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Abstract

Motivation: One of the main goals of large scale methylation studies is to detect differentially

methylated loci. One way is to approach this problem sitewise, i.e. to find differentially methylated

positions (DMPs). However, it has been shown that methylation is regulated in longer genomic re-

gions. So it is more desirable to identify differentially methylated regions (DMRs) instead of DMPs.

The new high coverage arrays, like Illuminas 450k platform, make it possible at a reasonable cost.

Few tools exist for DMR identification from this type of data, but there is no standard approach.

Results: We propose a novel method for DMR identification that detects the region boundaries ac-

cording to the minimum description length (MDL) principle, essentially solving the problem of

model selection. The significance of the regions is established using linear mixed models. Using

both simulated and large publicly available methylation datasets, we compare seqlm performance

to alternative approaches. We demonstrate that it is both more sensitive and specific than compet-

ing methods. This is achieved with minimal parameter tuning and, surprisingly, quickest running

time of all the tried methods. Finally, we show that the regional differential methylation patterns

identified on sparse array data are confirmed by higher resolution sequencing approaches.

Availability and Implementation: The methods have been implemented in R package seqlm that is

available through Github: https://github.com/raivokolde/seqlm

Contact: rkolde@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is an important cellular mechanism that is associ-

ated to processes like X-chromosome inactivation and genomic im-

printing. It has also been related to several diseases such as diabetes,

schizophrenia and cancer (Baylin and Jones, 2011; Mill et al., 2008;

Toperoff et al., 2012). In recent years the role of methylation in vari-

ous diseases has received considerable interest from the research

community. This can be attributed largely to the development of

high-density methylation microarrays, like Illumina Infinium 450K,

which have made affordable the characterization of genome-wide

methylation patterns on large disease related cohorts.

The Illumina 450K microarray covers around 20 CpG sites per

gene. Such resolution reveals a spatially correlated structure of DNA

methylation. Closely situated CpG sites often display almost
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identical methylation patterns. This feature has been seen already in

the early sequencing studies (Eckhardt et al., 2006) and it has been

also shown that methylation is regulated in longer regions (Lienert

et al., 2011). While strong spatial correlation is a dominant feature

in the data, common analysis methods do not take this into account.

For example, differential methylation analysis is commonly per-

formed in a sitewise manner (Marabita et al., 2013; Wessely and

Emes, 2012), thus ignoring correlations between probes. To take

spatial correlations into account when performing the analysis, it is

natural to search for differentially methylated regions (DMRs) in-

stead of sites. Statistically, it could improve the sensitivity of the

analysis and make the results less redundant. Biologically, differen-

tial methylation supported by multiple independent probes is less

likely to represent an experimental artefact. DMR centric analysis

has been performed in multiple studies (Bell et al., 2012; Lokk et al.,

2014; Slieker et al., 2013) and there are several tools available for it

(Jaffe et al., 2012; Pedersen et al., 2012; Sofer et al., 2013; Wang

et al., 2012).

However, despite the numerous tools available, there is no stand-

ard approach for DMR identification. One possibility is to use pre-

defined regions that are based on genomic features such as gene

parts or CpG islands. This has been implemented in an R package

IMA (Wang et al., 2012), but it has several shortcomings. Such an

analysis often reveals large amount of regions that cover the same

set of differentially methylated sites, while their rankings are more

based on the concordance between the borders of true DMRs and

predefined regions than the true extent of differential methylation.

Another, a more general approach is to define the regions dy-

namically based on the data. One such method is Comb-p (Kechris

et al., 2010; Pedersen et al., 2012) that combines single site P-values

by using sliding windows and taking into account the correlation be-

tween sites. This method operates on P-values, which makes it flex-

ible and computationally efficient. However, the DMRs are then

based on summary statistics and this may lose some information

compared to modeling directly on the measurements. Also, the user

must pick the minimum P-value required to start a region, and the

resulting regions strongly depend on this parameter value.

Maybe the most well-known method is bump hunting (Jaffe

et al., 2012), integrated into R package minfi (Aryee et al., 2014).

Essentially, it performs site-level analysis on spatially smoothed data

and then applies some rules to aggregate the sites into regions.

Significance of these regions is assessed using permutations. The

number and nature of bumphunter results depends strongly on the

effect size cutoff and smoothing window size parameters that are

hard to interpret in biological terms and thus tricky to optimize.

Second, due to smoothing the method is unable to detect single-site

differential methylation (Jaffe et al., 2012), making it less effective

in sparsely covered regions.

Another tool Aclust (Sofer et al., 2013) defines the regions by

gradually clustering the consecutive sites together. The significance

of identified clusters is tested using the Generalized Estimating

Equations (GEE) model. This approach relies on an even larger

number of user-defined parameters, such as correlation metric, ag-

glomeration method, correlation threshold, etc.

In this article we present a novel method for identifying DMRs.

Probes are grouped into regions based similarity of differential

methylation profiles by using the Minimum Description Length

(MDL) principle. The significance of these regions is estimated using

linear mixed models. Such an information theoretic background

makes the model flexible in a variety of situations without the need

of extensive parameter tuning. For validation, we show that our ap-

proach is effective in finding true DMRs while appropriately

controlling the number of false positives both on simulated and real

methylation datasets.

2 Approach

Biologically, a differentially methylated region is a rather intuitive

concept—a collection of consecutive metylation sites in the DNA

where the average methylation levels differ significantly between the

tissues of interest. However, the intuition does not translate into

clear definition that could be used for DMR finding. For example,

should we prioritize DMRs that cover most CpG sites, span the larg-

est genomic distance or exhibit the highest differential methylation.

As there is no obvious biological criterion to optimize, there are

many ad hoc methods for finding DMRs.

From the statistical point of view, however, it is clearer what we

want to achieve. We know that the dataset contains redundant in-

formation in terms of spatially correlated probes. The goal is to find

a smaller set of features by combining the correlated consecutive

sites into regions, while preserving the underlying signal. The result-

ing smaller and more independent set of features can then be used

for performing differential methylation analysis.

In seqlm we implement this strategy as the following three stage

procedure:

1. The genome is divided into initial segments, according to the dis-

tances between consecutive CpG probes.

2. These segments are subdivided into regions, based on the differ-

ential methylation patterns.

3. For each region, the statistical significance of differential methy-

lation is assessed.

Stages 1 and 3 are relatively straightforward to carry out, while

the main novelty of the method lies in step 2. Next we introduce all

the stages (illustrated in Fig. 1) one by one.

2.1 Initial segmentation
As the second step in our analysis is computationally rather inten-

sive, we do the initial partitioning using simpler rules.

CpG sites on the genome cluster into tighter groups near pro-

moters and other functional elements and the arrays concentrate

also on these regions. Thus, we do not lose much information if we

identify denser regions just based on genomic location. Therefore,

we have chosen 1000 bp as an upper bound for the distance between

two consecutive probes to belong into one region.

The exact cut-off value was determined by exploring in a large

dataset (Lokk et al., 2014) the relation between methylation correl-

ation of consecutive sites and the genomic distance (Fig. 1). As ex-

pected very close pairs of probes (less than 100 bp) are highly

correlated. However, when the distance is already more than

1000 bp, the preferential correlation effect seems to be diminished.

Such initial segmentation creates many isolated sites and short

regions, but also substantial amount of more populous segments in

areas of sufficient coverage of the array. In the next step, these will

be subdivided into regions according to their methylation patterns.

2.2 Refined methylation based segmentation
Given a continuous stretch of CpG probes, we want to divide this

into regions with homogeneous methylation patterns with respect to

our variable of interest, e.g. extent of differential methylation is con-

stant within each segment.

Let yij denote the methylation value for sample i and site j and xi

be the variable describing the samples. For two distinct groups,
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discrete values xi 2 f0; 1g are appropriate. If the difference between

our groups of interest is constant within a segment, it is well

described by a linear model:

yij ¼ lj þ bxi þ eij; (1)

where lj is the baseline methylation level of site j and b is the aver-

age effect size within this segment. The same model can also handle

continuous xi, then we are looking for regions where the variable of

interest affects methylation in an consistent manner.

The core of the segmentation algorithm is depicted on the middle

portion of Figure 1. In a given stretch of DNA we try out all the pos-

sible segmentations of CpG probes (five of those are displayed on

the figure). For each segment, we fit the linear model (1), the coeffi-

cients are shown for the first segmentation.

The optimal segmentation should prefer longer regions to shorter

ones, while assuring the segment-wise linear models provide a good

fit. This goal can be viewed as a model selection problem and solved

using the Minimum Description Length (MDL) principle.

2.2.1 Minimum description length principle

The MDL principle is a way to find an optimal trade-off between

the complexity of the model and its accuracy (Rissanen, 1978). It

states that from a collection of models M, one should choose a

model that gives the shortest description of the data. More formally,

let L(M) is the description length of a model M and LðDjMÞ is the

description length of data D given the model M. Then one should

choose

M� ¼ argmin
M2M

LðDjMÞ þ LðMÞf g:

The one-to-one correspondence between probability distribu-

tions and code lengths (Hansen and Yu, 2001), allows us to calcu-

late LðDjMÞ as the negative log-likelihood of data D given model

M. Thus, finding the optimal model is equivalent to maximizing a

penalized log-likelihood function

f ðMÞ ¼ logLðDjMÞ � LðMÞ (2)

where the term L(M) measures model complexity.

The MDL principle has been successfully used in various con-

texts in computational biology, such as for haplotype block detec-

tion (Koivisto et al., 2003) and motif discovery (Ritz et al., 2009).

2.2.2 Finding the optimal segmentation

To apply the MDL principle for segmentation, we must first extend

a linear regression model (1) for one segment to the entire collection

of segments. Let the shorthand ½si; ei� denote a segment of consecu-

tive CpG sites fsi; si þ 1; . . . ; eig where si and ei represent the start

and end positions of the segment. Then a segmentation S is a gapless

collection of non-overlapping segments f½s1; e1�; . . . ; ½sk; ek�g.
As a result, we can characterize methylation intensities in a fixed

segmentation with a piecewise linear model

M ¼
Xk

i¼1

MiI½si ;ei � (3)

where I is the indicator function and Mi represents the linear model

(1) that is fitted to segment i.

Given a segmentation S, fitting the model (3) to a region reduces

to finding the least squares estimates for the linear models in each

segment. Thus, it is straightforward to find the minimal penalized

log-likelihood fSðMÞ for each segmentation. See supplementary ma

terial for the exact expressions of L(M) and LðDjMÞ.
To minimize description length over the entire region, we can

check all possible segmentations. As a result, we obtain a balance

between the number of the segments and goodness of fit of the linear

models. Less segments implies a smaller number of parameters in

model (3) and thus decreases the term L(M). As the increase in the

number of segments provides better fitting models and decreases

LðDjMÞ, there exist a balance point.

In practice, exhaustive search for the optimum can be avoided by

first fitting the linear model (1) to every possible segment and then

using dynamic programming to find best segmentation. See the sup

plementary material for further details. The complexity of such algo-

rithm grows quadratically with the number of probes in the original

region. In case of Illumina 450K array this is not a problem, since

the regions created in the first step are short enough. For larger

Fig. 1. Method workflow. First, the genome is segmented based on distance between consequent probes. The boxplots show the dependence between the dis-

tance and correlation of methylation patterns. Second, the resulting segments are divided further into regions with consistent methylation profiles. Finally, the

differential methylation is tested using a linear mixed model (Color version of this figure is available at Bioinformatics online.)
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regions, one could potentially limit the complexity growth, by intro-

ducing a restriction on the number of probes in one segment.

Finally, the calculations can be trivially parallelized, making them

feasible even for large datasets.

2.3 Assessing statistical significance
The previous step provides a collection of genomic regions and sin-

gle sites. To identify which of these regions show condition specific

methylation, we have to assess the extent of differences in methyla-

tion. As we already fitted linear models in previous step to all of the

regions, we can use the same models to assess the significance of

these DMRs. However, the model (1) does not take into account

that nearby measurements of a same sample are highly correlated.

Hence, resulting P-values are greatly inflated.

To take these correlations into account, we must add a sample

specific methylation baseline bi � Nð0;r2
bÞ to the model (1). The re-

sulting linear mixed model

yij ¼ lj þ bxi þ bi þ eij; (4)

distinguishes sample- and condition-based effects. Interestingly, the

extra term in the model (4) does not change the estimate of b com-

pared to (1), but adjusts the respective P-values appropriately.

Finally, these P-values must be adjusted for multiple testing.

In general, using the same variable xi for finding segmentation

and assessing the significance of regions can inflate P-values. For ex-

ample, selecting region boundaries based on strength of differential

methylation or removing ‘less-promising’ regions would immedi-

ately introduce bias. However, in our approach, the second stage

maximizes coherence of the regions rather than differential methyla-

tion and we do not select regions before applying model (4). As a re-

sult, the method does not introduce false positive findings (see also

Table 1).

3 Results

We demonstrate the utility of seqlm method in three parts. First, we

study the statistical properties and performance of seqlm and other

methods on simulated data. Second, we apply the methods to a large

public methylation dataset covering 17 different tissues. In all cases

we compare seqlm with bumphunter, Aclust, Comb-p and IMA.

Finally, we validate several DMRs that were identified using seqlm

on Illumina 450K chip data with Sanger sequencing.

3.1 Simulation study
To study sensitivity and specificity of the DMR finding algorithms

we need a dataset where we know true differential methylation pat-

terns. For that we permuted labels on a real dataset and introduced

differential methylation by changing methylation levels inside spe-

cific regions (see Section 4 for further details). This allowed us to

preserve much of the structure of the original data, but at the same

time introduce controlled variation into it. Without introducing any

differential methylation, this schema was effective in generating

data that was distributed according to the null hypothesis—the site-

wise t-test P-values follow expected uniform distribution.

To test our algorithm, we run all DMR finding algorithms on

the simulated data, using FDR 0.05 as a cutoff. After that we

counted the number of true and false positive results. If a detected

DMR overlapped with a region where we inserted differential

methylation, we classified this as a true positive, otherwise as a false

positive.

The results can be seen in Table 1. Each row corresponds to a

different l value which represents the average generated effect size

between the two groups. The columns show the number of detected

regions or number of sites within them. Together with the true and

false positives we also show the number of missed regions and sites.

Table 1. Detected DMRs in the simulation study with 5000 generated DMRs, with an average effect size l

Bumphunter Aclust

TP FP missed TP FP missed

M # regions # sites # regions # sites # regions # sites # regions # sites # regions # sites # regions # sites

0.0 0 0 0 0 0 0 0 0 87 255 0 0

0.025 0 0 0 0 5000 28697 1568 6385 352 1273 3464 18545

0.050 1 36 0 0 4999 28946 3241 15485 537 1980 1947 8903

0.075 5 174 0 0 4994 28958 4039 20952 581 2068 1213 5067

0.10 18 788 0 0 4978 28486 4423 24077 619 2158 810 3047

0.15 33 1401 0 0 4956 28079 4642 26681 646 2254 456 1656

0.20 63 2046 0 0 4930 26652 4715 26771 641 2224 356 1002

comb-p seqlm

TP FP missed TP FP missed

M # regions # sites # regions # sites # regions # sites # regions # sites # regions # sites # regions # sites

0.0 0 0 71 555 0 0 0 0 0 0 0 0

0.025 979 6005 61 506 3967 21005 1004 4792 65 330 3941 22803

0.050 2353 15518 40 295 2538 11540 3014 15713 172 862 1988 11079

0.075 3237 20921 29 181 1632 6731 4060 21450 201 1027 1055 5892

0.10 3686 23897 28 169 1169 4475 4626 24649 232 1241 591 3514

0.15 4140 26599 23 158 689 2343 5082 27137 257 1373 252 1734

0.20 4360 27005 27 185 467 1388 5280 27457 263 1354 112 917

For each method and for each l, total number of the detected regions and the corresponding number of sites has been given (divided into true and false posi-

tives, ‘TP’ and ‘FP’), together with the the number of missed regions.
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The first row serves as a check on the statistical validity of the al-

gorithms, as we do not expect to find any DMRs for l¼0. Neither

bumphunter or seqlm find any DMRs in this case. Overall, the num-

ber of regions bumphunter identifies is an order of magnitude

smaller compared to other methods, even with very large effect

sizes.

On the other hand, Aclust identifies 87 significant regions that

cover 255 sites for the first row. This indicates, that the Generalised

Estimating Equations (GEE) model used by Aclust, combined with

the FDR correction, might be inappropriate for this type of data.

Moreover, the proportion of false positive sites stays considerably

higher than the expected 5% even if we introduce differential

methylation. Interestingly, with Comb-p the number of false posi-

tives is not high overall, but there are several of them even if the

dataset does not contain any signal. Thus, both Comb-p and Aclust

can return too many false positives, especially, when the signal in

the data is weak. Even if the number of true positive sites is compar-

able, it is still consistently lower than for seqlm.

In terms of sensitivity, the performance of seqlm is comparable

to Aclust and Comb-p. For higher effect sizes, it finds consistently

larger number of true positive sites, while keeping the number of

false positives below 5% for most cases.

The comparison with the IMA package is more complicated,

since IMA outputs overlapping results. For example, significantly

differentially methylated region can partially overlap with several

CpG islands, exons, promoters and other functionally relevant re-

gions. Thus for the IMA results we calculated two sets of true and

false positive values: for all and for unique results. The results for

IMA are given in Supplementary Table 1.

In brief, the IMA package finds the same order of magnitude of

unique sites and regions as Aclust and seqlm without exceeding 5%

threshold for false positives. The main problem with IMA is that on

average each site is reported as a member of two regions, but in

many cases few differentially methylated sites can drive the signifi-

cance of tens of regions. One could merge the overlapping signifi-

cant regions as we did, but this would lose the interpretability of the

results.

To summarize, seqlm displays the most sensitivity and specificity

among the four alternative algorithms.

3.2 Comparisons on the 17 tissues data
As a more practical comparison, we also applied all DMR finding

methods also on a real dataset that describes methylation in 17

tissues. We searched for DMRs specific to single tissues and per-

formed sitewise t-test as a comparison. The numbers of significant

regions and sites covered by those is given in Table 2.

The results are consistent with the simulation study.

Bumphunter is finding a significantly smaller number of DMRs than

Aclust, Comb-p or seqlm.

Compared to the single site analysis, seqlm consistently identifies

10–15% more differentially methylated sites. As the single site ana-

lysis can be considered a good baseline, we can see that the seqlm al-

gorithm does not pick up spurious signals. Instead, it gives roughly

the same set of sites grouped into fewer regions.

The behaviour of Aclust and Comb-p is less consistent. In some

cases, the number of reported sites of Aclust is several times higher

than for single site t-test. In other occasions, the numbers are more

comparable but always higher. Given the over-sensitivity of Aclust

we showed on simulated data, such differences are rather suspicious

and are likely to contain more than 5% false positives. Comb-p, in

turn, seems to find many regions in comparisons where other meth-

ods do not find much and less in other comparisons with stronger

signals.

When considering length of the identified regions we can also see

slight differences. Supplementary Figure S1 details the length distri-

bution of all regions with at least 2 sites in Table 2. Bumphunter

tends to identify the longest regions and does not return almost any

regions with less than 3 sites, as the length of the region is also an

important criterion in region selection. In other cases the distribu-

tion was more skewed towards short regions with Aclust giving the

shortest and seqlm and combp giving slightly longer

correspondingly.

In summary, seqlm seems to give a consistent improvement over

single site analysis without returning a suspiciously high amount of

differentially methylated sites.

3.3 Validation of identified DMRs
While the 450K sites on Illumina methylation arrays represent a

marked improvement over previous technologies, they still represent

only 1.5% of the 29M CpG sites on the genome. Thus, it is not a

priori clear that DMR-s inferred from such low-resolution measure-

ments reflect biological reality and are not technical artifacts. To ad-

dress this concern, we have validated 14 of the DMR-s identified in

Table 2 using Sanger sequencing.

Figure 2A shows an example of such a validation. We can see

that there is good overlap between the results of two approaches at

Table 2. For each approach, the number of significant DMRs and the corresponding number of sites has been given

Single site Bumphunter Aclust Comb-p seqlm

# sites # regions # sites # regions # sites # regions # sites # regions # sites

Lymph node versus others 58 1 4 2543 6943 93 564 21 61

Gall bladder versus others 2875 5 99 6585 16054 722 3062 1359 2758

Gastric mucosa versus others 23359 2 64 16661 26494 2663 25248 5218 24717

Artery versus others 13639 30 369 16823 32626 2095 9418 9126 16775

Bone, joint-cartilage versus others 11553 36 513 17208 38107 2104 9042 6816 13232

Bladder versus others 19822 39 537 31413 68352 3785 11865 13529 22938

Adipose versus others 28379 32 407 34191 63725 4182 17910 15776 33196

Ischiatic nerve versus others 27163 20 275 37846 76119 4947 15895 16894 30337

Aorta versus others 40347 116 1081 40063 64206 6307 20809 27514 47593

Tonsils versus others 87950 12 283 67344 95188 6695 53474 33549 94807

Medulla oblongata versus others 98352 179 1887 97618 139954 14461 51007 62370 119795

Bone marrow versus others 173080 507 4217 153184 191147 33698 108590 100910 187950
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the sites that are measured by both. More importantly, the differen-

tial methylation pattern identified on the array level can also be

observed at the intermediate sites.

Figure 2B summarizes the results for all 14 regions by showing

the estimated effect sizes from both array and Sanger sequencing

data. We can see that differential methylation of all the regions is

confirmed on the higher resolution. Moreover, the effect sizes from

array and Sanger measurements are well correlated. In 6 cases out of

14 the effect size, seen independently from Sanger measurements, is

within the confidence intervals of the array based estimate.

All together the data shows that DMRs identified on array data

adequately represent the underlying methylation patterns on single

site resolution.

3.4 Implementation and performance
Our method has been implemented in an R package seqlm, freely

available through Github: https://github.com/raivokolde/seqlm. The

method is not specific to the Illumina 450k methylation array and

can be used with many other arrays. For example the code can be

easily used for analyzing tiling array data.

The performance of seqlm is sufficient to analyze any array

based dataset on ordinary laptop computers. Moreover, as the im-

plementation supports multi-core computations, it is possible to

speed up the analysis on dedicated computation servers.

To compare running time with competitors, we ran seqlm to-

gether with bumphunter and Aclust on our simulated dataset.

Surprisingly, seqlm was the fastest of the three (Supplementary

Table S2). Using multiple cores it is possible to improve the perform-

ance of seqlm and bumphunter, but not Aclust.

4 Methods

4.1 Datasets
For demonstrative purposes, we have used a large publicly available

methylation dataset on Illumina 450k platform (GSE50192). There,

the methylation of 17 tissues from four autopsied humans has been

measured.

4.2 Data simulation
To simulate data while retaining most of the characteristics of a real

methylation dataset, we have permuted a subset of the 17 tissues

data. To obtain data with relatively homogeneous patterns, we

chose the subset consisting of a total of 16 samples: coronary artery,

splenic artery, thoracic aorta and abdominal aorta. We selected a set

of similar tissues to avoid encountering a rather strong signal in the

permuted data by chance.

To start we split the genome into smaller pieces that have prop-

erties as follows. First, the genomic distances between consecutive

sites remain below 1000 bp within each piece. Second, the correl-

ation between all consecutive sites within each piece is above a

threshold of 0.1. The aim of these choices was to extract those loca-

tions from the data where the methylation patterns are reasonably

similar. As a result, we obtain 250 000 pieces with length greater

than one, with average length 3.8 sites.

For each piece, we assign the group labels randomly such that we

would have eight samples in one group and eight in another. As a re-

sult, we get the data where on average there is no group effect, the sin-

gle site P-values are following closely the uniform distribution.

Finally, we choose randomly N¼5000 pieces with length greater

than 1 (with probability proportional to length) and change them

into DMRs, by increasing the values in one group by

b � Log�Nðln l;0:12Þ. We varied l in f0; 0:025; 0:05; 0:075; 0:10;

0:15; 0:20g.

4.3 Parameters for tested methods
While comparing seqlm to other methods which require several in-

put parameters, we either used the default values or the ones recom-

mended in the original publication.

For all methods except for bumphunter, we defined significant

differential methylation with FDR corrected P-values below the

threshold 0.05. As bumphunter does not divide the genome into re-

gions and rather searches for DMRs, one cannot use FDR correc-

tion, so instead we used its reported familywise error rate with

threshold 0.10, which was also used in Jaffe et al. (2012).

For bumphunter the parameters used were: pickCutoffQ¼0.99,

maxGap¼1000 and smooth¼TRUE (as suggested by Jaffe et al.,

2012).

For Aclust,we used the ’best’ configuration of the parameters re-

ported in Sofer et al. (2013), i.e. Spearman correlation, average dis-

tance clustering, distance cutoff 0.2, and 999-base-pair-merge.

For comb-p, we used P-value threshold of 0.05 for candidate

regions.
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4.4 Sanger sequencing
For validation we selected 14 DMR-s that were tissue specific,

showed large effect size and where it was possible to design primers.

Primers for PCR amplification of the bisulfite-treated DNA were de-

signed using MethPrimer (Li and Dahiya, 2002) and are listed in

Additional file 9. The 20 L reaction mixes contained 80 mM Tris–

HCl (pH 9.4–9.5), 20 mM (NH4)2SO4, 0.02% Tween-20 PCR buf-

fer, 3 mM MgCl2, 1� Betaine, 0.25 mM dNTP mix, 2 U Smart-Taq

Hot DNA polymerase (Naxo, Tartu, Estonia), 50 pmol forward pri-

mer, 50 pmol reverse primer and 20 ng bisulfite-treated genomic

DNA. The PCR cycling conditions were: 15 min at 95 �C for enzyme

activation, followed by 17 cycles of 30 s at 95 �C, 45 s at 62 �C and

120 s at 72 �C, with a final -0.5 �C /cycle step-down gradient over

21 cycles of 30 s at 95 �C, 30 s at 52 �C and 120 s at 72 �C. The

sequencing results were analyzed with Mutation Surveyor software

(Softgenetics, State College, PA, USA).

5 Discussion

The method as defined in this article opens up a number of future

directions for development. The current model can also handle con-

tinuous variables in addition to the two groups of data. Thus, it is

possible to use seqlm to search for methylation quantitative trait loci

(meQTLs). In such analysis, even small improvements in statistical

power can have huge consequences.

The method can be generalized to handle raw sequencing data

with methylation counts instead of aggregated methylation values.

For that we must replace linear regression with logistic regression.

The change only alters the model fitting inside fixed region and not

the core of the dynamic programming routine.

The MDL framework underlying seqlm is a powerful way to

identify genomic regions. By employing different statistical models it

is possible to specify the properties of the desired regions. For ex-

ample one can include more sophisticated linear models to test more

complex hypotheses or use clustering methods instead, to perform

unsupervised region finding.

6 Conclusion

We presented a novel approach for DMR identification, described

as a three-stage process. First, the data is divided into smaller seg-

ments based on genomic distance between consecutive probes.

Then, each of these segments is divided into regions with consistent

differential methylation patterns. For this, all possible segmentations

are considered and the optimal one is chosen according to the MDL

principle. Finally, the significance of differential methylation in each

region is assessed using linear mixed models. In our algorithm, the

latter two steps are naturally related as both the segmentation and

assessing the statistical significance are based on the b parameter.

We showed that seqlm performs well on simulated data, being

both more sensitive and more specific than the alternative methods.

On a real dataset we can see that DMRs found by seqlm cover more

sites than other methods while controlling the Type I error rate. At

the same time, the redundancy within the results is smaller as the close

sites are reported together. Finally, we validated 14 DMRs using

Sanger sequencing and managed to show good correlation between

the array and sequencing based estimates of differential methylation.
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