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Abstract

Motivation: Both gene expression levels (GEs) and copy number alterations (CNAs) have import-

ant biological implications. GEs are partly regulated by CNAs, and much effort has been devoted

to understanding their relations. The regulation analysis is challenging with one gene expression

possibly regulated by multiple CNAs and one CNA potentially regulating the expressions of mul-

tiple genes. The correlations among GEs and among CNAs make the analysis even more compli-

cated. The existing methods have limitations and cannot comprehensively describe the

regulation.

Results: A sparse double Laplacian shrinkage method is developed. It jointly models the effects of

multiple CNAs on multiple GEs. Penalization is adopted to achieve sparsity and identify the regula-

tion relationships. Network adjacency is computed to describe the interconnections among GEs

and among CNAs. Two Laplacian shrinkage penalties are imposed to accommodate the network

adjacency measures. Simulation shows that the proposed method outperforms the competing al-

ternatives with more accurate marker identification. The Cancer Genome Atlas data are analysed

to further demonstrate advantages of the proposed method.

Availability and implementation: R code is available at http://works.bepress.com/shuangge/49/

Contact: shuangge.ma@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Both gene expression levels (GEs) and copy number alterations

(CNAs) have important biological implications. GEs are partly regu-

lated by CNAs (Henrichsen et al., 2009). In the recent multidimen-

sional studies, GE and CNA measurements have been collected on

the same subjects, making it possible to study their regulation rela-

tionships (Shih et al., 2011; Wrzeszczynski et al., 2011; Wynes

et al., 2014).

Analysing the regulation of GE by CNA is challenging. In gen-

eral, a CNA is positively associated with the expression level of its

corresponding gene. Multiple studies have conducted bivariate

analysis and focused on the dependence between a GE and its cor-

responding CNA. For example, Schäfer et al. (2009) proposed a

procedure based on a modified correlation coefficient to search for

driver genes of which both GEs and CNAs display strong equally

directed abnormalities. Salari et al. (2010) conducted supervised
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analysis and identified genes with significant GE-CNA correl-

ations. Such ‘one GE against one CNA’ analysis has limitations.

The expression level of one gene can be affected by multiple

CNAs, and a CNA can induce altered expression levels of genes

from unlinked regions (Stranger et al., 2007). Thus, if we consider

a regression framework, it should be multiple GEs against multiple

CNAs. As we need to search for the regulation relationships among

a large number of GEs and CNAs, with the often low sample sizes,

regularized estimation and marker selection are needed. The ana-

lysis gets more complicated with correlations among GEs and

among CNAs. Specifically, high correlations among CNAs have

been observed in both coding and non-coding regions (Stamoulis,

2011). Co-regulated genes can have highly correlated expression

levels. Recent studies under simpler settings have shown that ac-

counting for correlations is critical for analysing genetic data

(Huang et al., 2011; Liu et al., 2013). A few studies have addressed

the correlations among measurements. For example, Kim et al.

(2009) developed the graph-guided fused Lasso method to address

the dependency structure among responses. Peng et al. (2010) pro-

posed the remMap method to identify master CNAs which affect

most GEs. A common limitation of these studies is that correlation

is only accounted for in one side of the regression model, and hence

the analysis is not ‘complete’. In addition, ineffective estimation

approaches have been adopted.

The goal of this study is to more effectively analyse GE and

CNA data so as to better understand their relationships. To ac-

count for the fact that multiple CNAs can affect the expression

level of a gene, we simultaneously model the joint effects of mul-

tiple CNAs. For the identification of important CNAs associated

with a GE, an effective penalization approach is adopted. The

most significant advancement is that networks are adopted to de-

scribe the correlations among GEs and among CNAs. When the

correlations among GEs are taken into consideration, the analysis

becomes a ‘multiple GEs against multiple CNAs’ regression

problem. That is, both the responses and predictors are high-

dimensional. To accommodate the network structures, we propose

a sparse double Laplacian shrinkage (SDLS) approach, which com-

bines the power of penalized variable selection and Laplacian

shrinkage. To the best of our knowledge, this study is the first to

effectively accommodate correlations in both sides of the GE-CNA

regression. It is noted that although our analysis focuses on GEs

and CNAs, the proposed method is potentially applicable to other

types of genetic measurements.

2 Data and model settings

Consider a dataset with n iid samples, each with m GE and p CNA

measurements. Let Y ¼ ðy1; . . . ; ymÞ be the n � m matrix of GEs and

X ¼ ðX1; . . . ;XpÞ be the n�p matrix of CNAs. We first process

data so that the GEs are centered and the CNAs are centered and

standardized with jjXjjj22 ¼ n; j ¼ 1; . . . ; p. Although it is possible

that CNAs regulate GEs in a non-linear way, non-linear modeling

incurs prohibitively high computational cost, and the dominating

majority of existing studies have focused on linear modeling.

Consider the multivariate regression model

yk ¼ Xbk þ ek; k ¼ 1; . . . ;m; (1)

where eks are the error terms, and bk ¼ ðbk
1; . . . ; bk

pÞ
> is the regres-

sion coefficient vector associated with the kth gene. The p�m

regression coefficient matrix is b ¼ ðb1; . . . ;bmÞ ¼ ðb1; . . . ; bpÞ > .

The expression level of a gene is regulated by at most a few CNAs,

and one CNA affects at most a few GE levels. Thus, b is sparse.

2.1 Penalized identification
Under the sparsity condition, we use penalization for estimation and

identification of important associations. Consider the estimate

b̂ ¼ arg min
b

1

n

Xm
k¼1

Xn

i¼1

ðyk
i �X >

i bkÞ2 þ Pðb; k; cÞ
( )

; (2)

where Pð�Þ is the penalty function, and k; c are parameters that de-

fine the penalty. A non-zero component of b̂ indicates an association

between the corresponding CNA and GE. For the penalty function,

first consider the MCP (minimax concave penalization; Zhang,

2010), where the penalty

P0ðb; k1; cÞ ¼
Xm
k¼1

Xp

i¼1

qðbk
i ; k1; cÞ; (3)

with qðt; k; cÞ ¼ k
Ð jtj
0 ð1� x

ckÞþdx. k is the tuning parameter, and c is

the regularization parameter. The MCP has been shown to have per-

formance comparable to or better than many other penalties includ-

ing Lasso, adaptive Lasso and SCAD (Breheny and Huang, 2011;

Zhang, 2010). It conducts marker selection and regularized estima-

tion but does not have a ‘built-in’ mechanism to accommodate cor-

relations. Note that imposing P0 is equivalent to analysing each GE

separately but with the same tuning parameter for all GEs to ensure

comparability.

3 Sparse double Laplacian shrinkage

3.1 Construction of network adjacency measures
GEs (CNAs) are ‘connected’ to each other. In this study, we adopt a

network approach to describe the interconnections among GEs and

among CNAs. In a network, a node corresponds to a GE or a CNA.

A network contains rich information. Of special importance to this

study is the adjacency, which is one of the most important network

measures and quantifies how ‘closely’ two nodes are connected to

each other (Zhang et al., 2005).

Denote rij as the Pearson’s correlation coefficient between

nodes i and j. Other similarity measures such as the Spearman’s

correlation can also be used. Based on rij, Zhang et al. (2005) pro-

posed several ways of constructing the adjacency matrix, whose

(i, j)th element is aij, the adjacency between nodes i and j. Notable

examples include (i) aij ¼ sgnðrijÞIfjrijj > rg, where r is the cutoff

calculated from the Fisher transformation (Huang et al., 2011);

(ii) aij ¼ rijIfjrijj > rg; (iii) aij ¼ ra
ijIfjrijj > rg, and (iv) aij ¼ ra

ij. In

(iii) and (iv), a is determined using the scale-free topology criterion

(Zhang et al., 2005). We acknowledge that other approaches, for

example the Gaussian graphical model (Yuan et al., 2007), can

also be used to construct the adjacency matrix. As our goal is to

demonstrate the incorporation of adjacency not to compare differ-

ent constructions of adjacency, we focus on (iii) with a¼5.

Compared with the Gaussian graphical model and others, this con-

struction has ignorable computational cost. The resulted adjacency

matrix is sparse and easy to manipulate. a¼5 ensures that aij has

the same sign as rij. Note that it is straightforward to implement

other adjacency measures.

We compute the adjacency measures for GEs and CNAs in the

same manner. Denote A ¼ ðaij; 1� i; j�pÞ and B ¼ ðbkl;1�k; l�mÞ
as the adjacency matrices for CNAs and GEs respectively.
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3.2 Penalized estimation and identification
Consider the penalized estimation framework specified in (2). We

propose the SDLS penalty

Pðb; k; cÞ ¼ P0ðb; k1; cÞ

þ1

2
k2

Xm
k¼1

X
1� i<j� p

jaijj½bk
i � sgnðaijÞbk

j �
2

þ1

2
k3

Xp

i¼1

X
1� k<l�m

jbklj½bk
i � sgnðbklÞbl

i�
2:

(4)

k ¼ ðk1; k2; k3Þ is the vector of tuning parameters. sgnð�Þ is the sign

function.

This penalty has been motivated by the following consider-

ations. P0ð�Þ conducts selection using MCP, as described in

Section 2.1. Two Laplacian type penalties (Liu et al., 2013)

are introduced. Consider for example CNAs. If two CNAs are not

connected with aij¼0, then the Laplacian penalty is equal to zero.

If two CNAs have a large positive aij, then they are tightly con-

nected and have highly correlated measurements. The Laplacian

penalty encourages their regression coefficients to be similar, with

the degree of similarity adjusted by the degree of adjacency jaijj.
If two CNAs have a large negative aij, then the Laplacian penalty

has a form similar to ridge penalty, which conducts regularized es-

timation and shrinks the magnitudes of both regression coeffi-

cients. Similar rationale holds for GEs. If two GEs are tightly

connected in a network, then their regression coefficient profiles

should be similar. The first Laplacian penalty corresponds to the

rows of the coefficient matrix, and the second corresponds to the

columns. Each element of the coefficient matrix is possibly

included in multiple penalties. k is adjusted data-dependently to

avoid over-shrinkage.

The two Laplacian penalties take quadratic forms and can be

associated with the Laplacians for undirected weighted graphs. Take

the first Laplacian penalty as an example. Let D ¼ diagðd1; . . . ;dpÞ,
where di ¼

Pp
j¼1 jaijj. We can rewrite

Xm
k¼1

X
1� i<j�p

jaijj½bk
i � sgnðaijÞbk

j �
2 ¼ trðb > LbÞ; (5)

where L ¼ D� A. The matrix L is associated with a labeled

weighted graph G ¼ ðV; EÞ with the vertex set V ¼ f1; . . . ; pg and

edge set E ¼ fðj; kÞ : ðj; kÞ 2 V � Vg. It has been referred to as the

Laplacian of G (Chung, 1997).

3.3 Computation
With the introduction of two Laplacian penalties, the existing algo-

rithms are not directly applicable. We propose a two-layer coordin-

ate descent (CD) algorithm. It optimizes with respect to one element

of b at a time and cycles through all elements. Iterations are repeated

until convergence. In this algorithm, the key is the update with re-

spect to each element.

Consider the overall objective function defined in (2). For

k ¼ 1; . . . ;m and j ¼ 1; . . . ; p, given the parameters bk
j (j 6¼ i) fixed

at their current estimates, we seek to minimize the penalized object-

ive function with respect to bk
i . Here only terms involving bk

i matter.

This is equivalent to minimizing

Rðbk
i Þ ¼

1

2n
jjyk �X�ib

k
�i �Xib

k
i jj

2 þ k1

ðjbk
i j

0

ð1� x

ck
Þþdx (6)

þ1

2
k2

Xp

j¼iþ1

jaijj½bk
i � sgnðaijÞbk

j �
2

þ1

2
k3

Xm
l¼kþ1

jbklj½bk
i � sgnðbklÞbl

i�
2

¼ 1

2
uk

i ðbk
i Þ

2 � vk
i b

k
i þwk

i jbk
i j þ c;

where c is a term free of bk
i . The subscript ‘– i’ denotes the remaining

elements after the ith is removed. Let tk
i ¼ yk �X�ib

k
�i. uk

i ; vk
i , and

wk
i are defined as

uk
i ¼ 1� 1

c
Iðjbk

i j � ck1Þ þ k2

Xp

j¼iþ1

jaijj þ k3

Xm
l¼kþ1

jbklj;

vk
i ¼

1

n
X >

i tk
i þ k2

Xp

j¼iþ1

aijb
k
j þ k3

Xm
l¼kþ1

bklb
l
i;

wk
i ¼ k1Iðjbk

i j � ck1Þ:

(7)

It can be shown that the minimizer of Rðbk
i Þ in (6) is

~b
k

i ¼
sgnðvk

i Þ
uk

i

ðjvk
i j �wk

i Þþ: (8)

With a fixed k, the two-layer CD algorithm proceeds as follows.

Algorithm 1. the Two-layer Coordinate Descent Algorithm

1: Initialize s¼0 and bðsÞ ¼ 0 component-wise. Compute

ftkðsÞ
i ; k ¼ 1; . . . ;m; i ¼ 1; . . . ; pg.

2: repeat

3: for k 1;m do

4: for i 1;p do

5: Calculate u
kðsÞ
i ; v

kðsÞ
i and w

kðsÞ
i via (7);

6: Update bkðsþ1Þ
i via (8);

7: Update t
kðsþ1Þ
i  t

kðsÞ
i �Xiðbkðsþ1Þ

i � bkðsÞ
i Þ;

8: end for

9: end for

10: s ¼ sþ 1;

11: until the ‘2 difference between two consecutive estimates

is smaller than a predefined threshold.

12: return the estimate of b at convergence.

In the penalized objective function, the least squares loss function

and two Laplacian penalties have quadratic forms. P0 is the sum of

mp terms, with one for each component of b. Following Breheny and

Huang (2011), the CD algorithm converges to the coordinate-wise

minimum, which is also a stationary point. In our numerical study,

convergence is achieved for all simulated and real data.

The SDLS method involves three tuning parameters k1; k2; k3

and regularization parameter c. For c, Breheny and Huang (2011)

and Zhang (2010) suggest examining a small number of values (for

example, 1.8, 3, 6 and 10) or fixing its value. In our numeric study,

we find that the results are not sensitive to c and set c¼6. In prac-

tice, one may need to experiment with multiple c values, examine

the sensitivity of estimates and select using data-dependent methods.

The values of k play a more important role. k1 controls the sparsity

of marker selection. k2 and k3 control the smoothness among coeffi-

cients. To reduce computational cost, one may set k2 ¼ k3, imposing

the same degree of shrinkage for CNAs and GEs. However, as the

overall computational cost is affordable, we jointly search for the
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optimal k1, k2 and k3 values using V-fold cross validation (V¼5).

For k1, we start with the smallest value under which all regression

coefficients are zero. We then gradually reduce k1 over a discrete

grid of values. For k2 and k3, our experience suggests that the esti-

mates can be relatively less sensitive to their values. We search over

the discrete grid of 10...;�2;�1;0;1;2;....

4 Simulation

To mimic GE and CNA data in a pathway, we consider the scenario

with ðm;pÞ ¼ ð200 200Þ. The proposed method is applicable to

whole-genome data with a higher dimension. However, since the

main objective is to accommodate interconnections among GEs and

CNAs, it is reasonable to focus on a pathway, as genes within the

same pathway are more likely to be co-regulated and have correlated

measurements while genes in different pathways tend to be function-

ally and statistically uncorrelated. In the next section, we analyse The

Cancer Genome Atlas (TCGA) data. In Supplementary Figure 3, we

show the histograms of processed CNA values for two randomly

chosen genes. Motivated by Figure 3, we simulate CNAs as a mixture

of two normal distributions, one with a small and the other with a

large variance. Both distributions have mean zero. For each normal

distribution, we consider two correlation structures: (i) the block

structure. CNAs belong to clusters. Those in different clusters are in-

dependent, while those in the same cluster have correlation coefficient

q1; and (ii) the auto-regressive (AR) structure. CNAs i and j within

the same cluster have correlation coefficient qji�jj
1 . For both structures,

there are 40 clusters, with 5 CNAs per cluster. CNA measurements

take discrete values, and for whole-genome data, they often have a

block-wise constant structure. The simulated data have a continuous

distribution, which has been motivated by the processed TCGA data

(Supplementary Figure 3). In addition, the block-wise constant struc-

ture is not obvious when we focus on a pathway, as genes within the

same pathway are not necessarily physically nearby.

We generate the sparse coefficient matrix b as having a block di-

agonal structure

W1 � K1 0 0

0 W2 � K2 0

0 0 . .
.

0
BBB@

1
CCCA;

where � denotes the element-wise product. Wt and Kt have dimen-

sion 5�5 for t ¼ 1; . . . ; 40. Kt has entries with independent

Bernoulli draws with a success probability of 0.8. Wt is the effect

size matrix with each entry independently drawn from a uniform

distribution. Consider the following two examples.

Example 1: For t�10, entries of odd columns in Wt are from

Unif ð0:8; 1Þ, and those of even columns are from Unif ð�1;�0:8Þ.
For 11� t�20, entries of odd columns in Wt are from

Unif ð�1;�0:8Þ, and those of even columns are from Unif ð0:8; 1Þ.
Entries in Wt are equal to 0 for t>20. This example stresses the

similarity among certain rows.

Example 2: For t�10, entries of odd rows in Wt are from

Unif ð0:8; 1Þ, and those of even rows are from Unif ð�1;�0:8Þ. For

11� t�20, entries of odd rows in Wt are from Unif ð�1;�0:8Þ, and

those of even rows are from Unif ð0:8; 1Þ. For t>20, Wt are equal

to 0. This example stresses the similarity among certain columns.

For both examples, we expect that there are a total of

20 � 5 � 5 � 0:8 ¼ 400 true positives (20 clusters; 5 � 5 elements per

cluster; and 0.8 probability of being non-zero for each element).

The random errors are generated independently from

Nð0; 0:52 � ARðq2ÞÞ, reflecting the fact that GEs are also regulated

by other mechanisms, for example methylation, which can lead to

further correlation. The GE values are generated from the linear re-

gression model (1). In addition, to examine whether performance of

the proposed method depends on the number of true positives, we

also simulate two examples with 40 true positives.

We analyse the simulated data using the SDLS method (which is

also referred to as PGC, with Laplacian penalties on both ‘G’ and ‘C’).

In addition, we also consider (i) a marginal approach. This approach

conducts the regression of one GE on one CNA. The P-values from

all pairs are pooled, and then an FDR (false discovery rate; Benjamini

and Yekutieli (2001)) approach with target FDR¼0.05 is applied to

identify important associations. (ii) P0, which is the proposed method

with k2 ¼ k3 ¼ 0. (iii) PC, which is the proposed method with k3 ¼ 0.

It accommodates the network structure and so correlations among

CNAs but not GEs. And (iv) PG, which is the proposed method with

k2 ¼ 0. It accommodates the network structure and so correlations

among GEs but not CNAs. We acknowledge that multiple methods

can be used to analyse the simulated data. The first approach con-

ducts the popular ‘one GE against one CNA’ analysis, and the last

three have a penalization framework closest to the proposed and can

establish the value of accounting for correlations among both GEs

and CNAs in the most direct way.

The identification performance is evaluated using the number of

true positives (TP) and false positives (FP). In addition, we also

measure prediction performance using the model error (ME), which

is defined as MEðb̂; bÞ ¼ tr½ðb̂ � bÞ> Rðb̂ � bÞ�. Note that the mar-

ginal approach does not generate model errors.

Simulation suggests the proposed method is computationally af-

fordable. For example, for one data replicate under Example 1, PGC

takes 445.3 seconds on a regular desktop. In comparison, P0, PC and

PG take 50.0, 116.5 and 194.9 s, respectively. Summary statistics for

Example 1 and 2 with 400 expected true positives are shown in

Tables 1 and 2, respectively. Those with 40 expected true positives

are shown in Supplementary Tables S4 and S5, respectively.

Simulation suggests that the marginal approach is in general infer-

ior. With weak correlations, it identifies fewer true positives. When

there are strong correlations, it can have satisfactory performance in

terms of true positives, however, at the price of a huge number of

false positives. We have experimented with adjusting the target FDR

value so that the number of true positives is comparable to that of

the proposed method and found that the marginal approach has sig-

nificantly more false positives (results omitted). For the penalization

methods, when CNAs and GEs are only weakly correlated, perform-

ance of different methods is similar. For example, in Table 1 with

the AR correlation structure and ðq1;q2Þ ¼ ð0:1;0:1Þ, the four pen-

alization methods identify 385.6 (P0), 385.5 (PC), 388.2 (PG) and

388.3 (PGC) true positives, with 26.4, 25.9, 23.7 and 24.2 false posi-

tives, respectively. In addition, the prediction performance is also

similar. However, when there exist moderate to strong correlations,

the advantage of proposed method becomes obvious. For example

in Table 1 with the AR correlation structure and

ðq1;q2Þ ¼ ð0:5;0:1Þ, P0 identifies 384.2 true positives, whereas PCG

identifies 396.9 true positives, at the price of a few more false posi-

tives. When ðq1;q2Þ ¼ ð0:9;0:9Þ, P0 only identifies 148.8 true posi-

tives, in comparison to 335.3 of PGC. In addition, PGC also has

better prediction performance with ME equal to 8.00, compared to

38.13 of P0. The block correlation structure and Table 2 show simi-

lar patterns. Supplementary Tables S4 and S5 suggest that the pro-

posed method also has superior performance when there are 40

expected true positives.
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The inferior performance of the marginal approach is as ex-

pected, as a GE is jointly affected by multiple CNAs while the mar-

ginal approach analyses only one CNA at a time. It is interesting to

note that the proposed PGC outperforms or is comparable to P0

across the whole spectrum of simulation with different correlation

structures. Thus it can be ‘safe’ to use it in practice when the true

correlation structure is unknown. With weak correlations, PGC and

P0 perform similarly. PGC targets taking advantage of the intercon-

nections among CNAs and GEs. When such interconnections are

weak or do not exist, PGC cannot improve much over P0. It is also

observed that after accounting for the network structure of CNAs,

accounting for that of GEs leads to small improvement. This is also

reasonable as in the simulated data, the interconnections among

GEs are largely caused by those among CNAs. However, as we do

observe moderate improvement of PGC over PC under multiple scen-

arios, it is sensible to account for both networks. PGC may lead to a

few more false positives, as the newly added Laplacian penalties

have a squared form, are dense penalties, and tend to ‘pull’ zero co-

efficients towards correlated important ones. In the simulated ex-

amples, the block sizes are equal. We have also experimented with

unequal sizes and found comparable results (details omitted).

5 Data analysis

We first analyse the TCGA (http://cancergenome.nih.gov/) data on

glioblastoma (GBM). GE and CNA measurements are available on

479 patients. We download and analyse the processed level 3 data.

The GE measurements were originally generated using the custom

Table 1. Simulation study of Example 1 with 400 true positives

Correlation AR Block

ðq1; q2Þ marginal P0 PC PG PGC marginal P0 PC PG PGC

(0.1, 0.1) – 10.5(0.9) 10.4(0.9) 8.9(1.0) 8.9(1.0) – 7.48(0.93) 7.39(0.85) 6.32(0.85) 6.28(0.85)

198.4(18.8) 385.6(9.3) 385.5(8.7) 388.2(8.8) 388.3(8.7) 261.5(18.0) 391.0(9.0) 391.2(9.1) 393.9(9.1) 393.9(9.1)

39.3(6.5) 26.4(10.7) 25.9(10.4) 23.7(5.9) 24.2(5.9) 51.4(6.4) 10.6(6.7) 10.4(6.7) 11.5(5.7) 11.1(5.5)

(0.1, 0.9) – 9.88(1.92) 9.78(1.86) 9.22(1.93) 9.11(1.82) – 7.38(1.37) 7.37(1.35) 6.87(1.31) 6.80(1.25)

194.5(10.4) 388.0(9.0) 388.2(8.7) 390.4(9.4) 390.1(9.3) 255.7(11.0) 391.5(8.0) 391.5(8.0) 393.3(7.8) 393.3(8.1)

38.5(6.3) 23.5(9.2) 23.1(6.7) 29.6(11.2) 27.4(10.1) 50.1(6.9) 11.0(4.8) 10.9(5.6) 14.1(6.3) 13.9(6.1)

(0.5, 0.1) – 8.25(1.10) 5.98(0.68) 6.22(0.77) 5.54(0.66) – 5.69(0.55) 4.70(0.33) 5.07(0.41) 4.66(0.33)

353.6(16.6) 384.2(7.7) 394.9(7.9) 393.8(7.4) 396.9(7.8) 396.9(12.4) 391.2(9.6) 397.2(8.9) 395.1(9.5) 397.3(8.8)

92.5(10.5) 6.8(3.0) 12.6(6.0) 13.6(6.9) 16.3(7.7) 95.1(9.6) 3.3(2.5) 9.8(4.9) 9.3(5.8) 9.3(4.7)

(0.5, 0.9) – 8.10(1.67) 5.86(1.13) 6.78(1.33) 5.63(0.98) – 5.90(0.97) 4.79(0.66) 5.21(0.77) 4.75(0.64)

353.1(11.8) 384.8(8.0) 395.1(7.9) 391.1(7.6) 396.0(7.9) 395.3(9.5) 390.2(8.0) 396.9(7.7) 394.6(8.0) 397.3(7.7)

91.8(7.9) 8.5(4.2) 13.4(6.6) 15.3(6.3) 16.0(7.0) 96.7(8.8) 3.2(2.2) 9.4(5.3) 9.9(5.6) 10.7(6.1)

(0.9, 0.1) – 38.53(2.16) 7.88(0.69) 10.92(1.57) 7.67(0.61) – 50.71(1.99) 6.51(0.63) 30.66(2.94) 6.54(0.62)

398.4(10.1) 147.0(10.2) 333.1(10.5) 308.0(13.4) 336.9(10.6) 398.4(10.0) 99.1(3.0) 351.4(10.3) 210.5(14.0) 350.4(10.1)

1575.5(161.1) 96.8(45.8) 48.8(20.3) 94.3(15.6) 51.2(13.4) 102.5(9.5) 4.2(14.4) 36.8(6.0) 45.5(34.6) 36.3(5.6)

(0.9, 0.9) – 38.13(2.95) 8.07(0.99) 11.32(1.37) 8.00(1.01) – 50.17(2.61) 6.75(1.04) 30.34(3.23) 6.78(1.10)

400.4(9.9) 148.8(10.9) 332.2(14.2) 309.5(12.7) 335.3(15.6) 400.5(9.9) 99.1(4.4) 345.8(11.0) 205.0(18.0) 345.0(10.9)

1571.9(116.4) 98.2(46.7) 49.5(19.2) 90.5(18.1) 57.5(13.7) 99.9(10.0) 6.0(15.6) 38.2(5.9) 29.8(17.9) 35.7(6.1)

In each cell, the three rows are model error, number of true positives and number of false positives. The marginal approach does not generate model errors.

Mean (standard deviation).

Table 2. Simulation study of Example 2 with 400 true positives

Correlation AR Block

ðq1; q2Þ marginal P0 PC PG PGC marginal P0 PC PG PGC

(0.1, 0.1) – 18.66(2.66) 18.66(2.66) 16.59(2.57) 16.60(2.56) – 16.96(1.79) 16.91(1.72) 14.71(1.72) 14.72(1.74)

94.8(9.7) 378.9(10.6) 378.9(10.6) 381.7(10.6) 381.7(10.6) 120.7(14.7) 380.4(8.3) 380.2(8.4) 384.3(9.8) 384.3(9.8)

19.4(4.7) 82.2(21.3) 82.4(21.3) 75.9(20.7) 76.3(20.3) 24.2(5.7) 65.4(26.9) 63.8(23.8) 61.1(23.0) 62.2(24.4)

(0.1, 0.9) – 18.84(2.52) 18.85(2.53) 16.68(2.15) 16.67(2.13) – 17.05(3.13) 17.03(3.14) 15.09(3.20) 15.10(3.20)

95.0(13.2) 373.6(11.6) 373.7(11.6) 380.5(12.0) 380.6(12.0) 119.6(12.4) 376.3(11.1) 376.5(11.2) 382.2(10.5) 382.1(10.5)

18.5(5.6) 70.2(21.9) 70.6(21.9) 87.4(32.8) 87.6(32.1) 23.5(5.7) 60.7(26.8) 61.4(26.6) 74.7(29.4) 74.8(30.4)

(0.5, 0.1) – 52.71(2.37) 52.61(2.39) 51.99(2.36) 51.94(2.42) – 53.80(2.88) 53.34(2.72) 51.05(3.07) 50.97(3.03)

68.7(10.1) 169.3(18.4) 170.4(18.4) 177.5(18.5) 178.3(18.5) 136.3(16.1) 237.8(34.9) 234.4(27.7) 267.6(35.0) 263.8(38.4)

17.2(4.2) 54.0(30.4) 57.1(30.2) 60.5(31.0) 62.0(30.5) 28.2(5.5) 149.3(106.8) 121.6(87.4) 210.5(131.2) 196.8(140.2)

(0.5, 0.9) – 53.64(3.31) 53.43(3.28) 49.75(3.50) 49.78(3.54) – 52.99(4.51) 52.70(4.72) 45.47(5.09) 45.32(5.11)

73.3(11.6) 175.7(23.3) 174.8(19.0) 219.2(27.9) 215.9(30.0) 137.5(12.5) 245.9(36.9) 236.1(41.7) 275.2(32.2) 276.4(31.9)

18.2(4.5) 63.7(49.2) 59.3(38.1) 115.8(64.6) 108.7(64.7) 31.4(6.2) 167.3(99.8) 127.0(102.3) 168.2(91.0) 171.3(93.2)

(0.9, 0.1) – 17.41(0.92) 15.35(0.93) 15.72(0.94) 15.25(0.89) – 17.84(0.65) 12.06(0.88) 16.81(0.73) 12.03(0.78)

214.4(24.5) 71.5(7.3) 117.2(16.8) 97.3(10.4) 118.8(15.6) 232.0(21.2) 68.6(5.0) 219.4(20.1) 84.7(8.1) 220.5(18.4)

449.0(81.4) 22.9(6.1) 57.7(18.5) 37.1(9.5) 58.77(18.0) 56.9(7.6) 3.1(2.2) 27.1(8.3) 6.2(4.0) 26.1(7.4)

(0.9, 0.9) – 17.71(1.14) 15.53(1.23) 15.48(1.09) 15.30(1.17) – 17.57(0.97) 12.07(1.01) 14.87(0.96) 11.28(1.07)

211.3(19.4) 72.4(9.7) 123.3(22.6) 115.9(14.3) 126.9(20.8) 224.3(20.7) 68.6(5.9) 217.0(21.5) 135.6(14.2) 230.9(22.6)

439.7(64.6) 22.7(8.0) 65.8(26.9) 63.3(19.0) 69.1(25.7) 57.3(7.7) 3.1(2.4) 27.0(8.8) 18.4(6.6) 26.9(7.6)

In each cell, the three rows are model error, number of true positives and number of false positives. The marginal approach does not generate model errors.

Mean (standard deviation).
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Agilent 244K array platforms. The analysed data are the robust

Z-scores, which are lowess-normalized, log-transformed, and me-

dian-centered version of gene expression data that take into ac-

count all of the gene expression arrays under consideration. The

measurement determines whether a gene is up- or down-regulated

relative to the reference population. The CNA measurements were

originally generated using the Affymetrix SNP6.0 platforms. The

loss and gain levels of copy number changes have been identified

using the segmentation analysis and GISTIC algorithm and ex-

pressed in the form of log2 ratio of a sample versus the reference

intensity. We analyse the apoptosis pathway. The set of genes is

identified from Gene Ontology (GO) using the annotation package

in GSEA (http://www.broadinstitute.org/gsea). Apoptosis is a

regulated cellular suicide mechanism by which cells undergo death

to control cell proliferation or in response to DNA damage. The

apoptosis pathway is a hallmark of cancer (Khanna and Jackson,

2001). For the GBM data, there are 298 GEs and 338 CNAs in this

pathway.

Figure 1 contains the heatmaps of the correlation coefficient

matrices for both CNAs and GEs, after reordering the variables

based on the hierarchical clustering so that highly correlated

CNAs and GEs are clustered with block structures along the diag-

onal. The two plots show several blocks representing densely con-

nected subgraphs for CNAs and GEs. The subgraphs for CNAs are

further shown in Figure 2.

Beyond the marginal and four penalization methods as described

in simulation, we also consider Puni, which regresses one GE on all

CNAs at a time and applies penalized selection. For all penalization

methods, the tuning parameters are selected using V-fold cross valid-

ation. For the 298�338 regression coefficient matrix b, 2747 (mar-

ginal), 3022 (Puni), 2662 (PGC), 1736 (P0), 2206 (PC) and 1917 (PG)

non-zero elements are identified. Different methods identify different

sets of associations. For example, there are only 104 overlaps between

the marginal approach and PGC. For PGC and P0, we show in Figure 1

the positions of non-zero regression coefficients (represented by red

pixels). The rows and columns have been rearranged corresponding

to the upper panels of Figure 1. Corresponding results under Puni are

provided in Supplementary Appendix. More details on the other

methods are available from the authors. PGC identifies more non-zero

elements than P0, PC and PG, which is in line with the observations

made in simulation. When more closely examining the identified

CNAs, we find that several critical genes, including IFNB1, HIPK3,

CASP3, TIAL1, MAP3K10, VEGFA and CDKN2A, have been associ-

ated with quite a few GEs. PGC employs Laplacian penalties, which

encourage the similarity of regression coefficients. We evaluate the

similarity of columns of the regression coefficient matrix. We sum

over the off-diagonal elements in the correlation matrices of regres-

sion coefficients, and obtain 399.2 for PGC, 357.7 for P0 and 177.5

for Puni, which suggests a higher level of similarity for PGC.

As a representative example, we also take a closer look at the

PTEN gene. PTEN acts as a tumor suppressor through the action of

its phosphatase protein product. This phosphatase is involved in the

regulation of cell cycle, preventing cells from growing and dividing

too rapidly. The identified CNAs and their estimated regression co-

efficients are shown in Table 3. Under the five penalization methods,

CNA PTEN has positive regression coefficients, and their magni-

tudes are the largest. However, the marginal approach misses this

CNA. PGC identifies the most CNAs. Our analysis suggests that the

expression of PTEN is associated with not only its corresponding

CNA but also a few others. In Figure 2, we also show the CNAs

identified using different methods with respect to the subgraphs. For

PGC, five subgraphs contain at least two identified CNAs. In con-

trast, P0 identifies one such subgraph, and Puni identifies none

(Supplementary Appendix).

The apoptosis pathway is cancer related. In Supplementary

Appendix, we also conduct two additional analyses which may serve

as ‘negative controls’. In the first set of analysis, we analyse the cellu-

lar localization pathway in the GBM data. The cellular localization

pathway is biologically important. However, there is no evidence that

it is associated with GBM or other cancers. In the second set of ana-

lysis, we analyse the gluconeogenesis pathway in the TCGA LIHC

(liver hepatocellular carcinoma) data. The biological process regu-

lated by this pathway is specific to liver and kidney in mammals.

Detailed results are presented in Supplementary Appendix. The over-

all conclusions are similar to those drawn for the apoptosis pathway.

In our analyses, we focus on specific pathways, with the expect-

ation that different pathways have different biological functions. Some

genes belong to multiple pathways. For such genes, analysing them in

different pathways will lead to different sets of identified CNAs. One

way to solve this problem is to expand the proposed analysis to mul-

tiple pathways, which may lead to increased computational cost.

6 Discussion

Multiple types of genetic, epigenetic, and genomic changes can hap-

pen on the human genome. It is important to understand their rela-

tionships. Using GE and CNA as an example, we have developed a

Fig. 1. Analysis of the apoptosis pathway in GBM. Left-upper: heatmap for the

correlation matrix of CNAs. Right-upper: heatmap for the correlation matrix

of GEs. Left-lower: positions of the non-zero coefficients under PGC. Right-

lower: positions of the non-zero coefficients under P0

Fig. 2. Networks of CNAs in the apoptosis pathway in GBM. Red dots corres-

pond to CNAs with non-zero coefficients for the expression of gene PTEN.

Left-upper: PGC. Right-upper: PC. Left-lower: PG. Right-lower: P0
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SDLS method. This method uses effective penalization for marker

selection and regularized estimation. Significantly advancing from

the existing studies, it adopts two Laplacian penalties to accommo-

date the interconnections among GEs and among CNAs. It has an

intuitive formulation and can be realized using an efficient CD algo-

rithm. Simulations show that it has comparable performance as the

alternatives when there are only weak correlations among GEs and

CNAs. However with moderate to strong correlations, as has been

commonly observed in practical data, it has significantly better iden-

tification and prediction performance. In data analyses, it identifies

associations different from those using the alternatives. The esti-

mated regression coefficient matrix has a higher level of row and

column similarity. Manually examining the analysis results for a few

representative genes suggests reasonable analysis results.

To better accommodate finer data structures, the proposed

method introduces new penalties with new tunings. The computa-

tional cost is thus higher than the alternatives, which is the price

paid for better modeling data. However, as the Laplacian penalties

are differentiable, the computational complexity is acceptable. To

reduce computational cost, one may set k2 ¼ k3, resulting in only

two tunings. Our numerical experience suggests that three tuning

parameters are also acceptable. As the main objective is to develop

the new method, we have adopted only one adjacency measure. We

acknowledge that there may exist other perhaps better adjacency

measures. However, it is not our goal to compare and draw conclu-

sions on the relative performance of different adjacency measures.

Under multiple simulation settings, the proposed method has been

shown to be superior. More extensive simulations may be conducted

in the future. In data analyses, the proposed method identifies asso-

ciations different from the alternatives. Simple examinations suggest

that the results are reasonable. More extensive analyses are needed

to fully validate the findings.
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Table 3. Regression coefficients for the expression of gene PTEN in

the apoptosis pathway in GBM using different methods

marginal Puni P0 PC PG PGC

ACVR1B �0.231 �0.264 �0.282

ALB þ �0.261 �0.349

ANGPTL4 þ 0.530 0.792 0.580 0.787 0.890

ARHGDIA þ
BBC3 þ
HSP90B1 þ
PMAIP1 þ
SEMA4D þ
TNFSF14 þ
CASP3 �0.174 �0.178 �0.155 �0.174

CD27 �0.044

CD74 �0.227 �0.769 �0.738

DAPK2 �0.096 �0.428 �0.476 �0.402 �0.510

HIPK3 0.277 0.214 0.260 0.281

NUAK2 �0.063 �0.183 �0.149 �0.204 �0.184

PTEN 1.531 1.679 1.682 1.665 1.718

TIA1 �0.520 �0.991 �1.107 �0.935 �1.016

TXNDC5 0.497 0.441 0.490 0.404

CASP6 �0.204

GLO1 0.144 0.060 0.227

MAP3K10 0.318 0.424

TNFAIP8 �0.826 �0.915

GSK3B �0.494 �0.166

TIAF1 0.348 0.336

CALR �0.394

IL12A �0.098 �0.432

SNCA �0.492

STK3 0.217

TRIAP1 0.011

For the marginal approach, a ‘þ’ represents an identified association.
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