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Abstract

Motivation: Recently, many methods have been developed for conducting rare-variant association

studies for sequencing data. These methods have primarily been based on gene-level associations

but have not been proven to be as effective as expected. Gene-set-level tests have shown great ad-

vantages over gene-level tests in terms of power and robustness, because complex diseases are

often caused by multiple genes that comprise of biological gene sets.

Results: Here, we propose several novel gene-set tests that employ rapid and efficient dimension-

ality reduction. The performance of these tests was investigated using extensive simulations and

application to 1058 whole-exome sequences from a Korean population. We identified some known

pathways and novel pathways whose rare or common variants are associated with elevated liver

enzymes and replicated the results in an independent cohort.

Availability and Implementation: Source R code for our algorithm is freely available at http://stat

gen.snu.ac.kr/software/QTest.

Contact: tspark@stats.snu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have focused on the asso-

ciations between complex diseases and common genetic variants,

and have successfully reported an extensive list of single nucleotide

polymorphisms (SNPs) associated with complex diseases. However,

it has been shown that the associated common variants could

explain only a small fraction of the heritability of many common

diseases (Bansal et al., 2010). This suggests that other genetic mech-

anisms such as gene–gene interactions, gene-set-level actions of

common variants, or the action of multiple rare variants, could con-

tribute to disease susceptibility. Among these mechanisms, rare vari-

ants have become the focus of intense investigation following the

development of next-generation sequencing (NGS) technology

(Adzhubei et al., 2010; Manolio et al., 2009).

In recent years, many statistical tests have been proposed for de-

tecting the signals of rare variants (Lee et al., 2012; Li and Leal,

2008; Lin and Tang, 2011; Madsen and Browning, 2009; Morris and

Zeggini, 2010; Price et al., 2010; Wu et al., 2011). However, current

approaches are in the early stages of development, and significant im-

provements are required, in terms of increasing statistical power and

considering the biological context of diseases. Ladouceur et al.

(2012) demonstrated that assessing the association between rare vari-

ants and complex diseases is still a challenging task and that no single

method yields consistently high power, even using large sample sizes.

Complex diseases often result from the combined action of mul-

tiple risk factors in a gene or across genes that comprise a gene set or

a pathway. Gene-set analysis (GSA) has been widely used for ana-

lyses of microarray data (Peng et al., 2010; Subramanian et al.,

2005; Wang et al., 2007) and GWAS data (Chai et al., 2009;

Goeman et al., 2004), and has played an important role in uncover-

ing the mechanisms of complex diseases. GSA has been shown to

possess great advantages over single-gene tests. GSA incorporates

related SNPs or genes into a single statistic, and thus requires a small

number of tests and yields high power to detect association signals.

Even if individual genes of a set have weak or moderate association

signals, GSA can combine those into a single strong signal.

Incorporation of verified biological knowledge in GSA facilitates in-

terpretation of the underlying genetic background of identified gene

sets and reduces false positive results. However, current rare-variant

studies have focused mainly on gene-level associations, and GSA of

rare variants are scant, as very few pathway-based methods [e.g.

smoothed functional principal component analysis (SFPCA; Zhao

et al., 2014), for binary traits] have been proposed.
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The previously introduced GSA methods can be classified into

two types of analysis strategies. The first type of GSA is a one-step

method that regards a gene set as a large ‘super-gene’. This approach

has limited application to high-throughput NGS data in that, as the

number of variants within a gene set increases, the power of the ana-

lysis decreases. The second type is a two-step method that consists

of a gene-level association test followed by a test for association of a

gene set with a trait. The two-step method has been widely used in

traditional GSA. However, direct application of the traditional two-

step GSA used in GWAS to NGS data is not appropriate because the

gene-level summarization in the traditional two-step GSA does not

collapse or consider rare variants. Although gene-level summariza-

tion can be replaced by P-values for currently available rare variant

association tests, a gene-set-level test that combines P-values for

multiple genes might be underpowered, due to high degrees of free-

dom. Combining P-values with the assumption of independence

could also yield false positive results, if correlations among variants

or genes are not taken into account (Price et al., 2010). Therefore,

the development of a new GSA is warranted to test gene-set associ-

ations by considering the characteristics of rare variants, to increase

statistical power by reducing dimensionality, and to account for all

possible correlations among variants or genes.

In this article, we propose a powerful gene-set test as well as a

single-gene test for use with NGS data. For quantitative traits in par-

ticular, we first derive powerful gene-level tests as quadratic forms

(QTest) using an eigenvalue decomposition of regression coefficients

and applying a dimensionality reduction method. This eigenvalue de-

composition step allows our tests to account for correlated variants.

Based on the QTest, we then develop the proposed gene-set-level quad-

ratic test (GS.QTest) using an efficient method for reducing degrees of

freedom. The proposed tests possess four advantages: (1) QTests pro-

vide higher statistical power than existing gene-level tests; (2)

GS.QTests are flexible in that they can easily incorporate other existing

gene-level tests for rare variants, such as the sequence kernel association

test (SKAT); (3) the proposed QTests and GS.QTests cover a broad

range of scenarios for joint action of rare variants and common vari-

ants; and (4) the tests do not require heavy computational effort be-

cause they employ parametric or pre-calculated empirical distributions.

Through extensive simulations, we investigated the performance

of the proposed methods by comparing them with other gene-level

and gene-set-level association methods. For example, available gene-

level association methods include collapsing methods such as

GRANVIL (Morris and Zeggini, 2010), weighted sum statistic (MB;

Madsen and Browning, 2009) and variable threshold (VT; Price

et al., 2010). For the collapsing of rare variants, GRANVIL counts

the rare variants; MB aggregates weighted sum based on minor allele

frequency (MAF); VT uses the partial sum based on optimal MAF

threshold. For bidirectional approaches, we included SKAT (Wu

et al., 2011), SKAT-O (Lee et al., 2012), the likelihood ratio test

(LRT), and estimated regression coefficients (EREC; Lin and Tang,

2011) in simulation studies. SKAT uses score-based variance compo-

nent model and SKAT-O is an optimal test combining a burden-type

test and SKAT. EREC estimates the regression coefficients and uses

these as weights. These bidirectional approaches are useful when

deleterious and protective variants are simultaneously present. For

the gene-set-level association methods, we included the traditional

gene-set-level association methods, GLOSSI (Chai et al., 2009) and

GlobalTest (Goeman et al., 2004). GLOSSI combines variant-level P-

values based on the chi-square statistic, while GlobalTest uses score

tests in the framework of generalized linear models.

Finally, we applied the proposed methods to exome sequencing

data of 1058 Korean samples (Cho et al., 2009) and some liver enzyme

traits and identified some known and novel pathways including the

beta-alanine metabolism pathway, lysine degradation pathway which

are known to be related to liver cancer. To further validate the poten-

tial association of the pathways with elevated liver enzymes, we con-

ducted a replication study in an independent cohort comprising 897

samples; some pathways were successfully replicated (P-value<0.05).

2 Methods

2.1 Generation of simulated sequencing data
To generate simulation data, we used the software SimRare (Li

et al., 2012), which generates sequencing data based on demo-

graphic and evolutionary scenarios for the real population. One

thousand replicates for the sequence and trait data for 3000 samples

were generated for this simulation study. For each individual, we

generated a quantitative trait value by adding the effect of multiple

causal rare variants and an error term that followed a standard nor-

mal distribution. To simulate a gene-level test, we varied the gene

size, which is the number of rare variants (10, 20) within a gene, the

proportion of causal variants (10, 20, 30, 50 and 70%) and the ef-

fect size (b) of causal variants (0.75, 1.0, 1.25 and 1.5).

To check the type 1 error, two million replicates of traits from

the null distribution were generated. The type 1 error was defined as

the proportion of P-values less than various specified significance

levels (10�3, 10�4, 10�5 and 2.5 � 10�6) among two million P-val-

ues. The type 1 errors were calculated for various gene sizes (10, 20

and 50) given the sample size 3000, minimum minor allele count

(MAC) 1 and maximum MAF 0.01.

To investigate the performance of the proposed tests for each

gene set, another simulation for gene-set analysis was conducted.

Based on simulated sequencing data, we assembled a gene set that

included 12 genes. In the scenario set for gene-set analysis, trait val-

ues were generated under 135 different scenarios by varying the

number of causal genes (2, 3 and 4), proportion of causal variants

(10, 20, 30, 50 and 70%), effect size (0.75, 1.0 and 1.25) and size of

causal gene (10, 30 and 50 variants).

The gene-level power was defined as the proportion of P-values

less than 2.5�10�6 among P-values from the simulation under the

corresponding scenarios. This cut-off was based on a 5% signifi-

cance level with Bonferroni correction, under the assumption that

20 000 genes are being tested simultaneously (Lee et al., 2012).

Similarly, the gene-set-level power was defined as the proportion of

P-values less than 2.5�10�5 among P-values under the assumption

that 2000 gene-sets are being tested simultaneously.

2.2 Gene-level association methods based on quadratic

tests
As a gene-level association test for rare variants, we introduced a

method for combining regression coefficients from a multiple regres-

sion framework. Regression coefficients for rare variants can be

combined using three different methods according to the relation-

ships among the rare variants. The followings are plausible scenarios

for multiple rare variants:

i. All variants within a region have a common effect, either dele-

terious or protective, or

ii. Some variants are deleterious and others are protective.

QTest1: If there are m rare variants within a region, we can regress a

trait, y, on rare variants (Sk’s) and covariates. We can first assume

that rare variants within a region have common effects, producing

either deleterious or protective signals. Given this assumption, the

collapsing method, which aggregates effects in only one direction,
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provides powerful performance. We derived the QTest1, the inverse

variance weighting method for a pooled effect size (bpooled). A chi-

square statistic based on pooled effect size is computed as follows:

y¼ b0 þ
Xm
k¼1

bkSk þ cZþ e; where e �Nð0;1Þ

bb¼ bbk

� �
m�1

;a ¼ akð Þm�1;where ak ¼
1=varðbbkÞXm

k¼1
1=varðbbkÞ
� � ;

V ¼ varðbbÞ;W ¼
w1 0 0

0 . .
.

0

0 0 wm

0
BBBB@

1
CCCCAwherewk is aweight forkthvariant

bbPooled ¼ aTWbb ¼Xm

k¼1
akwk

bbk �Nð0;aTWVWaÞ

Q1 ¼ ðaTWVWaÞ�1bb2

Pooled � v2
1

QTest2: We can also assume that some rare variants are deleterious

and other rare variants are protective. In this case, the QTest1 shows

very poor performance because deleterious and protective signals

are offset when combined. To combine association signals with dif-

ferent directions without loss of power, we propose the QTest2.

bb ¼ bbk

� �
m�1 ;

for k ¼ 1; . . . ;m;

V ¼ varðbbÞ ¼ UKUT where K ¼ diagðkkÞ
where U consists of eigenvalue vectors of V;

and K is the diagonal matrix whose diagonal

elements are eigenvalues of V

QWald
2 ¼ bbT

V�1bb ¼ bbT
UK�1UTbb � v2

m

pj ¼ 2 1� U uT
j
bb= ffiffiffiffi

kj

p� �� �
where uj ¼ jth column of U

Q2 ¼
Xm

j¼1
G�1

a;1ð1� pjÞ � Gma;1 ¼
1

2
v2

2ma

G denotes gamma distribution.

QTest3: Although the QTest2 can handle effect sizes that differ in

direction, it does not provide better performance than the QTest1
when multiple rare variants have an aggregated effect in the same

direction. In order to account for the etiology of rare variants, we

should consider all possible cases. Our newly proposed optimal

quadratic test (QTest3) statistic is a weighted average of the QTest1
and the QTest2. The QTest3 can operate under assumptions (i) and

(ii). The steps for the QTest3 are as follows:

1:Compute bb� so that bb�?bbPooled

bb� ¼ bb�Eðbb� jbbPooledÞ ¼ bb� bbPooledðaTWVWaÞ�1WVWa

2: Compute Q�2j1 so that Q1?Q�2j1

Q�2j1 ¼ bb�V��1bb� ¼ bb�TðU�K��1U�TÞbb� � v2
m�1 whereV� ¼ varðbb�Þ

U� consistsof eigenvalue vectorsof V�

andK� is the diagonal matrixwhosediagonal

elementsare eigenvaluesof V�

3: Compute Q2j1 so that Q2j1 follows v2
1

Q2j1 ¼ 2G�1
0:5;1ð1� p2j1Þ where p2j1 is obtained from Q�2j1

4: Compute Qp
3 for p ¼ 0;0:1; . . . ;0:9;1

Qp
3 ¼ ð1� pÞQ1 þ pQ2j1 whereQ1;Q2j1� indepv2

1

From a mixture of two v2
1; calculate p value pp

3

5:Finalp value forQ
optimal bp
3 is calculated fromempirical distribution

optimal bp ¼ Argminpfpp
3; p¼ 0; 0:1; 0:2; . . . ; 0:9; 1g

The empirical distribution of Qoptimal bp
3 was calculated by gener-

ating a pair of random variables from a chi-square distribution with

one degree of freedom, and computing their maximum value of

weighted averages over the eleven values of p. In our simulation

studies and real data analyses, 109 pairs of random variables were

generated, and the empirical distribution of was summarized in a cu-

mulative distribution table. Then, the QTest3 used this pre-

calculated cumulative distribution table for every gene-level test.

2.3 Gene-set-level analysis for rare and common

variants
In order to maximize the genetic variation caused by moderate asso-

ciation, gene-set analysis (GSA) can use prior biological knowledge

based on pathway information. We propose two types of gene set

tests, the GSQ.QTest and the GSB.QTest. The proposed GSQ.QTest

for rare variants requires the following two steps:

Step 1. Compute gene-level P-values for rare and common vari-

ants using QTests.

Step 2. Combine gene-level chi-square statistics within a pre-

defined gene set.

In Step 1, any possible rare variants association test can be used to

obtain the gene-level P-values, allowing great flexibility. In Step 2,

given a gene set (GS), a gene-set level statistic can be computed

based on an inverse gamma transformation (Zhao et al., 2014):

QGS ¼
X
t2GS

2G�1
a;1ð1� ptÞ � v2 2mað Þ

pt ¼ p value for tth gene; m ¼ size of GS

We also proposed another type of gene-set test, the GSB.QTest.

The proposed GSB.QTest requires the following two steps:

Step 1. Collapse multiple rare variants in each gene within a GS.

Step 2. Using the collapsed variants and common variants, con-

duct QTests.

In Step 1, the collapsing method is applied only to rare variants. In

Step 2, we can use any possible association test, such as the SKAT or

the SKAT-O.

3 Results

3.1 Simulation study for gene-level tests
The proposed gene-level test includes three versions that can be

applied to various scenarios for rare variants within a gene. The first

version (QTest1) is a burden-type test and the second version

(QTest2) is a non-burden-type test. The third version (QTest3) is an

optimal QTest that combines QTest1 and QTest2 such that it main-

tains high power regardless of the direction of effects and proportion

of causal variants.

The simulation results of type 1 errors of QTests are summarized

in Table 1 for several gene sizes and several significance levels. Table 1

shows that the proposed QTests well-preserve the type 1 errors

under the null distribution.

We compared the performance of the proposed QTests to exist-

ing methods, such as SKAT, SKAT-O, VT, LRT, MB, GRANVIL

and EREC under various scenarios. MB, VT and EREC were imple-

mented by SCORE-Seq (Lin and Tang, 2011). All methods were

conducted using the default parameter values. MAF threshold value

was fixed as 0.01 for rare variant analysis. We generated trait values

by varying the causal gene size, the proportion of causal variants,
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and the effect size of the causal variants. The relationships between

power and effect size are displayed in Figure 1. In general, as the ef-

fect size increased, the power increased. Figure 1a shows the result

when the proportion of causal variants is low (10 or 20%), and

Figure 1b shows the result when the proportion of causal variants is

high (50 or 70%). In Figure 1a, QTest2, QTest3, LRT, SKAT and

EREC performed much better than burden tests, and QTest2 had the

highest power when the effect size was larger than 0.75. As shown in

Figure 1b, the optimal tests, such as QTest3 and SKAT-O, perform

better than other methods, especially when the effect size is 0.75.

For application to other scenarios, we varied the proportion of

protective variants among causal variants within a gene, given a pro-

portion of causal variants 0.5 and effect size 1.0. We also varied the

proportions of common variants among causal variants, given a pro-

portion of causal variants 0.5, proportion of common variants 0.5,

and effect size 1.0, to observe the joint effect of common and rare

variants. In these scenarios, QTest2, QTest3, SKAT, SKAT-O and

LRT are robust enough to include protective causal variants or com-

mon variants. QTest2, QTest3 and LRT had the largest power among

all methods (see Supplementary Figs. S1 and S2). With the existence

of non-causal common variants, the burden tests QTest1 and

GRANVIL showed poor performance, but other burden tests, MB

and VT, showed very good performance, because they focus on rare

variants by weighting or thresholding. EREC showed much lower

power than QTest2, QTest3, SKAT and SKAT-O, when the propor-

tion of protective variants among causal variants was large; for the

cases when the regression coefficients are negative, the weight used in

EREC tends to decrease the signal. EREC also showed poor perform-

ance when there were non-causal common variants together with

causal rare variants (see Supplementary Fig. S2).

For the simulation study of one-directional effects, we varied the

effect size of causal variants with the assumption that all variants

were deleterious causal variants. The burden tests QTest1 and

GRANVIL showed greater power than other tests. The non-burden

tests QTest2, SKAT, and LRT showed poor performance, especially

when the effect size was not large (see Supplementary Fig. S3).To il-

lustrate a computational burden for QTests, a specific computational

time for one simulation setting is summarized in Supplementary

Table S1. QTests showed a similar computing time to that of SKAT,

and QTest3 was found to be computationally much more efficient

than SKAT-O, when implemented in R.

3.2 Simulation study for gene-set-level tests
We developed two types of proposed gene-set-level tests: the

GSQ.QTest and the GSB.QTest. The GSQ.QTest calculates gene-

level P-values by applying the QTest to multiple variants within a

gene and then combines the P-values using an efficient dimensional-

ity reduction method. The GSB.QTest employs a burden-type sum-

marization at the gene level and applies the QTest to the collapsed

gene-level variants within a set.

Other rare-variants association methods, such as SKAT and

GRANVIL, can easily be incorporated into the proposed gene-set

methods. When SKAT was used instead of the QTest in the pro-

posed two gene-set-level tests, the proposed gene set tests are

denoted as GSQ.SKAT and GSB.SKAT, respectively.

In simulation studies, the following gene-set methods were com-

pared: two traditional gene set analysis methods (GLOSSI,

GlobalTest), two QTest-based gene set analysis methods (GSQ.QTest,

GSB.QTest) and two SKAT-based gene set analysis methods

(GSQ.SKAT, GSB.SKAT). GLOSSI and GlobalTest are one-step gene

set tests that regard all variants from the same gene set as one super-

gene. The one-step SKAT method, which employs a similar method,

was not included in the Figures because the one-step SKAT method

produced a very similar pattern to the GlobalTest (data not shown).

Under our simulation setting, GSQ.SKAT was consistently more

powerful than the one-step SKAT. In general, considering gene-level

summarization makes the gene-set analysis more powerful; however,

a few exceptions exist. If causal variants are concentrated in a very

few genes, the gene-level summarization may produce a loss of power.

Figure 2 shows the relationship between the effect size of causal vari-

ants and the power of the gene-set test. Figure 2a shows the result

when the proportion of causal variants is low (10 or 20%), whereas

Figure 2b shows the result when the proportion of causal variants is

high (50 or 70%). As shown in Figure 2a, for a low proportion of

causal variants, the GSQ.SKAT method performs best when the effect

size is 0.75, whereas the GSQ.QTest2 performs best when the effect

size is larger than 0.75. In this setting, GSB-type tests show poorer per-

formance than GSQ-type tests because collapsing a high proportion of

non-causal variants within a gene decreases the power of the analysis.

Table 1. Type 1 error of proposed gene-level QTests

a Gene size 10 Gene size 50

QTest1 QTest2 QTest3 QTest1 QTest2 QTest3

1.0E-03 1.03E-03 1.02E-03 1.06E-03 9.75E-04 1.01E-03 1.05E-03

1.0E-04 9.40E-05 1.06E-04 1.07E-04 1.00E-04 9.39E-04 1.02E-04

1.0E-05 9.00E-05 8.50E-06 8.50E-06 9.95E-06 1.10E-05 9.95E-06

2.5E-06 3.00E-06 1.50E-06 2.50E-06 2.50E-06 2.00E-06 2.50E-06

Fig. 1. Comparison of the power of gene-level tests for varying effect sizes; (a)

for a low proportion of causal variants; (b) for a high proportion of causal

variants
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For a high proportion of causal variants, performance of GSB-type

tests is similar to or better than GSQ-type tests when the effect size is

0.75 whereas the power of the GSQ.QTest2 and the GSQ.QTest3 ex-

ceeds the power of the other tests when effect size is larger than 0.75

(Fig. 2b).

3.3 Application for Korean liver enzymes and exome

data
We applied the proposed tests to examine possible associations be-

tween liver enzymes and whole-exome sequencing data collected in

the Korean Association REsource (KARE; Cho et al., 2009) study.

After excluding samples from individuals who were taking medica-

tion likely to influence liver enzymes, 1058 samples were used for

the proposed tests. For the analysis, 22 654 rare variants and 11 895

common variants of 8322 corresponding genes were included, after

excluding low-quality variants and selecting functional variants. In

tests for pathways, we used 0.05 or 0.5 as cut-off for maximum

MAF and 2 for minimum MAC. We used 1320 canonical pathways

from the MSigDB database v.4.0 (Subramanian et al., 2005). The as-

sociation was declared to be significant if the P-value was less than a

threshold applying Bonferroni correction over the total number of

tests.

For the single rare variants with a MAC>5, we performed a lin-

ear regression in PLINK, and the minimum P-values for the three

liver enzymes traits [alanine aminotransferase (ALT), aspartate ami-

notransferase (AST), and gamma glutamyltransferase (GGT)] were

5.18E-06, 5.23E-06 and 1.25E-05 (q-value¼0.31, 0.29, 0.43), re-

spectively. Thus, no rare variant was found to be significantly asso-

ciated with the three traits, after Bonferroni correction. For the

genes with gene size>1, the results of the gene-level test based on

rare variants showed that no gene was statistically significant if the

Bonferroni correction was applied (See Supplementary Table S2).

In the gene-set level test for rare variants, we discovered that

NODAL signaling pathway (P¼3.4E-05; GS.QTest3) significantly

associated with AST after Bonferroni correction, and in the gene-set

level tests for common and rare variants, we discovered two KEGG

pathways significantly associated with GGT after Bonferroni correc-

tion; beta-alanine metabolism (P¼4.5E-06; GS.QTest2) and lysine

degradation (P¼4.7E-06; GS.QTest2). Table 2 provides the P-val-

ues from the proposed gene-set-level tests and those from the permu-

tation tests by generating 1010 permuted samples. The P-values from

our approach coincide well with those from the permutation tests

for gene-set-level tests.

The results show similar patterns to those of simulation results.

For example, the significances of Aurora pathway and ARF6 path-

way were identified by the GS.QTest1, since most genes within these

pathways showed effects in the same direction (Supplementary

Fig. S4). On the other hand, NODAL signaling pathway was signifi-

cant by the GS.QTest2 and the GS.QTest3, because the genes within

this pathway have effects with different directions (Supplementary

Fig. S4). The parameter values used in simulation studies such as

MAF, effect size and proportion of causal variants were similar to

those in these pathways.

These results were applied to the replication study for further

validation. Replication analyses for the pathway results were con-

ducted in an independent study population including 897 Korean in-

dividuals, a portion of the Cardiovascular Disease Association Study

(CAVAS) cohort (Kim et al., 2016a, b). NODAL signaling pathway

was not replicated and some pathways including two KEGG path-

ways were successfully replicated (P<0.05) (Table 3).

We also deconstructed the nature of the signals, which provides

the list of key genes involved in the two replicated pathways along

with the number of variants in each gene and the gene-level P-value

(Supplementary Table S3). The gene-level P-values from the permu-

tation tests were also computed using the 1010 permuted samples.

The P-values of our gene-set-level tests coincide well with those

from the permutation tests. The deconstruction of the two replicated

pathways shows that ALDH2 [MIM 100650] is a key gene. The

strong effect of ALDH2 and the weak effects of other genes together

yielded a strong signal for the two gene sets. In the discovery study,

ALDH2 consists of only one common variant, rs671, with a strong

statistical significance (MAF¼0.15, single variant P-value¼9.58E-

08) which has been reported to be associated with GGT (Kamatani

et al., 2010). In the replication study, ALDH2 consists of rs671 and

two non-significant rare variants.

The two pathways identified here were known to relate to liver

functions. Lysine is an essential amino acid that stimulates the bio-

synthesis of cholesterol in the liver (Schmeisser et al., 1983). Beta-

alanine is involved in liver function, and has a protective effect in

the presence of toxins (Choi et al., 2009; Lee and Kim, 2007).

Graphical representation of genes in the pathway, including infor-

mation on genetic variants, may help to understand the biological

mechanisms underlying the function of the pathways and the accu-

mulated genetic effect of the pathway. For example, Figure 3 shows

the genes involved in the pathways and their relationships.

Each gene is colored according to the number of variants used in

the association analysis. Red indicates enrichment of variants (�10)

whereas white indicates that no variant of the gene was used in the

Fig. 2. Comparison of the power of gene-set-level tests for varying effect

sizes; (a) for a low proportion of causal variants; (b) for a high proportion of

causal variants
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association analysis. Because we performed the association analysis

using only functional variants, such as non-synonymous, loss-of-

function and splice-site variants, the number of rare functional vari-

ants accumulated for each gene can be interpreted as the functional

genetic effect on the gene. Several complexes and genes directly

related to beta-alanine were shown to be enriched with variants.

This indicates that the accumulated functional genetic effects of

variants in the beta-alanine metabolic pathway may disrupt the

function of the pathway.

Table 2 shows the association results accompanied by their sug-

gestive statistical significance (P�1E-03). Most of the pathways re-

vealed by the test were also biologically plausible in the context of

liver function. The overexpression of Aurora-A, which frequently

occurs in hepatocellular carcinoma (HCC), causes p53-dependent

pre-mitotic arrest during liver regeneration (Li et al., 2009). RelA

pathway is associated with the prevention of hepatic apoptosis in

mice (Rosenfeld et al., 2000). Folate can affect a decrease of serum

ALT level in hypertensive patients (Qin et al., 2012). The NODAL

signaling pathway, combined with NANOG, plays a critical role in

HCC metastasis (Sun et al., 2013). ARF6 plays an essential role in

hepatic cord formation during liver development in mice (Suzuki

et al., 2006). Butanoate metabolism is one of the pathways which

displayed significant differences during liver development in HCC

patients (Diana et al., 2012). Ethanol oxidation was found to occur

via hepatic enzymes or liver microsomes (Lieber et al., 1987). IL-6

was upregulated in human HCC and it plays an important role in a

tumor development (Ji et al., 2010). Valine, leucine and isoleucine

are found to mediate activation of important hepatic metabolic sig-

naling pathways and play a critical role in development of liver dis-

ease (Lake et al., 2015).

Table 3. Results of the replication study conducted in CAVAS

Phenotype Gene-set Replication results

Maximum

MAF

Minimum

MAC

P-value

GS.QTest1 GS. QTest2 GS. QTest3 GS. SKAT GS. SKATO

GGT KEGG_BETA_ALANINE_METABOLISM all 1 3.6E-08 2.8E-01 8.3E-05 1.5E-01 5.9E-02

KEGG_LYSINE_DEGRADATION all 1 1.2E-06 5.6E-01 6.9E-05 1.4E-01 1.1E-01

Fig. 3. Beta-alanine metabolism pathway found to be associated with liver enzymes

Gene-set association tests for next-generation sequencing data i617
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4 Discussion and conclusions

Many methods focusing on gene-level associations have recently

been developed to assess the association between rare variants and

complex diseases. However, those methods have some limitations in

terms of power because the number of samples of rare variants avail-

able is not as large as the number of common variants. Even for

large sample sizes, no methods for single-gene analysis have consist-

ently high power across the various rare variant scenarios. In this

article, we propose gene-set tests as well as single-gene tests for NGS

data, including rare and common variants.

Recent rare-variant association methods usually focus on gene-

level analysis. However, the interplay of rare variants affecting com-

plex diseases arises not only at the gene level, but also at the gene-set

or pathway level. If multiple mutations in the same functional class

can influence a disease or trait, then a gene-set, as well as a gene,

can be a key functional class. Here, the quadratic tests for multiple

variants within a gene are first defined, and then an efficient method

for gene-set-level associations is introduced. The performance of the

proposed gene-set tests is demonstrated by comparison with other

gene-set-level association methods in various simulation scenarios.

This demonstration shows that one-step tests are limited in their ap-

plications to gene-set-level analysis, compared to two-step tests.

When a gene set contains a large number of variants, one-step tests

using SKAT or GlobalTest often lose power because of the many

non-causal variants present in a given gene set. Based on our simula-

tion studies, the GSB.QTest performs best among other gene-set

methods in cases containing a large proportion of causal variants

with small effects. In many cases, the GSQ.QTest outperforms other

methods.

Our simulation raised some issues that need to be considered for

optimization of the performance of rare-variants association meth-

ods. In the gene-level analysis, the first issue is that the power of the

association tests depends on the proportion and effect sizes of the

causal rare variants in a region. In some cases, a small proportion of

the causal rare variants affect the disease traits, and in other cases, a

large proportion of the causal variants affect them. Non-burden

tests, such as the QTest2 and the SKAT, can sensitively detect signals

in the former cases. Burden tests, such as the QTest1 and the

GRANVIL, performed well in the latter cases, especially when the

effect size is small or moderate (e.g. 0.5 or 0.75). However, in our

simulation studies, the optimal tests, such as the SKAT-O and the

QTest3, yielded higher power than the burden tests except when all

the variants were causal and one-directional. In the former case, op-

timal tests also yielded higher power because they take advantage of

the properties of both burden and non-burden tests, and usually

maintain consistently high power. In our simulation studies, when

the effect of the causal variant was large (e.g. 1.25 or 1.5), the pro-

posed QTest2 and QTest3 were found to detect signals sensitively,

regardless of the proportion of causal variants.

The second issue is the direction of the causal variant effects.

The burden tests assume that rare variants in a given region have ef-

fects in the same direction. However, this is not always the case.

When deleterious and protective alleles are combined, the burden

tests may lose power because they do not consider opposing effects.

On the contrary, the non-burden tests, which do consider effects

that operate in different directions, may lose power when the causal

variants have signals of the same direction. The QTest3, which com-

bines the burden and non-burden tests, tends to yield fairly consist-

ent power.

The third issue is the existence of common variants within a re-

gion. Most association tests for sequencing data focus only on rare

variants and give greater weight to rarer variants as a function of

MAF. For this reason, the common causal variants in sequencing

data would not be focused in these tests. However, it may be better

to consider the case when both rare and common variants exist to-

gether within a region. QTests can analyze both rare and common

variants, because rare and common variants can be included simul-

taneously as explanatory variables in a multiple regression. QTests

are also robust to inclusion of non-causal common variants.

Through extensive simulation studies, we investigated these issues

in detail. Our simulation studies for gene-level and gene-set-level

analyses show that the proposed QTests maintain consistent perform-

ance and high power, regardless of the above issues. The GSQ.QTests

do not lose power, even when faced with a small proportion of causal

variants or small effect size, and are robust to inclusion of protective

variants with negative effect as well as common variants. In cases

with a high proportion of causal variants, the GSB.QTests increase

the power of the gene-set association analysis, but suffer from power

loss in the presence of non-causal variants.

To account for heterogeneity between genes, GSB.QTests can use

a function of gene units or of biological importance as a weight. In

the case of GSQ.QTests, the development of a new approach using

the weighted sum of gamma random variables is desirable in a fu-

ture study that considers heterogeneity.

The current versions of the proposed tests can assess only quanti-

tative traits. If the trait in question is binary, then the association

statistic (e.g. P-value, chi-square statistic) for each rare variant ap-

pears not to be stable, in the sense that they can have a very large

standard error. However, by collapsing rare variants within a sub-

region first or by providing a penalty parameter to better estimate

the regression coefficients, the proposed QTests could be extended

to analysis of binary traits.
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