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Abstract

Motivation: Combining P-values from multiple statistical tests is a common exercise in bioinfor-

matics. However, this procedure is non-trivial for dependent P-values. Here, we discuss an

empirical adaptation of Brown’s method (an extension of Fisher’s method) for combining depend-

ent P-values which is appropriate for the large and correlated datasets found in high-throughput

biology.

Results: We show that the Empirical Brown’s method (EBM) outperforms Fisher’s method as well

as alternative approaches for combining dependent P-values using both noisy simulated data and

gene expression data from The Cancer Genome Atlas.

Availability and Implementation: The Empirical Brown’s method is available in Python, R, and

MATLAB and can be obtained from https://github.com/IlyaLab/CombiningDependentPvalues

UsingEBM. The R code is also available as a Bioconductor package from https://www.bioconduc

tor.org/packages/devel/bioc/html/EmpiricalBrownsMethod.html.

Contact: Theo.Knijnenburg@systemsbiology.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In research studies where multiple sources of data are available, it is

natural to ask whether the combined evidence of these sources sup-

ports a particular statistical hypothesis. Combining multiple P-

values into a single unified P-value is a common meta-analysis in

many research fields, including biology and more recently bioinfor-

matics (Alves et al., 2014; Loughin, 2004).

The advent of high-throughput biology requires us to reconsider

two important aspects of P-value combination schemes when

applied in this field. First, biological samples can be described by

thousands or even millions of data points representing a diverse

array of information derived from sequencing, array-based, imaging,

and other measurement techniques. Thus, researchers are potentially

interested in combining a very large number of P-values. Second, the

genome-wide biological data generated in these high-throughput ex-

periments often show a high degree of internal correlation, i.e.

strong statistical dependencies between the variables for which

measurement data was obtained. For example, the intrinsic dimen-

sionality of a complete gene expression dataset with thousands of

genes is typically below 20 (L€ahdesm€aki et al., 2005). Similarly,

principal components analysis of gene expression data shows that a

handful of components can capture the large majority of variation

in the data (Raychaudhuri et al., 2000; Ringnér, 2008). These ex-

amples illustrate the high internal correlation in gene expression

data, which is at least partly due to the fact that many genes are

involved in or influenced by the same biological processes. Other

important sources of correlation include different data types that

provide similar information about biological components and proc-

esses, and genome-wide measurements that show spatial correlation

across the genome, such as DNA binding proteins and histone marks

(Consortium et al., 2012b; Kundaje et al., 2015) and genetic vari-

ants due to linkage disequilibrium (Consortium et al., 2012a; Hartl

et al., 1997).

Importantly, although many methods for combining P-values

have been developed, most of them assume independent or weakly

dependent P-values. Additionally, implementations of these methods

in widely-used programming languages are often lacking, and it is

unclear whether these methods will scale to combine many (hun-

dreds or more) P-values.

The earliest method to combine independent P-values is seen in

the work of Fisher (1948). Brown (1975) later extended Fisher’s

method to the case where P-values were derived from data generated

from a multivariate normal distribution with a known covariance ma-

trix. Kost and McDermott (2002) further extended Brown’s method
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analytically for unknown covariance matrices and improved the nu-

merical approximations used by Brown. Additional methods for com-

bining P-values have been developed for specific purposes, e.g.

combining differently weighted P-values (Whitlock, 2005), combining

P-values across multiple heterogeneous data sources (Aerts et al.,

2006), restricting analysis to the tail of the P-value distribution

(Zaykin et al., 2002), and combining P-values using Simes approach,

which is applicable for dependent P-values in specific conditions

(Benjamini and Heller, 2008). Of these methods, Brown’s method

using Kost’s improved polynomial fit (i.e. Kost’s method) most simply

combines equally weighted dependent P-values assuming normally

distributed underlying data. Additionally, in a recent comparison of

methods for combining P-values, Kost’s method has been shown to

be one of the best available (Alves et al., 2014).

In this work, we describe an adaptation of Brown’s method that

uses the empirical cumulative distribution function derived directly

from the data (Fig. 1). We show that this non-parametric version,

which we call the Empirical Brown’s method (EBM), is accurate,

more robust to noise compared to Kost’s method and can efficiently

be applied to large intra-correlated biological datasets. We provide

extensive comparisons to Fisher’s method and Kost’s method and

we demonstrate EBM on gene expression data from The Cancer

Genome Atlas (TCGA).

2 Methods

2.1 Fisher’s, Brown’s and Kost’s methods
Let there be k P-values, denoted Pi, generated from k statistical tests

based on k normally distributed random variables, denoted Xi. Fisher

showed that for independent P-values, the statistic W ¼
Xk

i¼1

�2logPi

follows a v2 distribution with 2k degrees of freedom, W � v2
2k. Brown

extended Fisher’s method to the dependent case by using a re-scaled

v2 distribution

W � cv2
2f : (1)

The constants represent a re-scaled number of degrees of free-

dom (f) and a scale factor (c) which is the ratio between the degrees

of freedom of Fisher’s and Brown’s methods. Brown calculated these

constants by equating the first two moments of W and cv2
2f resulting

in

f ¼ E½W�2

var½W� and c ¼ var½W�
2E½W� ¼

k

f
: (2)

Furthermore, Brown showed that the expected value and vari-

ance of W can be calculated directly via numerical integration to

find the covariance, respectively

E½W� ¼ 2k and var½W� ¼ 4kþ 2
X
i< j

covð�2logPi;�2logPjÞ: (3)

Numerical integration is, however, not feasible for large datasets

due to computational complexity (Supplementary information 3).

Kost and McDermott fit a third-order polynomial to approximate

this covariance

covð�2logPi;�2logPjÞ � 3:263qij þ 0:710q2
ij þ 0:027q3

ij (4)

where qij is the correlation between the random variables Xi and Xj.

The combined P-value is then given by

Pcombined ¼ 1:0� U2f ðw=cÞ (5)

where w ¼ �2
Xk

i¼1

logPi and U2f is the cumulative distribution func-

tion of v2
2f .

2.2 Empirical Brown’s method
Our contribution is to calculate the covariance in Equation (3) empir-

ically. In practice, each individual P-value, Pi, will be computed via a

statistical test between a target variable and a vector of samples,!xi,

drawn from the random variable Xi. We define the transformed sam-

ple vector!wi ¼ �2logð1� Fð!xiÞÞ where Fð!xiÞ denotes the right-sided

empirical cumulative distribution function calculated from the sample
!xi. As a result, the covariance can also be computed empirically

var½W� ¼ 4kþ 2
X
i< j

covð!wi;
!wjÞ: (6)

A more detailed explanation can be found in Supplementary in

formation 1.

2.3 Generating null data
We compared EBM to Fisher’s method on generated null data. We gen-

erated these data by combining 20 P-values from the Pearson correl-

ations between a sample of independent normal random variables with

mean 0 and variance 1 (s¼200) and a sample (s¼200) of data gener-

ated from a 20-dimensional multivariate normal distribution centered

around 0 with covariance matrix R; rii ¼ 1 and ri6¼j ¼ a, i.e. diagonal

elements of 1 and off-diagonal elements of a. We calculated 100 000

combined P-values for each value of a 2 f0:0; 0:25; 0:5; 0:75g. Note

that this methodology is equivalent to how we generated noisy intra-

correlated data when bj¼0 and n¼0 in Section 2.4.

2.4 Generating dependent normal data
We generated datasets with adjustable internal correlation structure

and noise in order to compare Fishers’s method, Kost’s method and

EBM. Let Y ¼ Nnðl;RÞ, where Nn is a n-dimensional normal

distribution centered around l¼0 with covariance matrix R;

rii ¼ 1; r1;i>1 ¼ ri>1;1 ¼ bi, and ri 6¼j;i;j>1 ¼ a. Or, written as a

matrix
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Fig. 1. Simplified graphical overview of Fisher’s, Kost’s and Empirical

Brown’s method (EBM) for combining P-values. Each of k variables in data

matrix X is assessed for statistical association with target vector t using a stat-

istical test resulting in k P-values. Fisher’s method combines these P-values

assuming statistical independence between the k P-values. Kost’s method

employs a polynomial approximation to calculate the covariance among the

k variables based on the data in X. The covariance estimate is a measurement

of statistical dependence between the k P-values and used to re-scale the v2

distribution from which the combined P-value is calculated. Kost’s approxi-

mation assumes normally distributed underlying data. EBM does not assume

any underlying distribution of the data, but instead uses an empirical cumula-

tive distribution function (ecdf) on the (transformed) data in X to estimate the

covariance. See Methods section and Supplementary information 1 for

details
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R ¼

1 b2 � � � bj � � � bn

b2 1 � � � a � � � a

..

. ..
. . .

. ..
. . .

. ..
.

bj a � � � 1 � � � a

..

. ..
. . .

. ..
. . .

. ..
.

bn a � � � a � � � 1

2
66666666666664

3
77777777777775

: (7)

In this model, the random variables Yj>1 have a correlation struc-

ture governed by a and each Yj is correlated to Y1 via bj. In our simu-

lations, n¼4, a¼0.8 (the variables are highly correlated) and each bj

is randomly sampled from the uniform interval ½�0:5; 0:5� to produce

varying P-values, many of which are low because of non-zero covari-

ance. Finally, given a sample!y from Y (sample size s¼200), we

added noise!x ¼!yþ n!U, where n adjusts the magnitude of the noise

and!U are 200 samples from a four-dimensional uniform distribution

on ½�1;1�. We adjusted the parameter n between 0 and 2.5 in our

simulations, which is equivalent to signal-to-noise ratios (SNRs) rang-

ing from1 to 0.5. We computed sets of n� 1 ¼ 3 P-values estimated

from the pairwise Pearson correlation between!x1 and!xi>1. These P-

values were then combined using Fisher’s method, Kost’s method and

EBM.

2.5 Combining P-values based on TCGA expression

data
Fisher’s, Kost’s and EBMs were compared on the highly correlated

gene expression data of glioblastomas (GBM) from TCGA (Brennan

et al., 2013). We derived combined P-values by associating the ex-

pression levels of single genes with the expression levels of the genes

that comprise each of the curated cancer signaling pathways from

the Pathway Interaction Database (PID) (Schaefer et al., 2009),

which consists of manually curated signaling pathways in cancer.

Specifically, let CH be the set of pairwise correlation P-values be-

tween gene g and the genes in each pathway,

CH ¼ fPcorðg; hiÞ; hi 2 H; g 6¼ hig, where H is the set of genes in a

pathway and Pcor denotes the P-value from the Pearson correlation

computed via a two-tailed test of the t-distribution. The P-values in

each set CH were combined using Fisher’s method, Kost’s method

and EBM. This analysis was done for each of the genes in PID. For

increased computational efficiency, we precomputed the entire co-

variance matrix of all genes in PID.

2.6 Calculating ground truth P-values using a

permutation scheme
We employed a permutation scheme to compute ground truth com-

bined P-values to gauge the accuracy of these methods. Every statis-

tical test, where the P-value is derived from an analytical null

distribution, has an equivalent permutation test. In the permutation

test, the same test statistic is computed on the same data, yet with an

appropriate permutation of the samples. This allows one to derive

an empirical background distribution of permuted test statistics. A

ground-truth P-value can be obtained by comparing the original test

statistic (that is based on the non-permuted data) with this empirical

background distribution. See our previous work (Knijnenburg et al.,

2009), where we employed the same strategy.

Combining P-values using Fisher’s method, Kost’s method or

EBM involves assessing the statistical significance of the statistic W,

the sum of the logarithm of P-values (defined in Section 2.1 and

Equation (3) in the Supplementary information 1) against a v2 distri-

bution, i.e. the null distribution for this particular test. Importantly,

all three methods compute the same test statistic W. However, they

evaluate this statistic against different v2 distributions, i.e. different

parameters f and c, that characterize this distribution. The different

parameterizations derive from the different assumptions that under-

lie these tests. Specifically, Fisher’s method assumes independent

P-values, whereas Kost’s method and EBM assume dependent P-val-

ues and estimate the covariance in the data to obtain f and c. Here,

Kost’s method assumes normal data without noise and uses a third-

order polynomial fit (Equation (4)), whereas EBM empirically com-

putes the covariance.

Formally, to calculate the W (on non-permuted data), each of the

P-values, Pi, is generated by some statistical test, T, to determine

the statistical association between the target variable!t with s data

points and variable!vi also with s data points

Pi ¼ Tð!t;!viÞ and W ¼
Xk

i¼1

�2logPi (8)

The permutation scheme involves randomly permuting the val-

ues in !t leading to !t �, from which the permuted statistic W� can

be calculated

P�i ¼ Tð!t �;!viÞ and W� ¼
Xk

i¼1

�2logP�i (9)

Importantly, this permutation scheme removes all statistical de-

pendence between the target (!t ) and the data in !vi, yet retains the

internal correlation structure amongst the variables!vi.

For the normally generated data, target vector!t corresponds to
!
x1 and data vectors !vi to !xc, where c is the column index ranging

from 2 to kþ1 (see Section 2.4). For the TCGA GBM expression

data, target vector!t corresponds to!g , the gene expression of a sin-

gle gene and data vectors!vi correspond to!hi, the expression levels

of all (k) genes in a pathway (see Section 2.5). In both these cases, T

corresponds to a two-tailed t-test of the null hypothesis that the

Pearson correlation coefficient is zero (no correlation).

Given test statistic W and M permuted statistics, W�1;W
�
2; . . . ;W�M,

the permutation test P-value is computed as

Pperm ¼

XM
m¼1

IðW�m � WÞ

M
(10)

In case, the number of exceedances (
XM
m¼1

IðW�m � WÞ) is 10 or

larger one can use the central limit theorem to show that this

(Equation (10)) is an accurate P-value estimate (and provide confi-

dence bounds) (Knijnenburg et al., 2009). Specifically, using M per-

mutations allows one to compute permutation test P-values down to

10=M. In our experiments, we set M ¼ 106, which allowed to com-

pute P-values of 10�5 and larger.

Once again, we note that the ground-truth P-values based on

this permutation scheme are identical for Fisher’s method, Kost’s

method and EBM.

3 Results and discussion

3.1 Empirical Brown’s method conservative on null data
Combined P-values from randomly generated data should follow a

uniform distribution. With Fisher’s method, there is a strong enrich-

ment of extremely low and extremely high P-values as the intra-

correlation of the normally distributed dataset is increased (Fig. 2a).

The inflation of low P-values results in a high number of false posi-

tives even for modest coupling in the covariance matrix. With EBM,
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the distribution of P-values is slightly inflated in the middle of the

interval ½0;1� and deflated towards the low and especially the high

values (Fig. 2b). This suggests that our method provides a conserva-

tive estimate.

We note that at least 100 samples are needed for convergence of

EBM (Supplementary information 2). Practically speaking, EBM re-

quires large sample sizes because the data is used both to estimate

the P-values (in this case derived from a correlation metric) and the

covariance matrix of the P-value distribution.

3.2 EBM corrects Fisher’s bias on TCGA data
As an example of combining dependent P-values generated from

real intra-correlated data, we compared Fisher’s method and EBM

on associations between signaling pathways and EGFR using TCGA

glioblastoma (GBM) gene expression data. EGFR is frequently

amplified, mutated and overexpressed in GBM and is known to play

an important functional role (Brennan et al., 2013). It is, therefore,

unsurprising that we observed many statistically significant associ-

ations between EGFR and the signaling pathways (Fig. 3).

However, Fisher’s method produced much lower P-values, espe-

cially for the pathways with a high degree of intra-correlation, as

quantified with the scale factor c (Equation (5)). This is a clear indi-

cation that Fisher’s method produces spuriously low P-values when

applied to correlated data. We also noted that Fisher’s method pro-

duced very similar sets of significant pathways when correlated

against a variety of genes other than EGFR (see Section 3.3). We in-

terpret this as further evidence to suggest that Fisher’s method is

highly sensitive to the internal correlation structure of the data and

detects falsely significant associations in highly correlated sets of

P-values regardless of the actual association. As seen in Figure 3,

EBM overcomes these biases.

As a point of comparison between TCGA data and the simulated

data, we can loosely equate the internal correlation parameter a to

the mean of the absolute value of the pairwise gene expression cor-

relations in TCGA data. The average Pearson correlation across all

genes considered in this study is 0.18 6 0.13 (5th–95th percentile:

½0:01; 0:43�).

3.3 The relation between combined P-values, scale

parameter c and pathway size
As shown above, Fisher’s method shows a strong bias towards more

intra-correlated pathways, and produced dramatically more signifi-

cant pathway P-value associations than EBM. The relative degrees of

freedom between Fisher’s method and EBM, i.e. scale parameter c,

provide a good measure of the correlation within a pathway. The

scale parameter quantifies the percent change of degrees of freedom

(in terms of variables), which are statistically redundant due to correl-

ations with other variables. We investigated the relation between the

combined P-values obtained with Fisher’s method and EBM, scale

parameter c and the size of the pathways. For this analysis, we con-

sidered the combined P-values of all gene-pathway pairs, i.e. all pair-

wise combinations between 2191 genes and 298 pathways.

In concordance with the analysis of EGFR-pathway pairs, we

observed that Fisher’s method produces much lower P-values overall

(Fig. 4a and b). Importantly, the lowest P-values are obtained for the

largest pathways, which were also found to have the largest values of

scale parameter c (Fig. 4e and f). The association between scale par-

ameter c and pathway size is not surprising. In Fisher’s method, the

degrees of freedom (2k) are directly related to the number of genes in

a pathway (k). Due to the high correlation among genes in a pathway,

EBM estimates a much smaller number of degrees of freedom, subse-

quently leading to high values of scale parameter c.

Importantly, with Fisher’s method the large pathways produce

the lowest P-values for the large majority of the genes and dominate

the top of most statistically significant findings (Fig. 4c and d). For

0 0.2 0.4 0.6 0.8 1

P−values from simulated null data

P
Fisher

104

2⋅104

3⋅104
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a
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Fig. 2. P-values from simulated data using Fisher’s method and EBM. (a) Line plot of histogram counts of P-values from Fisher’s method applied on simulated

null data with varying degrees of covariance as represented by a. The histogram was created by binning the P-values in 20 bins of size 0.05 from 0 to 1. (b)

Similar to (a) but for P-values derived with the Empirical Brown’s method
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Fig. 3. P-values from TCGA data using Fisher’s method and EBM scatter plot

comparing pathway association P-values for the gene EGFR in the GBM data-

set from TCGA. Each circle represents one pathway. The radius is propor-

tional to c, which reflects the intra-pathway correlation
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example, when using Fisher’s combined P-values the superpathway

‘Cell Adhesion Signaling Pathways’, which contains 428 genes, is

found in the top 10 of most significant pathways for all 2191 genes.

(This pathway has a bar that reaches to 100% in Fig. 4c.) On the

contrary, when using EBM’s combined P-values, we observed that

genes are associated with a variety of pathways of different sizes.

(This can be seen by bars found across all pathways in Fig. 4d). For

example, the top two pathways associated with tumor suppressor

gene TP53 according to EBM P-values are ‘Aurora B Signaling’

(n¼40 genes)—its connection to TP53 is described in many studies

including (Gully et al., 2012)—and ’Direct P53 Effectors’ (n¼129

genes). Both these pathways fall outside of the top 10 according to

Fisher’s P-values, i.e. they are found on positions 66 and 13, respect-

ively. These pathways are more relevant and plausible for GBM can-

cer biology than the large and highly intra-correlated pathways that

are prioritized by Fisher’s method.

In summary, the number of P-values to be combined has a large

effect on the combined P-value when using Fisher’s method on

highly correlated data. P-value combination schemes that model the

statistical dependence between the P-values, such as EBM, can com-

pensate for this effect.

3.3.1 Note on transforming combined P-values to Q-values

A common way to correct for multiple testing other than the

Bonferroni correction is by transforming the P-value to a Q-value

(or false discovery rate). The two most common approaches to com-

pute Q-values are Benjamini–Hochberg’s approach (Benjamini and

Hochberg, 1995) and Storey’s approach (Storey, 2002).

Importantly, we noted that Storey’s approach to compute Q-values

(as implemented in the R and Python packages, Storey, 2015) is not

directly appropriate for significance testing in this case due to com-

plications in estimating the null hypothesis distribution. Specifically,

the implementation of Storey’s approach assumes a particular distri-

bution on the P-values and estimates parameters to fit this distribu-

tion. The EBM P-value distributions encountered in the gene

expression data were problematic in terms of estimating these par-

ameters, leading to non-sensical results. Benjamini–Hochberg’s non-

parametric approach does not suffer from this limitation.

3.4 EBM more accurate on noisy generated data
On generated normal data with no noise, EBM performs compar-

ably with Kost’s method (Fig. 5a). The error of EBM increases
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slightly for smaller P-values producing marginally anti-

conservative P-value estimates (Fig. 5b). Fisher’s method produces

dramatically anti-conservative, i.e. too low, P-values, leading to

many false positives. Importantly, Fisher’s method produces

many low P-values even on null data (see Section 3.1). As noise

is added to the normally generated data EBM begins to outper-

form Kost’s method, as evidenced by the smaller average error

already for moderate levels of noise injection (SNR around 8)

(Fig. 5c). Note that the errors in EBM before this point are com-

parable in magnitude with the errors in EBM on noiseless normal

data. We, therefore, believe that these errors are largely due to

the statistical effects implicit in sampling any distribution. As the

noise component becomes very large, Kost’s method, EBM and

Fisher’s method (not shown) all converge. This occurs because

the large noise magnitude effectively destroys the underlying cor-

relation structure in the data.

3.5 EBM more accurate on TCGA data
On one hand, the TCGA gene expression dataset is inherently inter-

dependent and noisy. For relatively insignificant P-values, EBM and

Kost perform comparably and both produce accurate P-values (Fig.

5d). Fisher’s method, on the other hand, produces many P-values

that are very anti-conservative. As the P-values become more signifi-

cant, EBM is more accurate and provides a more conservative esti-

mate leading to fewer false positives than Kost’s method (Fig. 5e).

Several studies have indicated that RNA-seq gene expression data

are best modeled using a negative binomial distribution for both em-

pirical and biophysical reasons (Anders and Huber, 2010; Friedman

et al., 2006). This suggests that the Gaussian approximation explicit

in Kost’s method is not appropriate. The fact that Kost’s method is

less conservative may partially be explained by the following obser-

vation: approximating the cdf of a long-tailed distribution, such as a

negative binomial, with a normal distribution will result in a lower

(anti-conservative) P-value compared with the true cdf. This analysis

shows that our empirical approach captures the underlying data

well and can produce accurate P-values on a large and correlated

biological dataset.

4 Conclusion

On generated and real data, we have shown that EBM performs

well when combining P-values on noisy data with internal correl-

ation structure. We observed that EBM corrects for correlation

structure bias when compared with Fisher’s method and provides a

conservative combined P-value when no correlations are present.

When compared with Kost’s method, the non-parametric nature of

EBM make it more robust to deviations from normality in the form

of uniform noise and the method behaves comparably for idealized

Gaussian data. As such, EBM is a highly useful P-value combination

method when dealing with biological data which is often noisy, not

necessarily Gaussian, and almost always has an internal correlation

structure.

Future extensions include understanding how EBM behaves with

other underlying distribution models (alternatives to the normal dis-

tribution as well as alternative noise models). Additionally, we be-

lieve EBM could be improved by using higher order approximations

of the W distribution. We note that this approach is very general and

need not be restricted to combining P-values derived from correl-

ations but could be extended to many statistical tests and be applied

to heterogeneous datasets. One shortcoming of the current method

is that it cannot take external weights of different P-values being

combined into account.

The non-parametric nature of EBM makes this P-value combin-

ation method an ideal candidate for combining P-values derived

from discrete data, such as genetic variants. In particular, we will

study the suitability of EBM as a so-called burden test to assess the

statistical associations between groups of (rare) genetic variants and

disease phenotypes (Lee et al., 2014). This will also allow us to in-

vestigate the usefulness of EBM in situations where statistical signifi-

cance is more difficult to achieve, as is often the case for genome-

wide association tests of complex diseases.

We have created efficient implementations of EBM in three

widely used programming languages in bioinformatics: Python, R

and Matlab, which are available through GitHub and Bioconductor

(Supplementary information 4). These implementations can com-

bine hundreds of P-values based on the data with thousands of sam-

ples in seconds (Supplementary information 3). Additionally, we

have included Kost’s method and Fisher’s method within our code
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for increased functionality and comparisons. We believe that these

implementations and evaluation of the method will provide a valu-

able tool for the bioinformatics community.
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