line represents one individual of the experimentally infected birds.
(Online version in colour.)
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that infections may increase the rate of telomere attrition in

mice [14] and birds [1]. In addition, there is compelling

evidence for connections between telomere shortening and

some degenerative diseases [15,16], whereas telomere

lengthening reverses tissue degeneration [17]. It is, however,

difficult to determine causality between disease and telomere

length, and studies of infections have the potential to reveal

the effect of specific exposures/events on telomere dynamics.

Some studies of humans have provided preliminary evi-

dence that infection may enhance allostatic load (the wear

and tear on the body that increases over the time an individual

is exposed to repeated or chronic stress) and reduce physio-

logical function as a consequence of accelerated biological

ageing [18,19]. One important aspect is to reveal whether

the telomere shortening effect of infections is manifested

not only in blood cells, but also in other tissue cells through-

out the body. If there is a generally increased rate of telomere

attrition that affects the cells in several organs (see also [20]),

this will be a strong indication that even limited short-term

costs induced by an infectious disease can translate into

long-term costs (see discussion in [21]). So far, studies inves-

tigating the association between infectious disease and

telomere attrition have in most cases mainly examined

blood cells [1,9–12,14]. As blood cells are rapidly regenerated

during an infection (not least in malaria), these cells may be

more sensitive to a direct effect of the disease on telomere

length and may not represent what is going on in other

body tissues. Thus, it is still largely unknown how a disease

may affect the rate of telomere attrition in other body tissues,

including major organs within an individual.

In this study, we investigated whether an infectious disease

(avian malaria) affects the rate of telomere attrition in blood

cells as well as the cells of six internal organs (liver, lungs,

heart, kidney, spleen, and brain). We experimentally infected

siskins (Spinus spinus), a small passerine bird in the finch

family, with the avian malaria parasite Plasmodium ashfordi
(mitochondrial lineage GRW2), using methods described else-

where [22]. Malaria is a disease, caused by protozoan

parasites, which has been linked with negative consequences

on host fitness [1,23–25]. The parasite can cause mortality in

birds during the short acute stage of the infection [26,27];

however, most birds that survive the acute stage develop

long-lasting low-level chronic infections [27,28]. Therefore,

this host–parasite system makes it suitable for studies

aiming to understand the links between chronic infections

and systemic stress via accelerated telomere attrition.
2. Methods
(a) Experimental set-up
The experimental part of this study was carried out at the Bio-

logical Station of the Zoological Institute of the Russian

Academy of Sciences on the Curonian Spit in the Baltic Sea

(558050N, 208440E) in 2012. All birds were caught with mist

nets and large ‘Rybachy’-type traps.

All experimental and control birds were juveniles; they were

initially screened to ensure they were uninfected with haemospor-

idian parasites, both by microscopic examination of blood films

and polymerase chain reaction (PCR)-based analysis of blood

samples [29] before experimental infection. In total, 44 siskins

(22 control and 22 experimental birds) were included in this exper-

iment. Experimental siskins (12 males and 10 females) were

inoculated with avian red blood cells containing a single infection
of P. ashfordi (GRW2) following the protocol described elsewhere

[22]. This parasite was originally isolated from a common cuckoo

(Cuculus canorus) in 2011 and frozen in liquid nitrogen as

described by Palinauskas et al. [30]. The strain was multiplied in

common crossbills (Loxia curvirostra), which were used as donors

of infected red blood cells. Control siskins (15 males and seven

females) were inoculated with uninfected red blood cells from

common crossbills at the same time as experimental birds.

The freshly prepared mixture of infected blood was inoculated

by injecting it into the pectoral muscles of recipient birds. We ran

the experiment over 105 days without any antimalarial treatment.

Blood from all birds was sampled every 5th day until 31 days

post-infection (DPI) and then at 105 DPI. At each sampling

occasion, about 30 ml of whole blood was taken in heparinized

microcapillaries by puncturing the brachial vein and stored in

SET buffer (containing sodium chloride and sodium dodecyl sul-

fate) and kept frozen at 2808C for future molecular analysis. After

the acute phase of infection (when birds reached the peak parasite

intensity levels; figure 1), birds usually developed a chronic

low-level infection [28] with some variation between the individ-

uals [31]. Parasitaemia (parasite density) was monitored by

microscopy and the highest parasitaemia of the experimental

birds reached levels where 50–80% of the red blood cells con-

tained parasites (figure 1), whereas none of the control birds

developed malaria infection. Body mass and haematocrit values

were measured at the time of inoculation. Five of the infected

birds (three males and two females) died during the course of

infection and the remaining 17 birds were followed until they

reached the chronic phase of infection (105 days). Neither blood

telomere length (at the time of inoculation) nor peak parasitaemia

of the five birds that died differed from the rest of the infected birds

(all p . 0.6). However, two birds died during peak parasitaemia,

whereas three died just after.

On 105 DPI, six experimental and seven control siskins were

decapitated and dissected. The brain, heart, liver, lungs, kidney,

and spleen were isolated, and a part of each organ was fixed with

absolute ethanol for telomere analysis. Ethanol-fixed samples

were kept frozen and sent to Lund on dry ice together with blood

samples where they were kept at 2808C until DNA extraction.



Table 1. Factors influencing telomere length in blood samples of control and experimentally infected siskins (Spinus spinus) measured over the course of the
malarial infection. The linear-mixed-effect model included; sex and malaria infection status as fixed factors, body mass, haematocrit value at time of infection,
and days post-infection (DPI) as covariates, and bird ID as a random factor in the model with all two-way interactions. Non-significant interactions were
excluded from the model (using stepwise backward elimination).

source estimate standard error (s.e.) d.f. F p

response variable: telomere length

sex 0.012 0.082 1,22 1.76 0.200

body mass 1.521 1.167 1,22 6.85 0.016

haematocrit value 0.651 1.554 1,22 0.002 0.964

DPI 0.001 0.001 1,184 2.27 0.133

malaria infection 0.003 0.087 1,184 3.65 0.069

malaria infection � DPI 20.006 0.001 1,184 12.66 0.0005
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(b) Molecular analyses
DNA was extracted using standard phenol/chloroform methods

[32] from blood and body tissues and diluted to a concentration

of 1 ng ml21. Real-time quantitative PCRs (qPCRs) were per-

formed on an Mx3000P q-PCR system (Stratagene) to quantify

telomere length as described in [33], using the primers tel1b

and tel2b [33,34]. To obtain an accurate measurement of the

total DNA content in the samples, a second reaction was carried

out with host-specific primers sfsr/3Fb and sfsr/3Rb [31,35] that

amplify a single-copy nuclear sequence (114 bp long), which is

ultra-conserved across vertebrates [36]. Each reaction of 25 ml

included 5 ml DNA (1 ng ml21), 12.5 ml Supermix (Platinum

SYBR-green q-PCR SuperMix-UDG, Invitrogen), 0.1 ml ROX,

1 ml (10 mM) of the sfsr/3 primers, 0.3 ml (10 mM) of the tel pri-

mers, and ddH2O. We ran 30 thermal cycles for telomere

measurement and 40 thermal cycles for total DNA content.

Before thermal cycling the samples were incubated at 508C for

2 min and 958C for 10 min, followed by thermal cycling (958C
for 15 s, then sfsr/3 588C for 30 s; tel 598C for 30 s and finally,

728C for 30 s). Each DNA sample was run in duplicate, and a

reference sample (one siskin sample of 1 ng ml21) was also run

in duplicate on each plate as a golden sample to control inter-

plate variability [33,34]. Standard curves were produced

by diluting one random siskin DNA sample with ddH2O in a

five-step dilution series (25, 5, 1, 0.2, and 0.04 ng).

We discarded and re-ran qPCR plates that produced stan-

dard curves which were outside 85–115% qPCR efficiency. We

ran the telomere repeat and single-copy nuclear sequence pri-

mers on separate plates. To control for variation between

plates, we first adjusted both the telomere measurement and

the total DNA content measurement by dividing them by the

values obtained from the ‘golden sample’ run on each plate.

We then calculated a relative telomere length (T/S ratio) value,

by dividing the (plate-adjusted) qPCR value for the telomere

length (T) with the (plate-adjusted) qPCR value for the single-

copy nuclear sequence (S) following the method described in

[33]. Our method showed very high within-plate repeatability,

intraclass correlation (ICC¼ 0.98) as well as between plate repeat-

ability (ICC¼ 0.97) for both telomere and single-copy gene

measurements. Furthermore, repeatability of the final telomere

length (T/S ratio) measurement was also very high (ICC ¼ 0.97).
(c) Statistics
Statistical analyses were performed using R v. 3.1.3. We ran

linear-mixed-effects models (LME) fitted by maximum-

likelihood (package nlme) to investigate the effect of malaria

infection on telomere length in blood cells. We included telomere

length as a response variable, sex and malaria infection status as
fixed factors, body mass, haematocrit value (at time of inocu-

lation), and sampling time (DPI) as covariates, and bird ID as a

random factor in the model with all two-way interactions. The

non-significant interactions were eliminated from the model

(using stepwise backward elimination). As there was a signifi-

cant interaction between malaria infection status and DPI

affecting telomere length (table 1), we ran separate LME

(as described above) for both experimental and control birds.

A Pearson correlation test was used to analyse whether peak

parasite intensity during the acute phase correlated with the

telomere loss in blood over 105 DPI. Peak parasite intensity

(% infected erythrocytes) and degree of telomere loss (% telomere

length loss compared with pre-infection) were logit transformed

before being included in the correlation test.

We used the LME to investigate the effect of malaria infection

on telomere length (at 105 DPI) in different tissues within indi-

viduals comparing infected and control individuals (fitting

tissue telomere length as the response variable, sex, malaria

infection status, and tissue as fixed factors, and bird ID as a

random factor in the model with all two-way interactions). The

non-significant interactions were eliminated from the model

(using stepwise backward elimination). For detailed analysis of

each tissue separately, we conducted t-tests to compare telomere

length between infected and control individuals. We used Pear-

son correlations to obtain a matrix of all pairwise correlations

between the telomere lengths of blood and the six vital organs,

including 13 birds (seven control and six experimental birds)

that were dissected at 105 DPI.
3. Results
Experimental individuals that survived the experiment

(n ¼ 17) exhibited a greater degree of telomere shortening in

blood cells compared with control individuals, in which telo-

mere length remained unaffected over the 105 day observation

period (n ¼ 22; figure 2a). This was confirmed by the inter-

action between the variables malaria infection � DPI

significantly explaining variation in blood cell telomere short-

ening (LME, F1,184 ¼ 12.6, p ¼ 0.0005, table 1 and figure 2a).

Infected individuals experienced accelerated blood cell telo-

mere shortening over 105 DPI (LME, F1,138 ¼ 40.18, p ,

0.0001, figure 2a), with no effect of sex (LME, F1,20¼ 0.75,

p ¼ 0.40) or the interaction sex � DPI (LME, F1,138 ¼ 0.07,

p ¼ 0.78). In contrast, control birds showed no significant

change in blood cell telomere length over 105 days post-

inoculation (LME, F1,152 ¼ 0.78, p ¼ 0.38) with no effect of

sex or the interaction sex � DPI (all p . 0.63). There was a
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Figure 2. (a) Telomere length in blood cells of control (n ¼ 22) and malaria-infected (n ¼ 17) siskins Spinus spinus. Infected birds (grey line) showed a higher rate
of telomere attrition compared with control birds (black line), as there was a significant interaction of infection � DPI (LME, F1,178 ¼ 12.6, p ¼ 0.0005), (b) there
was also a non-significant tendency of a positive relationship between malaria infection intensity and telomere loss in blood over 105 days post-infection (r ¼ 0.46,
p ¼ 0.059, n ¼ 17).
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Figure 3. Effects of malaria infection in the birds sacrificed at 105 days post-
infection (DPI; controls n ¼ 7; infected n ¼ 6) on telomere length measured
in blood and tissue samples of six major organs (liver, lungs, heart, kidney,
spleen, and brain). At 105 DPI, the experimentally infected birds (grey bars)
showed shorter telomere length than control birds (black bars) in blood as
well as all different organ tissues (glm, F1,74 ¼ 23.5, p , 0.0001).
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tendency for a positive correlation between acute phase peak

parasite intensity and percentage telomere loss over 105 DPI

(r ¼ 0.46, p ¼ 0.059, n ¼ 17, figure 2b).

We then investigated the effects of malarial infection on

telomere length in tissue samples from six major organs

(brain, heart, liver, lungs, kidney, and spleen) in birds sacri-

ficed at the end of the experiment (105 DPI). There was a

significant effect of malaria on tissue telomere length (LME,

F1,76 ¼ 21.9, p , 0.0001, figure 3 and table 2) when adjusting

for type of organ tissue ( p , 0.0001), with no effect of sex

( p ¼ 0.160). When analysing the different organs separately,
we found that the mean telomere length of the six organs

investigated was 45–56% shorter in experimental when com-

pared with control birds at 105 DPI. In blood cells, the mean

telomere length of experimental birds at 105 DPI was 41%

shorter in infected when compared with control birds.

Infected individuals had significantly shorter telomeres than

uninfected controls at 105 DPI in all body tissues investigated

(blood, t1,10.4 ¼ 2.9, p ¼ 0.015; liver, t1,8.5 ¼ 6.930, p ¼ 0.0001;

lung, t1,11 ¼ 4.01, p ¼ 0.002; heart, t1,8.8 ¼ 5.02, p ¼ 0.001;

kidney, t1,11 ¼ 2.38, p ¼ 0.036; spleen, t1,11 ¼ 4.01, p ¼ 0.002;

brain, t1,11 ¼ 3.7, p ¼ 0.003; figure 3), and this was also true

if we applied a sequential Bonferroni correction to control

for multiple testing.

We then compared telomere lengths between tissue

samples of different organs and blood of an individual, in

correlations across individuals. In these pairwise analyses,

we found that telomere lengths were significantly correlated

between all body tissues (r ¼ 0.64–0.97). When comparing

blood telomere length with each of the other investigated

tissues, all six correlations were positive (r ¼ 0.30–0.52),

but none reached significance (electronic supplementary

material, table 1 and figure S1 and S2).
4. Discussion
This experimental study of small songbirds (siskins) revealed

that malarial infection results in parallel telomere shortening

in blood and tissue cells of internal organs within individ-

uals. Malarial infection increased the rate of telomere

attrition in blood cells, and this pattern was mirrored in

cells of all the six major organs investigated (i.e. liver,

lungs, heart, kidney, spleen, and brain) as we found consist-

ently shorter telomere length in infected versus control birds

at 105 days after inoculation.

Experimental and control birds did not show any signifi-

cant telomere difference at the time of inoculation in blood



Table 2. Factors predicting telomere length in blood and different body tissues at 105 days post-infection in siskins, where birds were either controls or
experimentally infected with avian malaria. A linear-mixed model was used to investigate the effect of malaria infection on telomere length (at 105 DPI) in
different tissues within an individual (fitting tissue telomere length as the response variable), sex, malaria infection status, and tissue as fixed factors, and bird ID
as a random factor in the model with all 2-way interactions. Non-significant interactions were excluded from the model (using stepwise backward elimination).

source estimate s.e. d.f. F p

response variable: tissues telomere length

sex 0.69 0.063 1,76 2.02 0.160

malaria infection 20.030 0.063 1,76 21.86 ,0.0001

tissues 20.095 0.016 1,76 36.22 ,0.0001
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cells. However, malaria-infected birds showed a significantly

higher rate of telomere shortening in blood cells over the

experimental period and had substantially shorter telomeres

(45% shorter) compared with controls at 105 DPI. A causal

link between an infectious disease and telomere attrition of

blood cells has previously been shown in mice (Mus musculus
musculus) infected with Salmonella enterica [14] as well as

in our previous study of great reed warblers (Acrocephalus
arundinaceus) infected with avian malaria P. ashfordi
(GRW2) [1]. Hence, there seems to be a consistent pattern

of a faster rate of telomere shortening in blood cells sub-

sequent to infection in all these three studies, despite

differences in aetiology of infection as well as parasite and

host species involved. These data are congruent with some

findings in humans where human immunodeficiency virus

(HIV) and hepatitis C (HCV) infections have been found to

accelerate biological ageing in blood cells, as indicated by

the ageing markers, telomere length, and CDKN2A [18,19].

Our data on accelerated telomere shortening in the blood

of infected individuals are of particular interest in relation to

malaria infection, because the malaria parasites infect red

blood cells and might therefore induce high cell stress as

well as rapid proliferation of new red and white blood cells

from stem cells in the bone marrow [37]. A recent study

using the same experimentally infected and control siskin

individuals [38], used blood transcriptome analysis to show

that telomerase expression is reduced in infected individuals

at peak parasitaemia (i.e. day 21 post-infection, figure 1). Inter-

estingly, our data show that infected birds experienced rapid

telomere loss from just after peak parasitaemia in blood cells

(day 21, figure 2a), implying that malaria infection can inhibit

telomerase activity and that this has negative consequences

through increasing the rate of telomere attrition.

Owing to the specific negative effects of malaria infection

on blood cells (including red blood cells that are nucleated in

birds), a higher rate of telomere attrition in blood samples

may, however, not necessarily be reflected in cells of other

organs and thus have limited consequences for the general

physiology of the malaria-infected individual. In this study,

we demonstrated that the cells of six internal organs (beside

blood cells) show significantly shorter telomeres in malaria-

infected individuals, at a magnitude of 45–56% shorter

telomere lengths than in control birds at 105 DPI, suggesting

that infected birds were exposed to systemic stress (an inflam-

matory state affecting the whole body). This finding suggests

that DNA damage of permanent cells, possibly caused by reac-

tive oxygen species (ROS) activity of the immune system, can

reduce the telomere lengths in tissue not directly affected by

the infecting pathogen. Another possible mechanism behind
telomere length shortening in different tissues could be an

inadequate supply of oxygen to organ tissues owing to the for-

mation of phanerozoites in endothelial cells of capillaries that

block the blood supply [39]. This may then lead to anaerobic

conditions and impaired metabolism, including acidosis

in organ tissues and might accelerate telomere shortening.

Irrespective of the mechanism, our results suggest that the

infection has increased the allostatic load and accelerated

biological ageing in cells throughout the body.

This type of experimental study cannot be carried out in

humans. Yet, an increasing number of observational studies

in humans have found a pattern of shorter telomeres in cells

of dysfunctional organs [15,17]. The interpretations of these

studies are however limited by the fact that it is not possible

to know to what extent organ dysfunction is caused by short

telomeres or if short telomeres mainly reflect cell stress and

oxidative damage in organs that are dysfunctional for other

reasons. In this respect, our study is important as it points at

a causal relationship between infectious disease and telomere

shortening in several organs of the body, and this may help us

to understand the negative long-term effects of seemingly mild

infectious diseases as well as degenerative organ-related

diseases in humans and other animals.

Our results suggest that telomere length, and thus telo-

mere attrition, is synchronized among different organs

within an individual, as we found a significant positive cor-

relation between the telomere length of six different tissues

within an individual. However, blood telomere length and

telomere length of the different tissues were not significantly

correlated, although all showed positive relationships (r ¼
0.30–0.52). The telomere length of blood cells was consider-

ably longer than in any of the other investigated organ

tissues (figure 3). These results are in agreement with a pre-

vious study that also found longer telomeres in blood cells

than in cells of different organ tissues within individuals

[20], although note that the previous study did not analyse

telomere lengths in relation to any effects of disease. Longer

telomeres in blood cells could be due to longer telo-

mere length in hematopoietic stem cells or better telomere

maintenance in blood cells owing to telomerase activity.

One potential issue with our study could be that the

observed correlation between blood cells and different

organ tissue telomere lengths arises owing to the presence

of blood in the organ tissues. However, the marked difference

(figure 3) between telomere lengths of blood cells and differ-

ent organ tissues strongly implies that if there is any

contribution from blood cells on the telomere lengths

measured in the organ tissues it must be very limited, and

thus most of the contribution to the measured telomere
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lengths must come from the organ tissue cells. This is further

strengthened by the fact that we found no significant positive

correlation between individuals’ telomere length measures of

blood cells and any of the different organ tissues.

We know of no previous study that has investigated the

effect of experimental infection on telomere lengths in cells

of various tissues beside blood cells. These results suggest

that infectious diseases might have a general effect on the

body, a finding that has far-reaching implications for under-

standing how short-term effects of an infection can translate

into long-term costs, such as organ dysfunction, degenerative

diseases, and ageing. There is now a need for more studies of

other host–pathogen systems to reveal to what extent this

pathogen-induced telomere attrition throughout the body tis-

sues is a general pattern, as well as for carrying out detailed

(physiological) studies on the mechanisms behind this

whole-body effect in the host when contracting an infection.
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Description of the first cryptic avian malaria
parasite, Plasmodium homocircumflexum n. sp., with
experimental data on its virulence and development
in avian hosts and mosquitoes. Int. J. Parasitol. 45,
51 – 62. (doi:10.1016/j.ijpara.2014.08.012)

31. Asghar M, Hasselquist D, Bensch S. 2011 Are chronic
avian haemosporidian infections costly in wild
birds? J. Avian Biol. 42, 530 – 537. (doi:10.1111/j.
1600-048X.2011.05281.x)

32. Sambrook J, Fritsch EF, Maniatis T. 1989 Molecular
cloning, a labratory manuel. Cold Spring Harbor, NY:
Cold Spring Harbor Laboratory Press.

33. Asghar M, Bensch S, Tarka M, Hansson B,
Hasselquist D. 2015 Maternal and genetic factors
determine early life telomere length. Proc. R. Soc. B
282, 20142263. (doi:10.1098/rspb.2014.2263)

34. Criscuolo F, Bize P, Nasir L, Metcalfe NB, Foote CG,
Griffiths K, Gault EA, Monaghan P. 2009 Real-time
quantitative PCR assay for measurement of avian
telomeres. J. Avian Biol. 40, 342 – 347. (doi:10.
1111/j.1600-048X.2008.04623.x)

35. Westerdahl H, Asghar M, Hasselquist D, Bensch S.
2012 Quantitative disease resistance: to better
understand parasite-mediated selection on major
histocompatibility complex. Proc. R. Soc. B 279,
577 – 584. (doi:10.1098/rspb.2011.0917)

36. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent
WJ, Mattick JS, Haussler D. 2004 Ultraconserved
elements in the human genome. Science 304, 1321 –
1325. (doi:10.1126/science.1098119)

37. von Zglinicki T. 2002 Oxidative stress shortens
telomeres. Trends Biochem. Sci. 27, 339 – 344.
(doi:10.1016/S0968-0004(02)02110-2)

38. Videvall E, Cornwallis CK, Palinauskas V, Valkiunas
G, Hellgren O. 2015 The avian transcriptome
response to malaria infection. Mol. Biol. Evol. 32,
1255 – 1267. (doi:10.1093/molbev/msv016)

39. Ilgunas M, Bukauskaitė D, Palinauskas V, Iezhova
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