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Bias due to selective mortality is a potential concern in many studies and is especially relevant in cognitive aging

research because cognitive impairment strongly predicts subsequent mortality. Biased estimation of the effect of an

exposure on rate of cognitive decline can occur when mortality is a common effect of exposure and an unmeasured

determinant of cognitive decline and in similar settings. This potential is often represented as collider-stratification

bias in directed acyclic graphs, but it is difficult to anticipate themagnitude of bias. In this paper, we present a flexible

simulation platform with which to quantify the expected bias in longitudinal studies of determinants of cognitive de-

cline. We evaluated potential survival bias in naive analyses under several selective survival scenarios, assuming

that exposure had no effect on cognitive decline for anyone in the population. Compared with the situation with no

collider bias, themagnitude of bias was higher when exposure and an unmeasured determinant of cognitive decline

interacted on the hazard ratio scale to influence mortality or when both exposure and rate of cognitive decline in-

fluenced mortality. Bias was, as expected, larger in high-mortality situations. This simulation platform provides a

flexible tool for evaluating biases in studies with high mortality, as is common in cognitive aging research.

cognitive decline; collider-stratification bias; dementia; selection bias; selective survival; simulation; survival bias;

truncation by death

Abbreviation: GEE, generalized estimating equations.

Selective survival presents an important potential source of
bias in longitudinal researchwith truncation by death. Survival
bias is especially relevant in research on determinants of cog-
nitive decline because cognitive decline predicts death (1–4),
many exposures of interest also influence death, and death
rates are high in older adult populations. Hernán et al. (5) rep-
resented this challenge using directed acyclic graphs, concep-
tualizing survival bias under the sharp null hypothesis (no
effect of the exposure on the outcome in any person) as a
type of collider-stratification bias that arises when survival is
a common effect of the exposure and outcome process. For
cognitive aging research, situations where cognitive outcomes
directly influence survival and where a determinant of cogni-
tive decline influences survival are both plausible.

Although in some situations researchers may be confident
that they have appropriately measured and accounted for the
selection processes, the potential for survival bias is widely
recognized in numerous settings when many determinants
of survival are not known or not measured. Simulation stud-
ies provide an opportunity to systematically assess the likely
magnitude of bias under an array of assumptions about the
data-generating process, including the causal structure and
effect sizes. Simulation studies may also provide useful guid-
ance to researchers about which assumptions about the selec-
tion process matter most for their research question.
We have developed a flexible simulation platform for

quantifying the expected magnitude of bias in studies of de-
terminants of rate of cognitive decline. Using this simulation
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platform, we evaluated potential survival bias when imple-
menting naive analyses of cognitive decline under conditions
of selective survival. We considered several causal scenarios,
with a binary baseline exposure and continuous cognitive
function measured on repeated occasions, as is typical in co-
hort studies of cognitive aging. The binary exposure could
represent many different exposures of interest to epidemiolo-
gists—for example, a treatment in a hypothetical randomized
controlled trial, such as hormone replacement therapy or in-
tensive glycemic control, or an exposure in a hypothetical co-
hort study, such as a genetic variant or smoking.

Simulating data to model cognitive aging entails incorpo-
rating complex correlation structures that prevail across suc-
cessive cognitive assessments of a person and error in typical
neuropsychological measurements. We therefore begin by de-
scribing our overall approach to generating cognitive data. We
then describe the specific causal scenarios we evaluated and
report effect estimates obtained from naive regression models
(standard regression models that condition on survival to out-
come assessment) under each scenario. Our objective was to
simulate a study of cognitive aging that corresponded with the
assumptions of substantive researchers and captured the most
important drivers of survivor bias but omitted superfluous
data features in order to maintain transparency and constrain
the number of input assumptions. We therefore adopted sev-
eral simplifying assumptions for clarity of exposition, most
notably the sharp null hypothesis of no effect of the exposure
on rate of cognitive change in any person. Simple modifica-
tions of the simulation code could make it relevant to a range
of research questions related to diverse outcomes—for exam-
ple, performance of alternative analytical approaches in the
presence of selective survival; effects of early life-course
factors that influence survival for decades prior to study en-
rollment; or sex differences in dementia incidence.

METHODS

Hypothetical study

We considered a study of the effect of a binary exposure on
rate of cognitive decline in adults aged≥60 years. The hypothet-
ical study sample was followed for up to 9 years with cognitive
assessments administered every 1.5 years (i.e., up to 7 assess-
ments). To focus discussion on survivor bias, we assumed
that no other form of attrition was present and that exposure
was effectively randomized at baseline (no confounding).

Generation of repeated cognitive measures and survival

times

Each person in each simulated data set was assigned the fol-
lowing: exposure (fromBernoulli(0.50)); baseline age (baseline_
age), defined as 60 years plus a random variable drawn from
a Beta(2,4) distribution, which we scaled to allow a possible
40-year age range (see Web Figure 1, available at http://aje.
oxfordjournals.org/); and an unmeasured continuous covariate,
U∼N(0,1), which can represent a single variable or a set of
variables that influence rate of cognitive change. We adopted
a growth curve framework for generating cognitive measures,
since it easily incorporates within-person correlation, as well

as other sources of variation between people, such as random
slopes. For each individual i at wave j, we generated a value of
cognitive functionCij, following an autoregressive linearmodel
with a random intercept (ζ0i) and random slope (ζ1i) drawn
from a bivariate normal distribution with mean 0, variances
σ2
ζ0

and σ2
ζ1
, and covariance σζ01. Although we use the term

timeij, the value of time at wave j does not vary between indi-
viduals in the present simulations.

Cij ¼β00þ β01exposureiþ β02baseline ageiþ β03Ui

þðβ10þ β11exposureiþ β12baseline ageiþ β13UiÞtimeij
þ ζ0iþ ζ1itimeijþ εij: ð1Þ

In this model (see coefficient definitions in Appendix Table 1), εij
represents unexplained variation in Cij, where εij ¼ ρεij�1þ
αij; εij ∼Nð0;σε

2Þ;αij ∼Nð0; ð1� ρ2Þσε
2Þ;and αij

‘
εij�1:

This structure creates an autoregressive model within a per-
son where the variance of εij is constant across waves (see
Web Table 1).

Our data-generating model for cognitive function allows
for random intercepts and random slopes and an autoregres-
sive within-person covariance structure. Most researchers
evaluating determinants of rate of cognitive change either
use a linear mixed-effects model with random intercepts
and random slopes or adopt a generalized estimating equations
(GEE) approach assuming an autoregressivewithin-person co-
variance structure (i.e., marginalizing over random effects).
Our simulation platform can accommodate a variety of struc-
tures. For example, the data-generating model for cognitive
function can be specified without random effects (by setting
σ2
ζ1
¼ 0, σ2

ζ1
¼ 0, and σζ01 ¼ 0) or the data-generating model

can be set to correspond to a strictly random-effects model (by
setting ρ = 0).

For conceptual clarity, note that equation 1 can be written
more succinctly as

Cij ¼ X0
iβ0 þ ðX0

iβ1Þtimeij þ ζ0i þ ζ1itimeij þ εij; ð2Þ

where β0 is a vector of fixed effects for cognitive intercept and
β1 is a vector of fixed effects for cognitive slope (rate of cog-
nitive change), and X′ represents the vector of covariates, in-
cluding exposure, baseline age, and U.

After generating true values of cognitive function for each
individual i at each wave j, we generated measured values of
cognitive function ðC�

ijÞ by adding random measurement
error, δij ∼ Nð0; σ2

δÞ; to the true values of cognitive function
(Cij) described in equation 1:

C�
ij ¼ Cij þ δij: ð3Þ

The simulation code can be modified to eliminate measure-
ment error by setting σ2

δ ¼ 0:
We generated survival time for each person as a function

of exposure (time-constant), U (time-constant), age (time-
varying), rate of cognitive change (time-varying), and level
of cognitive function (time-varying). At each cognitive assess-
ment wave j, a “time to death” value is generated for each per-
son who has remained alive up to that wave. The time-to-death
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variable is generated using information on the person’s covar-
iate history up to that time point as a random variable drawn
from an exponential survival distribution (based on the hazard
function specified in equation 4 below). If the randomly gen-
erated time to death exceeds the length of the interval between
waves j and j + 1 (1.5 years), the person is considered alive at
wave j + 1 and a new survival time is generated for the next
interval, conditional on history up to the start of the interval.
The process is repeated until the person’s survival time falls
within a given interval or the end of the study (7 waves),
whichever comes first. Each person’s hazard function at time
t in the jth interval is defined as

hðtijjxÞ ¼ λ expðγ1exposurei þ γ2ageij þ γ3Ui

þ γ4exposurei × Ui þ γ5ðslopeijÞ þ γ6CijÞ
ð4Þ

(see coefficient definitions in Appendix Table 1). In this
model, slopeij represents individual i ’s rate of cognitive
change for the interval starting at time j and is defined as

slopeij ¼ ðX0
iβ1 þ ζ1iÞ þ

εijþ1 � εij
timeijþ1 � timeij

� �
; ð5Þ

whereX0
iβ1 þ ζ1iÞ equals individual i ’s average slope through-

out follow-up and ðεijþ1 � εijÞ=ðtimeijþ1 � timeijÞ represents
individual i ’s deviation from this long-term average slope dur-
ing the current time interval. This slope does not incorporate
measurement error because it represents the person’s true,
rather than measured, rate of cognitive change. We then
used the inverse cumulative hazard function transformation
formula described by Bender et al. (6) (see Web Appendix
1) to generate each person’s survival time for a given time in-
terval at risk based on the above hazard function.

Causal scenarios guiding data generation

We carried out simulations under several causal scenarios
(Figure 1). We chose an initial scenario (scenario A) with no
anticipated survivor bias. Although the exposure influences
mortality, no correlate of cognitive decline affects mortality
in this scenario, so conditioning on survival should not give
rise to collider-stratification bias. We then considered scenar-
ios under which selective survival was expected to induce
collider-stratification bias. In the second scenario (scenario
B), mortality is influenced by exposure andU, an unmeasured

D)

Exposure Survival Rate of Cognitive Decline

Cognitive Level

Cognitive Intercept

Age

U

C)

Exposure Survival Rate of Cognitive Decline

Cognitive Level

Cognitive Intercept

Age

U

B)

Exposure Survival Rate of Cognitive Decline

Cognitive Level

Cognitive Intercept

Age

U

A)

Exposure Survival Rate of Cognitive Decline

Cognitive Level

Cognitive Intercept

Age

U

Figure 1. Causalscenarios investigated forpotential selectionbias. Inall scenarios, the target of inference is theeffect of theexposureon rateofchange
in cognitive function over time (rate of cognitive decline). “Cognitive Intercept” reflects cognitive level at the baseline cognitive assessment. The bidirec-
tional arrow between “Cognitive Intercept” and “Rate ofCognitiveDecline” indicates that the random intercept and randomslope termswere drawn froma
bivariate distribution with nonzero covariance. The box around “Survival” represents the fact that we are conditioning on survival = 1, meaning that anal-
yses are limited to people who are alive at each cognitive assessment. Age is a determinant of survival, cognitive intercept, and rate of cognitive decline;
the box around “Age” represents the fact that we are conditioning on agebyadjusting for age in all regressionmodels for cognitive decline. A) ScenarioA:
no anticipated survivor bias. B) Scenarios B1 (exposure and U affect mortality) and B2 (exposure and U have more-than-multiplicative effects on the
mortality hazard): mortality is influenced by exposure and U, an unmeasured determinant of rate of cognitive change, without and with an interaction
on the hazard ratio scale between theexposure andU. C)ScenarioC1 (exposure and rate of cognitive changeaffectmortality):mortality risk is influenced
byexposure and current rate of cognitive change.D) ScenarioC2 (exposure, rate of cognitive change, andcognitive level affectmortality):mortality risk is
influenced by exposure, current rate of cognitive change, and level of cognitive function at the beginning of the time interval.
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determinant of rate of cognitive decline. Because interaction
between causes is known to influence the magnitude of
collider-stratification bias (5, 7, 8), we consider a situation in
which exposure andU influence the mortality hazard multipli-
catively, with no interaction on the hazard ratio scale in deter-
mining mortality (scenario B1), and also a situation where
exposure and U interact on the hazard ratio scale in determin-
ing mortality (scenario B2). In scenario C1, mortality is influ-
enced by exposure and current rate of cognitive change, and in
scenario C2, level of cognitive function at the beginning of the
time interval also influences mortality.

For each causal scenario, we simulated B = 1,000 samples
of n = 1,500 people with the archetype parameter inputs dis-
played in Table 1. We selected “archetype” values that repre-
sented large associations between variables to assess survival
bias when the associations between variables were at the
higher bound of the spectrum of what we considered likely
in real data. Specifically, every 1-unit increase in U doubles
the rate of cognitive decline (β13 = β10 = −0.05). Exposure
doubles the hazard of death (exp(γ1) = 2.0). A 1-unit increase
in U increases the hazard of death by a factor of 5.0, either
overall (scenario B1; exp(γ3) = 5.0) or among the exposed
only (scenario B2; exp(γ4) = 5.0). In scenario B2, this is es-
sentially a silencing interaction, such that if exposure is not
present, U has no effect. Each 0.10-unit faster annual rate
of cognitive decline increases the hazard of death by 34%
(exp(γ5 × −0.10) = 1.34), and every 1-unit decrease in level
of cognitive function (Cij) doubles the hazard of death (exp
(γ6 × −1) = 2.0).

To assess bias with more moderate effect sizes, we exam-
ined alternative parameter inputs for selected scenarios,
changing one parameter value at a time, keeping the other pa-
rameters at archetype values. We varied: the effect of U on

annual rate of cognitive change (β13); the effect of the expo-
sure on the log hazard rate of mortality (γ1); the effect ofU on
the log hazard rate of mortality (γ3); the interaction between
exposure and U in determining the log hazard rate of mortal-
ity (γ4); and the effect of rate of cognitive change on the log
hazard rate of mortality (γ5). We did not vary the distributions
of random effects, within-person covariance structure, or
measurement error for cognitive function. These distributions
are described in Table 2.

Because the proportion of the study population that dies
throughout follow-up may influence the degree of selection
bias, we also varied cumulative mortality by the end of the
hypothetical follow-up period. For each causal scenario, we
generated the data under conditions of low, intermediate, and
high mortality (cumulative mortality of 25%, 50%, and 75%,
respectively). To achieve this across causal scenarios, we ad-
justed the baseline hazard such that cumulative mortality
equaled the target.

Assessment of survival bias in estimated exposure–

cognitive change associations

As previously stated, we assumed the sharp null hypothe-
sis that there is no person in the population for whom the ex-
posure affects rate of cognitive change (β11 = 0). Therefore,
we attributed any nonnull association between the exposure
and rate of cognitive change to survival bias. We produced
estimates of the effect of exposure on rate of cognitive change
using measured values of cognitive function ðC�

ijÞ among
people who were alive at each cognitive assessment based
on linear mixed-effects models and population average
effects models estimated using GEE, the two modeling
approaches most commonly used in practice for repeated

Table 1. Archetype Values Used to Generate Models for Cognitive Function (Cij) and Hazard of Death (h(tijjx)) for
Each Causal Scenario

Scenarioa

Parameters Used in Data-Generating Models

Models for Cognitive Function (Cij) Models for Hazard of Death (h(tijjx))
β00 β01 β02 β03 β10 β11 β12 β13

b γ1
b γ2 γ3

b γ4
b γ5

b γ6

Ac 0 0 −0.05 0 −0.05 0 −0.005 −0.05 0.69 0.086 0 0 0 0

B1d 0 0 −0.05 0 −0.05 0 −0.005 −0.05 0.69 0.086 1.61 0 0 0

B2e 0 0 −0.05 0 −0.05 0 −0.005 −0.05 0.69 0.086 0 1.61 0 0

C1f 0 0 −0.05 0 −0.05 0 −0.005 −0.05 0.69 0.086 0 0 −2.9 0

C2g 0 0 −0.05 0 −0.05 0 −0.005 −0.05 0.69 0.086 0 0 −2.9 −0.69

a All scenarios are variations on the general data-generating structure, which is

Cij ¼ β00 þ β01exposurei þ β02baseline agei þ β03Ui

þ ðβ10 þ β11exposurei þ β12baseline agei þ β13Ui Þtimeij þ ζ0i þ ζ1i timeij þ εij
hðtij jxÞ ¼ λ expðγ1exposurei þ γ2baseline ageij þ γ3Ui þ γ4exposurei ×Ui þ γ5slopeij þ γ6Cij Þ:

b Italic numbers represent parameters for which alternative values, which represent moremoderate effect sizes, are

considered.
c No anticipated survivor bias.
d Exposure and U affect mortality.
e Exposure and U have more-than-multiplicative effects on the mortality hazard.
f Exposure and rate of cognitive change affect mortality.
g Exposure, rate of cognitive change, and cognitive level affect mortality.
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measures. In all modeling approaches, a person was censored
at her last cognitive assessment prior to death or at the end of
follow-up (9 years), whichever came first. Consistent with the
data-generating process, we used study time as the time scale
and adjusted for baseline age. In all models, we adopted a
naive analysis approach without adjusting for any measure
of U to reflect the fact that in practice, such a measure may
not be available.
We fitted linear mixed-effects models with random intercepts

and slopes, allowing for possible correlation of the random in-
tercepts and random slopes and no additional within-person
covariance structure, as is common practice for standard linear
mixed-effects models. For the GEE approach, we specified
an autoregressive within-person correlation structure, where

CorrðCij; CijþkÞ ¼ ρk for all j and k. The GEE approach is
often adopted because it is considered robust to misspecifica-
tions of the covariance matrix.
Neither of these commonly used models is completely

consistent with our data-generating model, which incorpo-
rated an autoregressive within-person covariance structure
in addition to random intercepts and slopes; thus, as a sensi-
tivity analysis, we also fitted linear mixed-effects models
with an autoregressive within-person covariance structure,
where Corrðeij; eijþkÞ ¼ ρk for all j and k. These models
more closely approximate the data-generating model.
Across the B = 1,000 simulated samples, β11 = 0 = the true

value of the effect of exposure on rate of cognitive decline
and β̂11 ¼ the estimated effect of exposure on rate of cogni-
tive decline. Because effect sizes for annual rate of cognitive
change are relatively small, we expressed effect sizes in
10-year increments for clarity. We calculated the mean value

of the estimate over all simulations, β̂11 ¼
PB

k¼1ðβ̂11k=BÞ.
We assessed accuracy as root mean square error, which is the
square root of themean squared deviation of the estimated effect
of exposure on rate of cognitive decline ðβ̂11Þ from the true
value (β11 = 0). We estimated the 95% confidence interval cov-
erage as the proportion of simulations in which the 95% confi-
dence interval for β̂11 included β11 = 0.We do not report percent
bias because data were generated under the null hypothesis.
In scenarios B1 and B2, conditioning on survival induces

collider-stratification bias because U is an unmeasured com-
mon cause of mortality and rate of cognitive change. To illus-
trate the association between exposure and U induced by
selective survival in these scenarios, we examined the differ-
ence in the mean value ofU between exposed and unexposed
survivors in each wave of the study for scenario A (where no
bias was anticipated) and scenarios B1 and B2 with low,
intermediate, and high mortality. Scenarios C1 and C2 were

Table 2. Input Variance, Covariance, and Correlation Values for

Generating Cij (True Cognitive Function) (Text Equation 1a) and Cij
*

(Measured Cognitive Function) (Text Equation 3b)

Parameter Definition Value

σ2ζ0 Variance of ζ0i, individual i ’s deviation from
the group mean intercept

0.20

σ2ζ1 Variance of ζ1i, individual i’s deviation from
the group mean slope

0.005

σζ01 Covariance of ζ0i and ζ1i 0.01

σε2 Variance of εij, unexplained variation in Cij 0.70

ρ Correlation between εij and εij+1 0.40

σ2δ Variance of δij, random measurement error
of cognitive function

0.19

a Cij ¼ β00 þ β01exposurei þ β02baseline agei þ β03Ui þ ðβ10þ
β11exposurei þ β12baseline agei þ β13Ui Þtimeij þ ζ0i þ ζ1i timeij þ εij .

b C�
ij ¼ Cij þ δ ij .

Table 3. Simulation Results From Scenarios A–C for the Estimated Effect of Exposure on Rate of Cognitive Change

(β11) per 10 Years, Based on Archetype Input Values

Low Mortality (25%) Intermediate Mortality (50%) High Mortality (75%)

β̂11 RMSE Coveragea β̂11 RMSE Coverage β̂11 RMSE Coverage

Linear mixed-effects
models

Scenario A 0.002 0.085 0.954 0.000 0.095 0.958 −0.002 0.120 0.957

Scenario B1 0.048 0.098 0.914 0.075 0.124 0.884 0.094 0.155 0.883

Scenario B2 0.164 0.186 0.527 0.288 0.304 0.165 0.412 0.429 0.081

Scenario C1 0.094 0.126 0.809 0.186 0.209 0.518 0.316 0.335 0.229

Scenario C2 0.088 0.121 0.818 0.170 0.193 0.562 0.288 0.308 0.264

GEE approach

Scenario A 0.001 0.088 0.964 −0.001 0.099 0.960 −0.005 0.128 0.949

Scenario B1 0.053 0.103 0.919 0.081 0.132 0.890 0.100 0.169 0.884

Scenario B2 0.189 0.210 0.464 0.326 0.342 0.122 0.458 0.476 0.061

Scenario C1 0.092 0.127 0.838 0.189 0.214 0.533 0.338 0.359 0.193

Scenario C2 0.099 0.131 0.825 0.183 0.207 0.527 0.297 0.319 0.286

Abbreviations: GEE, generalized estimating equations; RMSE, root mean square error.
a Proportion of times the 95% confidence interval for β̂11 includes β11.
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omitted because selective survival induces negligible associa-
tions between exposure and U in these scenarios; the bias in
these scenarios does not arise from U.

We used Stata SE, version 13.1 (StataCorp LP, College
Station, Texas), for all data generation and analyses. The
simulation code (Web Appendices 2 and 3), code books
for the simulation code (Web Tables 2 and 3), and the out-
line of steps for using the code (Web Figure 2) are available
online.

RESULTS

Recall that in all scenarios, exposure has no effect on rate
of cognitive change (β11 = 0), so any association between ex-
posure and rate of cognitive change (β̂11 ≠ 0) represents sur-
vival bias. In scenario A, the estimated effect of exposure and
rate of cognitive change was unbiased, as expected, with es-
timated effects centered around the null with approximately
correct coverage under low, intermediate, and high mortality

Table 4. Scenario B1 (Exposure andUAffect Mortality) Simulation Results for the Estimated Effect of Exposure on Rate of Cognitive Change (β11)
per 10 Years, Based on Alternative Input Values (More Moderate Effect Sizes)

Low Mortality (25%) Intermediate Mortality (50%) High Mortality (75%)

β̂11 RMSE Coveragea β̂11 RMSE Coverage β̂11 RMSE Coverage

Linear mixed-effects models

Under archetypical conditionsb 0.048 0.098 0.914 0.075 0.124 0.884 0.094 0.155 0.883

Moderate effect of exposure on mortalityc 0.029 0.091 0.934 0.044 0.108 0.923 0.056 0.135 0.922

Moderate effect of U on mortalityd 0.034 0.092 0.938 0.062 0.114 0.912 0.089 0.150 0.902

Moderate effect of U on cognitive declinee 0.026 0.087 0.939 0.039 0.104 0.922 0.048 0.130 0.933

GEE approach

Under archetypical conditionsb 0.053 0.103 0.919 0.081 0.132 0.890 0.100 0.169 0.884

Moderate effect of exposure on mortalityc 0.032 0.094 0.947 0.047 0.114 0.932 0.056 0.135 0.922

Moderate effect of U on mortalityd 0.041 0.098 0.947 0.072 0.123 0.901 0.087 0.149 0.901

Moderate effect of U on cognitive declinee 0.027 0.090 0.952 0.041 0.109 0.940 0.047 0.130 0.937

Abbreviations: GEE, generalized estimating equations; HR, hazard ratio; RMSE, root mean square error.
a Proportion of times the 95% confidence interval for β̂11 includes β11.
b Results in this row replicate results for scenario B1 shown in Table 3 for convenience of comparisons.
c Input value for γ1 = 0.40 (HR = 1.5) instead of 0.69 (HR = 2.0).
d Input value for γ3 = 0.69 (HR = 2.0) instead of 1.61 (HR = 5.0).
e Input value for β13 =−0.025 instead of −0.05.

Table 5. Scenario B2 (Exposure and U Have More-Than-Multiplicative Effects on the Mortality Hazard) Simulation Results for the Estimated

Effect of Exposure on Rate of Cognitive Change (β11) per 10 Years, Based on Alternative Input Values (More Moderate Effect Sizes)

Low Mortality (25%) Intermediate Mortality (50%) High Mortality (75%)

β̂11 RMSE Coveragea β̂11 RMSE Coverage β̂11 RMSE Coverage

Linear mixed-effects models

Under archetypical conditionsb 0.164 0.186 0.527 0.288 0.304 0.165 0.412 0.429 0.081

Moderate effect of exposure on mortalityc 0.154 0.176 0.568 0.268 0.285 0.225 0.383 0.401 0.117

Moderate effect of exposure and U on mortalityd 0.079 0.117 0.854 0.158 0.185 0.635 0.256 0.283 0.444

Moderate effect of U on cognitive declinee 0.085 0.119 0.836 0.147 0.174 0.671 0.209 0.238 0.592

GEE approach

Under archetypical conditionsb 0.189 0.210 0.464 0.326 0.342 0.122 0.458 0.476 0.061

Moderate effect of exposure on mortalityc 0.177 0.199 0.517 0.303 0.320 0.161 0.427 0.446 0.090

Moderate effect of U on mortalityd 0.097 0.132 0.831 0.191 0.216 0.539 0.304 0.330 0.312

Moderate effect of U on cognitive declinee 0.096 0.130 0.845 0.163 0.192 0.637 0.228 0.260 0.562

Abbreviations: GEE, generalized estimating equations; HR, hazard ratio; RMSE, root mean square error.
a Proportion of times the 95% confidence interval for β̂11 includes β11.
b Results in this row replicate results for scenario B2 shown in Table 3 for convenience of comparisons.
c Input value for γ1 = 0.40 (HR = 1.5) instead of 0.69 (HR = 2.0).
d Input value for γ4 = 0.69 (HR = 2.0) instead of 1.61 (HR = 5.0).
e Input value for β13 =−0.025 instead of −0.05.
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for both linear mixed-effects models (upper portion of
Table 3, first row) and the GEE approach (lower portion of
Table 3, first row). The estimated effect of exposure on rate
of cognitive change was biased to some degree in all other
causal scenarios (Tables 3–6). The extent of bias was similar
for linear mixed-effects models and the GEE approach, so we
discuss only the mixed-model results in detail.
With archetype parameter values, in scenario B1 (exposure

and U affect mortality), we would estimate that exposure re-
duces rate of cognitive decline by 0.05 and 0.09 standard de-
viation units per decade under low (25%) and high (75%)
mortality, respectively (Table 2). Coverage for scenario B1
ranged from 91%under lowmortality to 88%under highmor-
tality. Themagnitude of bias wasmuch larger for scenario B2,
where exposure and U have more-than-multiplicative effects

on the mortality hazard. Scenario C1 (exposure and rate of
cognitive change affect mortality) also entailed substantial
bias. We would estimate that exposure reduces rate of cogni-
tive decline by 0.09 and 0.32 standard deviation units per dec-
ade under low and high mortality, respectively. Coverage for
scenario C1 ranged from 81% under low mortality to 23%
under high mortality. Results for scenario C2, in which rate
of cognitive change and cognitive level affect mortality,
were similar to results for scenario C1. With more moderate
parameter inputs in scenarios B1, B2, and C1, the magnitude
of bias and coverage improved (Tables 4–6).
In sensitivity analyses, the extent of bias in estimates

from linear mixed-effects models with an autoregressive
within-person covariance structure were similar to results
from linear mixed-effects models with no additional within-

Table 6. Scenario C1 (Exposure andRate of Cognitive ChangeAffectMortality) SimulationResults for the Estimated Effect of Exposure onRate of

Cognitive Change (β11) per 10 Years, Based on Alternative Input Values (More Moderate Effect Sizes)

Low Mortality
(25%)

Intermediate Mortality
(50%)

High Mortality
(75%)

β̂11 RMSE Coveragea β̂11 RMSE Coverage β̂11 RMSE Coverage

Linear mixed-effects models

Under archetypical conditionsb 0.094 0.126 0.809 0.186 0.209 0.518 0.316 0.335 0.229

Moderate effect of exposure on mortalityc 0.055 0.100 0.902 0.107 0.142 0.819 0.180 0.212 0.673

Moderate effect of rate of cognitive change on
mortalityd

0.043 0.095 0.928 0.097 0.137 0.828 0.189 0.225 0.664

GEE approach

Under archetypical conditionsb 0.092 0.127 0.838 0.189 0.214 0.533 0.338 0.359 0.193

Moderate effect of exposure on mortalityc 0.053 0.102 0.924 0.108 0.147 0.819 0.191 0.225 0.649

Moderate effect of rate of cognitive change on
mortalityd

0.041 0.097 0.942 0.098 0.141 0.840 0.207 0.244 0.624

Abbreviations: GEE, generalized estimating equations; HR, hazard ratio; RMSE, root mean square error.
a Proportion of times the 95% confidence interval for β̂11 includes β11.
b Results in this row replicate results for scenario C1 shown in Table 3 for convenience of comparisons.
c Input value for γ1 = 0.40 (HR = 1.5) instead of 0.69 (HR = 2.0).
d Input value for γ5 =−1.0 (HR = 0.4) instead of −2.9 (HR = 0.1).
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Figure 2. Difference in the mean value of U between exposed and unexposed participants alive at each wave of the study in scenarios A, B1, and
B2 (archetype input values) under conditions of lowmortality (25%) (A), intermediatemortality (50%) (B), and highmortality (75%) (C). ScenariosC1
and C2 were not included because selective survival induces negligible associations between exposure andU in these scenarios; the bias does not
arise from U.
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person covariance structure beyond that imposed by the
random intercepts and slopes and the GEE approach (Web
Tables 4–7).

Underlying selective survival bias in scenarios B1 and B2
is a correlation between the exposure and U induced by re-
stricting analyses to people who are alive. If U is correlated
with both the exposure and rate of cognitive decline, in effect
it becomes a confounder of this relationship. Thus, the larger
the association between the exposure and U, the larger the
magnitude of survival bias. Figure 2 shows the difference
in the mean value of U between exposed and unexposed par-
ticipants alive in each wave of the study from scenarios A,
B1, and B2, with archetype input values under conditions
of low mortality (25%), intermediate mortality (50%), and
high mortality (75%). Recall that the data-generating processes
forU and exposurewere independent, so any association is due
to selective survival. As expected, no association between ex-
posure and U was induced in scenario A. An association be-
tween exposure and U was induced in scenario B1 (exposure
and U affect mortality), but a much stronger association was
induced in scenario B2 (exposure and U have more-than-
multiplicative effects on the mortality hazard), and the associ-
ation increased as cumulative mortality increased.

DISCUSSION

We developed and implemented a simulation platform for
quantifying possible bias due to selective survival in studies
of cognitive aging with truncation by death. This platform al-
lows flexible specification of duration of follow-up, cumulative
mortality, distribution andmagnitude of effects of determinants
of mortality, and distribution of cognitive level and rate of
cognitive change. This flexibility allows the simulation to be
adapted to diverse studies. We implemented simulations across
a range of scenarios corresponding to the assumptions of sub-
stantive researchers. We observed substantial bias in data-
generatingmodels inwhich exposure and an unmeasured deter-
minant of cognitive decline interacted on the hazard ratio scale
to influence mortality. The magnitude of bias was more modest
when the exposure and unmeasured determinant of cognitive
decline did not interact on the hazard ratio scale to influence
mortality. Bias consistently arose when both exposure and
rate of cognitive decline directly influenced mortality. Bias
was, as expected, larger in high-mortality situations.

It is widely recognized that selective survival has the po-
tential to bias estimated effects of exposures on rate of cogni-
tive decline (5, 9), but there have been few tools with which
to systematically estimate the plausible magnitude of this bias
when many determinants of survival are not known or not
measured. We focused here on bias under the sharp null hy-
pothesis, but similar bias might impede researchers’ ability to
identify exposures that have protective or harmful effects on
cognitive aging.We found that the magnitude of survival bias
often appears large enough to obscure likely causal effects of
exposures in typical cohorts. For example, in the Three-City
Study–Dijon, the apolipoprotein E gene (APOE) ε4 allele,
one of the strongest known predictors of dementia (10),
was associated with an excess decline of 0.14 standard devi-
ation units on the Mini-Mental State Examination over 10
years (11). In many scenarios, we observed magnitudes of

bias similar to this effect size. Few exposures have been
found to be consistently associated with rate of cognitive de-
cline (12). This surprising paucity of consistent predictors of
cognitive decline may be partially explained by survival bias.

As expected, cumulative mortality over follow-up substan-
tially influenced the extent of bias. Cumulative mortality in
studies of cognitive decline and dementia varies substantially
across studies, depending in part on the age of study partici-
pants and the length of follow-up. For example, in the Ath-
erosclerosis Risk in Communities Study cohort, 15% of
participants (baseline age 48–70 years) died over 14 years
of follow-up (13); in the Sacramento Area Latino Study on
Aging, 23% of participants (baseline age ≥60 years) died
over 10 years of follow-up (14); and in the Chicago Health
and Aging Project, 54% of participants (baseline age 65–
109 years) died over 12 years of follow-up (9).

Survival bias is often conceptualized as a type of collider-
stratification bias (5, 8). Hernán et al. noted that when the
exposure and a determinant of the outcome influence the col-
lider, collider-stratification bias does not occur if the data
follow a multiplicative survival model such that the 2 causes
of the collider have perfectly multiplicative effects on the
probability of remaining alive (5, 8). In other words, multipli-
cative effects imply that the conditional probability of sur-
vival given E and U is equal to a product of functions of e
and u—that is, PrðS ¼ 1jE ¼ e; U ¼ uÞ ¼ gðeÞhðuÞ, where
g(·) and h(·) represent arbitrary functions (see Appendix A.3
in Hernán et al. (5)) (8). Consistent with this, we observed
substantial bias when exposure and U interacted on the haz-
ard ratio scale in determining mortality (scenario B2) and
much smaller bias when the hazard function for mortality
was a multiplicative function of the exposure and U (scenario
B1). This is consistent with findings from previous simulation
studies, where the magnitude of collider-stratification bias was
small under causal structures similar to scenario B1 unless the
effects of U on mortality were very large (7, 15, 16). None of
our scenarios assessed the situation in which exposure and U
were perfectly multiplicative for probability of remaining
alive, the situation in which no survival bias would occur,
although scenario B1 (exposure and U are multiplicative for
the hazard of death) approximates this situation if mortality
is rare. We set up the simulation to specify covariate effects
on the hazard of mortality, rather than on the cumulative prob-
ability of remaining alive at the end of follow-up as implied by
the formulation of Hernán et al. (5), because the hazard-of-
mortality formulation is more typically encountered in epide-
miologic research.

We also observed substantially biased estimation of the ex-
posure’s effect on rate of cognitive declinewhen the exposure
and either 1) rate of cognitive change or 2) rate of cognitive
change and level of cognitive function influenced mortality
(scenarios C1 and C2). While rate of cognitive decline itself
may not directly influence mortality per se, rate of cognitive
decline can be conceptualized as a surrogate for progression
of underlying brain disease. The link between cognitive de-
cline and impending mortality is consistent with the terminal
decline and terminal drop hypotheses (17, 18). Empirical
studies are needed to better understand whether level of cog-
nitive function or rate of cognitive change is more predictive
of mortality among older adults, as this is important for
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understanding potential degree of survival bias in research on
determinants of cognitive decline.
Although some of the parameters that determine the magni-

tude of survival bias are easily observed in a cohort study (e.g.,
cumulative mortality), others are more speculative. Our study
highlights the importance of deriving plausible estimates for
these parameters, including nonmultiplicative influences on
mortality, effects of cognitive decline on mortality, and the
plausible magnitude of various rarely measured confounders
of rate of cognitive decline and mortality. We selected arche-
type values that represented large associations between vari-
ables to assess survival bias when the associations were at
the upper bound of what we considered likely in real data,
but researchers studying a specific exposure of interest will
need to apply input values that they deem plausible for the sub-
stantive question.
We made simplifying assumptions in order to maintain

transparency and constrain the number of input parameters.
It is our goal that our simulation platform will be modified
to study extensions of the present work and improve under-
standing of selective survival in cognitive aging research. For
example, extensions could incorporate loss to follow-up as an
additional source of attrition, allow nonnull effects of expo-
sure on rate of cognitive change, or introduce left-censoring
such that some mortality occurs between exposure and base-
line cognitive assessment. These challenges are relevant for
understanding a host of empirical findings in neuroepidemi-
ology and aging research.
The conceptualization of survival bias has been controver-

sial because counterfactual values of the outcome are not de-
fined for the dead (9, 19, 20). Various conceptual approaches
have been proposed in response, including a principal strati-
fication approach defining the target of inference as the sur-
vivor average causal effect—that is, the effect of exposure on
outcomes of persons who would survive under either expo-
sure regime (21). The simulation platform can be used to
evaluate performance of an analytical approach for any coun-
terfactual contrast of interest, including the survivor average
causal effect.
The field of dementia research has recognized the potential

importance of selective survival and the causal structures that
can theoretically give rise to survival bias. It is time for the
field to move towards quantifying the potential magnitude
of bias (22). We provide an accessible and flexible tool for
examining biases in research on determinants of cognitive
decline. This simulation platform can be modified to examine
the performance of various methods for addressing survival
bias according to study characteristics such as the interval be-
tween visits or frequency of dropout before death (21, 23,
24). The platform can also be used to quantify the potential
magnitude of bias arising from other methodological chal-
lenges in cognitive aging research, including time-varying
exposures and confounders (25) and unequal interval scaling
in measurement of cognitive function (26).
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Appendix Table 1. Definitions of regression parameters used to generate models for cognitive function (Cij) and hazard of death (h(tijjx))
Regression Parameter Definition of Parameter

Data-Generating Model for Cognitive Function :a

Cij ¼ β00 þ β01exposurei þ β02baseline agei þ β03Ui þ ðβ10 þ β11exposurei þ β12baseline agei þ β13Ui Þtimeij þ ζ0i þ ζ1i timeij þ εij

β00 Group mean cognitive intercept (baseline level of cognitive function) for the unexposed

β10 Group mean cognitive slope (annual rate of cognitive change) for the unexposed

β01 Effect of exposure on level of cognitive function at baseline

β02 Effect of a 1-year change in baseline age (in years, centered at age 60) on level of cognitive function at baseline

β03 Effect of a 1-unit change in U on level of cognitive function at baseline

β11 Effect of exposure on annual rate of cognitive change

β12 Effect of a 1-year change in baseline age on annual rate of cognitive change

β13 Effect of a 1-unit change in U on annual rate of cognitive change

ζ0i Individual i ’s deviation from the group mean intercept

ζ1i Individual i ’s deviation from the group mean slope

Data-Generating Model for Hazard of Death :b

hðtij jxÞ ¼ λ expðγ1exposurei þ γ2ageij þ γ3Ui þ γ4exposurei × Ui þ γ5ðslopeij Þ þ γ6Cij Þ
γ1 Effect of the exposure on the log hazard rate of mortality

γ2 Effect of a 1-year change in age on the log hazard rate of mortality

γ3 Effect of a 1-unit change in U on the log hazard rate of mortality

γ4 Additional effect of a 1-unit change in U on the log hazard rate of mortality among people who are exposed

γ5 Effect of a 1-unit change in rate of cognitive change on the log hazard rate of mortality

γ6 Effect of a 1-unit change in level of cognitive function on the log hazard rate of mortality

a Text equation 1.
b Text equation 4.
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