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Influenza viruses undergo frequent antigenic changes. As a result, the viruses circulating change within and

between seasons, and the composition of the influenza vaccine is updated annually. Thus, estimation of the vac-

cine’s effectiveness is not constant across seasons. In order to provide annual estimates of the influenza vaccine’s

effectiveness, health departments have increasingly adopted the “test-negative design,” using enhanced data from

routine surveillance systems. In this design, patients presenting to participating general practitioners with influenza-

like illness are swabbed for laboratory testing; those testing positive for influenza virus are defined as cases, and

those testing negative form the comparison group. Data on patients’ vaccination histories and confounder profiles

are also collected. Vaccine effectiveness is estimated from the odds ratio comparing the odds of testing positive for

influenza among vaccinated patients and unvaccinated patients, adjusting for confounders. The test-negative de-

sign is purported to reduce bias associated with confounding by health-care-seeking behavior andmisclassification

of cases. In this paper, we use directed acyclic graphs to characterize potential biases in studies of influenza vac-

cine effectiveness using the test-negative design. We show how studies using this design can avoid or minimize

bias and where bias may be introduced with particular study design variations.

causal inference; directed acyclic graphs; epidemiologic methods; influenza; observational studies; test-negative

study design; vaccine effectiveness

Abbreviations: DAG, directed acyclic graph; VE, vaccine effectiveness.

Editor’s note: An invited commentary on this article
appears on page 354.

Influenza viruses undergo frequent antigenic changes;
thus, influenza vaccination in one season may no longer con-
fer protection in a subsequent season (1). The composition of
the vaccine is updated twice each year by an expert working
group that reviews global surveillance data on circulating
strains (1). Therefore, the strain composition of the vaccine,
the strains of the virus circulating, and vaccine effectiveness
(VE) can all change between seasons.

In recent years, many research groups and health depart-
ments have enhanced existing influenza surveillance systems
to enable near real-time estimation of influenza VE. This is
achieved using the case test-negative study design (2). In a

typical study using this design, swabs are collected from pa-
tients presenting to ambulatory care clinics with influenza-like
illness and submitted for laboratory testing; those patients who
test positive for influenza virus are defined as cases, and those
who test negative form the noncase group (2, 3). Data on pa-
tients’ vaccination histories, ages, sexes, and risk profiles are
also collected. VE is estimated from the odds ratio comparing
the odds of testing positive for influenza virus among vacci-
nated patients with the odds among unvaccinated patients by
means of logistic regression, adjusting for potential confound-
ers. This particular type of study has the advantage over tradi-
tional cohort or case-control designs of being relatively cheap
and fast to conduct. Moreover, it is said to reduce the possibil-
ity of differential health-care-seeking behaviors among cases
and noncases, and it reduces the risk of misclassification of in-
fluenza status (2).
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This type of study design was initially used to study pneu-
mococcal vaccine (4), and it has been used to estimate influ-
enza VE since 2005 (5), after which it was rapidly adopted
worldwide (3). However, the validity of the design has not
been fully explored. Simulation studies have shown that the
design can produce estimates comparable with those of case-
control and cohort studies in the presence of a highly specific
diagnostic test (6, 7). De Serres et al. (8) used data from a ran-
domized controlled trial of influenza vaccination to show that
VE estimates from a test-negative-style analysis were very
similar to the estimates of vaccine efficacy based on ratios
of incidence rates in the trial cohort. Finally, Foppa et al.
(9) used simulation methods to show how the design may
produce biased estimates. Here, we will build on this body
of work using causal diagrams to represent studies using
the test-negative design and show how they can avoid bias
and where bias may be introduced with common study design
variations.

DESIGN OF THE TEST-NEGATIVE STUDY

The term “test-negative design” is used to describe various
study designs for estimating influenza VE. However, in epi-
demiologic terms, these studies may actually use different
methodologies (summarized in Table 1). For simplicity, in
this paper we focus only on studies embedded in surveillance
programs. In such studies, patients meeting a clinical case
definition for influenza-like illness or acute respiratory illness
are recruited prospectively through participating ambulatory
care clinics or hospitals. After recruitment and informed con-
sent, patients’ demographic details and vaccination histories

are recorded or may be supplemented with registry records.
Laboratory testing for influenza virus is performed; patients
who test positive form the case group, and thosewho test neg-
ative are the comparison group. Although these studies have
frequently been called case-control studies, a sampling frame
is not used to guide recruitment. They may instead be thought
of as a cohort study wherein the strata containing people who
do not meet the clinical case definition are ignored (10).
Conversely, some studies use a nested a case-control de-

sign based on laboratory or medical records, where all pa-
tients with both vaccination information and an influenza
test are used to estimate VE. This was the design originally
used for the study of pneumococcal VE, termed an “indirect
cohort design” (4, 11). Being opportunistic, these designs
may not have a defined clinical case definition or adequately
enumerate important covariates, which can result in signifi-
cant losses of data due to missingness.

REVIEW OF CAUSAL DIAGRAMS

A causal diagram is a graphical tool that enables the visu-
alization of causal relationships between variables in a causal
model (12, 13). One particular class of causal diagrams, di-
rected acyclic graphs (DAGs), have been described in detail
previously (12, 14). Basic DAG terminology is described in
the Web Appendix and Web Figure 1 (available at http://aje.
oxfordjournals.org/). DAGs provide a convenient method of
mapping out assumed causal relationships based on our prior
knowledge about biological mechanisms and plausibility.
Using these diagrams, it is possible to see where design com-
ponents and statistical adjustment can eliminate bias or intro-
duce it. In this paper, we use DAGs as a tool to illustrate
various features in the design and analysis of test-negative
studies intended to address confounding and specific biases.

USE OF THE ODDS RATIO IN TEST-NEGATIVE STUDIES

The VE in a test-negative study is estimated from the ad-
justed odds ratio (15). Similar to case-control studies, selec-
tion in a test-negative study is based on the outcome (because
only persons with symptoms seek care). This would ordi-
narily bias the effect estimate (16). However, the odds ratio,
because it is invariant to the marginal distribution of the out-
come, avoids this bias (17). When sampling fractions are
known or, equivalently, when the prevalence of disease in
the population from which the cases arise is known, it is pos-
sible to recover the risk ratio or risk difference (18). Absent
other biases (confounding, selection bias, measurement error,
informative missingness) and where parametric assumptions
are met, the design permits: 1) a valid test of the null hypoth-
esis of no causal effect; 2) a consistent estimate of the causal
odds ratio, which, although overstating the causal risk ratio,
will be nonzero when the latter is, but also will be in the same
direction as the latter; and 3) in subgroups of the population
where the outcome is rare, it is possible to obtain an approx-
imate estimate of the risk ratio (17). DAGs, being nonpara-
metric in nature, cannot convey these properties of the odds
ratio (19).

Table 1. Two Types of Studies Which Use a Test-Negative

Comparison Group

Setting Surveillance Program
Diagnostic Records/
Electronic Health

Records

Data
collection

Prospective Retrospective

Sampling Patients with a
common clinical
case definition
recruited in a clinical
setting and tested for
influenza virus

All patients tested for
influenza virus for
diagnostic
purposes

No common clinical
case definition

Case group Patients testing
positive for influenza
virus

Cases testing positive
for influenza virus
identified from
medical/laboratory
records

Case status unknown
at time of recruitment

Comparison
group

Patients testing
negative for
influenza virus

Patients testing
negative for
influenza virus

Vaccination
status

Prospectively
ascertained and
verified

Obtained from
medical/registry
records
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CONFOUNDING IN TEST-NEGATIVE STUDIES

A review of factors likely to cause confounding in VE stud-
ies was conducted by the Influenza Monitoring of Vaccine Ef-
fectiveness (I-MOVE) network in Europe (20). Among the list
of potential confounders identified, the variables most often
considered for influenza VE are age, high-risk status, calendar
time, and sex (3). This is the minimum set of confounders we
will use throughout our examples. One can see how all of these
variables are parents of both vaccination and influenza, regard-
less of study design, and thus satisfy the condition for con-
founding of opening a backdoor path from influenza status
to vaccination (12).

Age is a confounder because young children and the el-
derly are more likely to be infected due to immaturity of
the immune system in children (21) or immunosenescence
in the elderly (22); they may also be more or less likely to
be vaccinated, depending on public health strategies and
other factors (23). Similarly, high-risk status may confound
VE estimates because certain conditions can increase a per-
son’s risk of influenza infection and his/her likelihood of
vaccination or eligibility for free vaccination (24). These con-
ditions include cardiac disease, chronic respiratory conditions,
chronic neurological conditions, immunocompromising con-
ditions, diabetes and other metabolic disorders, renal disease,
hematological disorders, long-term aspirin therapy in children
aged 6 months–10 years, pregnancy, obesity, alcoholism, and
indigenous status (23, 25). Calendar time is a potential con-
founder because vaccination often occurs as part of a campaign
prior to or at the start of an influenza season and protection
may wane as the season progresses (26), while the risk of
influenza infection rises and falls with the epidemic curve.
Finally, sex is a plausible confounder because women may
be more likely to be vaccinated (27) and may experience
greater exposure to influenza through greater contact with
children (28, 29). However, we note that sex is not a univer-
sally accepted confounder and is frequently omitted from VE
estimation (3).

Figure 1 depicts a simple scenario of a study of the effect of
vaccination V on influenza status I, with confounding by age
A, high-risk statusHR, calendar time CT, and sex S. There are
backdoor paths from V to I via each of these variables (e.g.,
V←A→I ), which results in biased estimates of the crude odds
ratio. By including these 4 variables in a regression model
(depicted by the rectangles), it is hoped that these paths are
blocked and confounding bias removed.

Prior exposure history and time-varying covariates

An important confounder missing from nearly all studies of
influenza VE is the prior exposure history of a patient, which
includes both prior infection and prior vaccination status. Ex-
posure to the virus is believed to induce lifelong cellular
and humoral immunity that not only protects against infection
by the original infective strain but may also provide cross-
protection against antigenically similar strains (30, 31).
Figure 2 shows a possible time-varying graph for 2 influenza
seasons, denoted 1 for the previous season and 2 for the current
season. For simplicity, age, high-risk status, calendar time, and
sex are subsumed under the set of confounders C. When the

effect of interest is that of current vaccination V2 on current
influenza I2, the effect is confounded not only by C2 but
also by previous vaccination V1 (discussed below) and previ-
ous influenza status I1. An unbiased approach would appropri-
ately control for previous influenza status (I1)—information
which is probably impossible, or at least impractical, to collect
(an exception might be the long-term follow-up of a birth
cohort with frequent serological and virological testing).
Thus, any estimate of the effect of V2 on I2 could be biased,
regardless of the study design used.

C1 C2

V1 V2I1 I2

Prior Season Current Season

Figure 2. Directed acyclic graph illustrating the time-varying effects
of prior exposure to the influenza vaccine and influenza virus across 2
seasons. The current season is depicted with a subscript 2, while the
prior season is depicted with a subscript 1. The effect of interest is that
of vaccination status in the current season V2 on current season influ-
enza status I2. Influenza status in the previous seasonmay influence a
person’s decision to be vaccinated in the current season (I1→V2) and
will affect his/her susceptibility to infection in the current season, if the
strains are similar or confer some cross-protection (I1→I2). Vaccination
in the previous season influences vaccination in the current season
(V1→V2), and protection may linger until the current season (V1→I2).
Confounder status in the previous season C1, particularly age and
high-risk status, is an ancestor of, but may differ from, confounder sta-
tus in the current season C2 (C1→C2) and will influence both vaccina-
tion status (C1→V1) and influenza status (C1→I1).

V

A)

B)

I

A HR CT S

V I

A HR CT S

Figure 1. Simple directed acyclic graph of influenza vaccine effec-
tiveness with confounding. The causal effect of interest is the effect
of vaccination V on influenza I, shown by the arrow from V to I. A) Po-
tential confounders include age A, high-risk status HR, calendar time
CT, and sex S. For each potential confounder, there is a directed path
to both I and V. B) The rectangles around each confounder indicate
adjustment in a statistical model and closure of the biasing paths (di-
rected paths are removed).
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In addition, vaccination with an inactivated vaccine (the
most widely used type of vaccine) induces short-term
antibody-mediated protection, which is unlikely to be life-
long but may continue beyond a single season. However,
under certain conditions, the residual effects of vaccination
in one season may interfere with the protection expected
from vaccination in a subsequent season, leading to little or
no protection against a new epidemic strain (32). Several re-
cent studies have attempted to examine the role of repeated
vaccination (33–35); that is, they included V1 in their model
of the effect of V2 on I2. A model of the joint effects of V1

and V2 on I2 which controls only for C2 does not appropriately
control for confounding bias along the path from V2←I1→I2.
Moreover, were these variables available, standard statistical
methods such as logistic regression would be inadequate to
control the bias. This is because I1 is an example of a con-
founder of V2 that is simultaneously a mediator of the effect
ofV1. Instead, methods for time-varying exposures, such as G-
estimation (36, 37) or marginal structural models (38), would
be indicated.

Confounding by health-care-seeking behavior

In cohort studies, it has been shown that higher uptake of
vaccination by relatively healthy seniors accounts for much
of the beneficial effect of vaccination (39). The test-negative
design, by selecting only patients who have sought medical
attention, is said to remove bias due to confounding by
health-care-seeking behavior (2), defined here as a person’s
propensity to seek care when ill. Such behavior might con-
found the relationship if it increases not only vaccination
but also engagement in behaviors that reduce the risk of influ-
enza infection (e.g., hand-washing (40)). It could thus be in-
cluded in Figure 1 as another node HS (shown in parentheses
because it is unmeasured) with arrows to V and I, resulting in
the backdoor path I←HS→V (Figure 3A). Other confounders
in the set C (i.e., age, high-risk status, sex, and calendar time)
might also influence health-care-seeking (C→HS). If, by de-
sign, only people with a propensity to seek care when ill are
selected into the study, we could think of HS as a binary var-
iable (seeks care when ill = 1, does not seek care when ill = 0)
and could extend Figure 3A to show restriction to patients
with positive health-care-seeking behaviors (HS = 1; Fig-
ure 3B). Under this assumption, the level of confounding
does not vary across groups and therefore does not bias the
association, though it may reduce generalizability (see Daniel
et al. (19)).
However, health-care-seeking is unlikely to be binary,

since it represents someone’s propensity to seek care, which
is based on many factors. For example, when employers re-
quire staff to obtain a medical certificate in order to take med-
ical leave, many people who do not otherwise engage in
healthful behaviors may visit a health-care practitioner for
care. Similarly, in hospital-based studies, it might be difficult
to argue that only people with positive health-care-seeking be-
haviors seek hospital admission when severely ill. Thus,HS is
unlikely to be completely captured by a single binary indicator
of whether or not a person presents himself/herself to a physi-
cian when experiencing influenza symptoms, so HS would
remain partially unobserved (as in Figure 3B), and the test-

negative design is unlikely to completely block the effects of
this confounder. Whether the design reduces the degree of
confounding cannot be answered using DAGs. However,
while controlling for a variable that represents an imperfect
measure of a confounder may not eliminate bias, it can reduce
it (41, 42).

SELECTION BIAS IN TEST-NEGATIVE STUDIES

By restricting recruitment to patients meeting a certain
clinical case definition, we hope the cases and noncases are
selected from the same population, a tenet central to the va-
lidity of case-control studies (10). The selection of patients
into a study using the test-negative design is dependent on
whether a patient seeks medical attention for treatment,
agrees to participate in the study, and is tested. Some of this
behavior is probably influenced by health-care-seeking behav-
ior and the severity of disease. This type of bias is similar to
“confounding by indication,” which has been described as
both a type of confounding and a type of selection bias (43).
Figure 4 extends Figure 3B to show selection of patients into a
test-negative study. Health-care-seeking behavior HS influ-
ences a person’s decision to be vaccinated, seek care, and be
tested T (tested = 1, not tested = 0). Under this scenario, the
test-negative design, by including only patients tested for influ-
enza (T = 1), induces selection bias by conditioning on the col-
lider T. This opens a backdoor path from I→T←HS→V, a path
that would remain open even if health-care-seeking was not a
parent of influenza status. Were HS adequately controlled
(e.g., if HS = 1), then the selection bias (and confounding
bias) would be blocked. Under such a scenario, the merits of
the test-negative design not only would include control of
confounding by health-care-seeking behavior but also would
control selection bias associated with health-care-seeking

C (HS)

V I

C

V

A)

B)

I

HS = 1

Figure 3. Directed acyclic graph illustrating confounding by
health-care-seeking behavior. A) Health-care-seeking HS confounds
the relationship between vaccination V and influenza infection I. The
parentheses indicate that HS is unmeasured. Additional confounders
C may be parents of HS (C→HS). B) By including only patients with
positive health-care-seeking behaviors (shown by the rectangle
aroundHS = 1), the test-negative design implicitly removes this source
of confounding (biasing paths removed).
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behavior. However, as already noted, it is unlikely thatHS = 1,
and the bias is unlikely to be eliminated.

Although it is not explicitly shown in Figure 4, the bias in-
duced by selection on the outcome (arrow from I to T) is
avoided when using the odds ratio to estimate VE. Further il-
lustrations of the use of DAGs for outcome-dependent selec-
tion can be found in the paper by Didelez et al. (44).

MISCLASSIFICATION IN CASE TEST-NEGATIVE

STUDIES

Misclassification of influenza status

The test-negative study design is said to reduce misclassi-
fication of influenza status by including only those patients
with a laboratory test result (2). In cohort or case-control
studies, the noncases are assumed to be uninfected with influ-
enza virus, but without confirmation they may in fact be mis-
classified thus. The opposite situation is less likely, as a
majority of studies use real-time reverse-transcription poly-
merase chain reaction, the specificity of which is likely to
be close to 100% (45). Thus, the opportunity for misclassify-
ing a noncase as a case may be limited to data-entry errors or
sample contamination. Figure 5 extends Figure 1 to the situa-
tion where I* is the observed influenza status andUI is the set
of all unmeasured factors other than influenza status I which
cause I* (46). For now, the DAG assumes that misclassifica-
tion is independent and nondifferential, as shown by the ab-
sence of an arrow from V toUI (discussed further below), and
would therefore lead to bias towards the null.

Correct classification of a case does not depend only on
whether he or she has been tested. Not all infected patients
shed detectable virus after infection (depending on type/sub-
type). Shedding precedes symptoms by about a day (47) and

continues, on average, for around 4–5 days (47), so there is a
reasonable chance that patients presenting 4 days after symp-
tom onset are no longer shedding virus and that the test result
will be falsely negative. To overcome this potential source of
error, many test-negative studies restrict patients to those pre-
senting to a health-care provider within 4 days of symptom
onset (3). Sensitivity may be further improved by choosing
noncases from swabs testing positive for another respiratory
virus to ensure that the respiratory sample was of sufficient
quality to detect virus (48, 49). Swab quality is also deter-
mined by the swabbing technique of the attending physician,
the swab site (e.g., nasal vs. nasopharyngeal), and the swab
material (e.g., mattress vs. flocked) (50), so steps may be
taken in the design to optimize sample quality. Figure 5B
separates UI into additional components of the entire testing
process, including viral shedding VS and swab quality SQ, to
demonstrate that the availability of a test result is only one of
many factors in UI. Thus, the reduction in measurement error
gained by using a test-negative design over a cohort or case-
control design is probably only minimal. Moreover, this mea-
surement error is caused by imperfect (probably nondifferen-
tial) sensitivity in the presence of high specificity, which in
practice is likely to only minimally harm validity (51).

The absence of an arrow from V to UI represents a very
strong assumption, made here due to the lack of evidence
for reduced viral shedding among patients receiving inacti-
vated vaccines (52). This assumption may be violated when
considering the lesser-used live attenuated vaccines (53, 54)
or the in-development T-cell vaccines (55), which elicit a
cell-mediated immune response that can reduce symptom se-
verity and viral shedding. Extending Figure 5B, Figure 6
shows this association as a path through V→VS→I*, which
represents reduced detection of influenza status I* among
patients who were truly infected with influenza I, despite
vaccination V, but were undetected due to minimal viral shed-
ding VS. This is likely to result in bias away from the null
(56).

V I I*

I*

C UI

V I T

C

VS

UI

SQ

A)

B)

Figure 5. Directed acyclic graph illustrating misclassification of out-
come status in a test-negative study. I* indicatesmeasured influenza
status. A) UI includes all of the factors that influence measurement of
influenza status (UI→I*). B) UI is separated into known components,
including availability of a test result T, viral shedding VS, and sample
quality SQ, as well as other components that remain unknown UI.

C (H      S)

V I

C

V I

A)

B)
HS = 1

T = 1

T = 1

Figure 4. Directed acyclic graph illustrating selection bias by
health-care-seeking behavior. A) Health-care-seeking HS confounds
the relationship between vaccination V and influenza status I and also
influences testing and selection into the study T. Influenza status may
also influence a person to seek care and be tested. Additional con-
founders of the V→I relationship are represented by C and may also
influence HS. Only patients who are tested for influenza (T = 1) are in-
cluded in the study, resulting in collider bias. B) Control of HS (HS = 1)
blocks the biasing path.
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Exposure misclassification

Unlike a traditional case-control study or retrospective co-
hort study, which may determine vaccination status after in-
fection and may therefore be subject to differential recall by
influenza status, test-negative studies avoid differential recall
bias of the exposure because case status is unknown at the
time of recruitment. However, these studies still rely on
some form of recall to ascertain vaccination status, unlike a
prospective cohort study, which may determine exposure at
the start of follow-up. Vaccination status may be ascertained
through self-reporting, which has been shown to have limited
accuracy (57, 58), and even where registries exist or medical
records can be consulted, these records can be wrong or in-
complete. Figure 7 extends Figure 5A to include measured
vaccination status V* and all factors contributing to misclas-
sification of vaccination status UV. These sources of error are
likely to be nondifferential but may affect specificity and
could therefore lead to substantial bias in the resulting VE
estimates (59).

Misclassification of disease status within levels of

confounders

While differential misclassification of either disease or ex-
posure status in most test-negative studies seems unlikely,
for nondifferential misclassification to result in bias towards
the null, the errors must also be independent of confounders
and effect modifiers (60). Taking the confounder age as an ex-
ample, we can see how errors in exposure and outcome ascer-
tainment may not be independent. For example, children are
known to shed virus for a longer period of time (61–63),
while the elderly may shed less virus and for shorter periods
(47). Conversely, when patients are coinfected with another
virus, which may be more likely in children, they shed influ-
enza virus for shorter periods (64). Furthermore, a patient’s age
will probably affect vaccination status. Children are less likely
to be vaccinated, even if they have a high-risk condition, and
the elderly often have very high vaccination uptake. Finally,
the elderlymay have very poor recall of their vaccination status
(65). Figure 8 extends Figure 7 to show misclassification of
influenza and vaccination status that is dependent on the con-
founder age. Dependence is shown by the paths A→VS and
A→R. Recall R of vaccination status V* is affected by age.
Similarly, viral shedding VS is required to detect influenza I*

but is variable with age A. Under this scenario, it is impossible
to predict the direction of the bias.

DISCUSSION

Using DAGs, we have attempted to describe the theoretical
basis for the test-negative design and have discussed potential
sources of bias when using this study design to estimate in-
fluenza VE. In studies of VE we are not merely interested in
the factors which predict or correlate with influenza virus in-
fection; we are also interested in estimating the causal effect
of vaccination on infection (15). Thus, it is important to ap-
proach such an analysis with a causal framework in mind.
DAGs are a useful tool for thinking about the causal relation-
ships among variables, both measured and unmeasured, and
the types of bias they may introduce (12, 66–68). For in-
stance, we have attempted to show here how the test-negative
design may not avoid confounding by health-care-seeking
behavior (Figure 3). Causal diagrams are developed based
on our prior knowledge and beliefs about a causal relation-
ship. The decision as to what to include or exclude is there-
fore highly subjective. Others may disagreewith the variables
included in these models or the structure of some diagrams,
and the likely direction of the resulting biases. Nevertheless,
we encourage researchers to develop their statistical analysis
with reference to a DAG. We do caution, however, that this
practice may lead researchers to consider far too many

V I I*V*

CUV UI

Figure 7. Directed acyclic graph illustrating independent, nondiffer-
ential misclassification of both influenza and vaccination status. True
influenza status I may be misclassified I* due to the effects of factors
which contribute to the measurement of influenza status UI. True vac-
cination status Vmay be misclassified V* due to the effects of factors
which contribute to the measurement of vaccination status UV. C indi-
cates other confounders of V→I and in this graph are assumed to be
independent of I* and V*.

V I I*V*

AR VS

Figure 8. Directed acyclic graph illustrating misclassification of influ-
enza and vaccination status within levels of a confounder. Age A af-
fects detection of influenza I* because the duration of viral shedding
VS differs by age group (A→VS), and viral shedding is needed to de-
tect influenza (VS→I*), leading to misclassification of influenza status
that is dependent on age (A→VS→I*). RecallR of vaccination statusV
may be poorer among the elderly (A→R), which in turn influences
measured vaccination status (R→V*), leading to misclassification of
vaccination status that is dependent on age (A→R→V ).

V I I* UI

C

VS

Figure 6. Directed acyclic graph illustrating differential misclassifica-
tion of influenza status. Influenza status I may be differentially ascer-
tained I* with respect to vaccination status V due to reduced viral
shedding VS among recipients of live attenuated influenza vaccine.
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variables and that one should maintain realistic expectations
of the data, as overparameterization can cause severe statisti-
cal biases (69).

For confounder adjustment, causal diagrams have advan-
tages over statistical approaches, such as stepwise regression
or change-in-estimate criteria, which may select nonconfound-
ers or exclude important confounders and therefore introduce
bias (70, 71). In addition, while we have described how to
block a biasing path, it is important to note that statistical adjust-
ment may not achieve this. For example, residual confounding
(72) may occur when categorization of a continuous variable,
such as age, is based on vaccination policy but has no relevance
to the effect of that variable (i.e., age) on influenza status.

In conclusion, compared with traditional observational
studies, the test-negative design may reduce but not remove
confounding and selection bias due to differential health-
care-seeking behaviors (Figure 3), may reduce misclassifica-
tion of case status (Figure 5), and may avoid differential recall
of the exposure (Figure 6). However, this study design shares
many limitations of other observational designs, including de-
pendent misclassification errors within levels of a confounder
(Figure 8), and, crucially, it ignores the prior exposure history
of a patient (Figure 2). The degree to which these limitations
bias VE estimates obtained using the test-negative design is
unclear and could be explored further using simulations.
Thus, the chief advantages of this study design over the case-
control or cohort design are speed and economy, since it can be
nested in routine surveillance, without elevated concerns about
the validity of the estimates produced.
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