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RNA structure in splicing: An evolutionary perspective
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ABSTRACT
Pre-mRNA splicing is a key post-transcriptional regulation process in which introns are excised and exons
are ligated together. A novel class of structured intron was recently discovered in fish. Simple expansions
of complementary AC and GT dimers at opposite boundaries of an intron were found to form a bridging
structure, thereby enforcing correct splice site pairing across the intron. In some fish introns, the RNA
structures are strong enough to bypass the need of regulatory protein factors for splicing. Here, we
discuss the prevalence and potential functions of highly structured introns. In humans, structured introns
usually arise through the co-occurrence of C and G-rich repeats at intron boundaries. We explore the
potentially instructive example of the HLA receptor genes. In HLA pre-mRNA, structured introns flank the
exons that encode the highly polymorphic b sheet cleft, making the processing of the transcript robust to
variants that disrupt splicing factor binding. While selective forces that have shaped HLA receptor are
fairly atypical, numerous other highly polymorphic genes that encode receptors contain structured
introns. Finally, we discuss how the elevated mutation rate associated with the simple repeats that often
compose structured intron can make structured introns themselves rapidly evolving elements.
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Introduction

Pre-mRNA splicing is, perhaps, the most surprising step in
gene expression where intervening intronic sequence are
removed from nascent transcript and the remaining coding
exonic sequence are ligated to make mRNA which is then
translated into protein. The intron boundary is defined by 50
splice site (5ss) and 30 splice site (3ss). For the eukaryotic
nuclear pre-mRNA, the precise recognition of splice sites
and the splicing reaction is catalyzed by a large small nuclear
ribonucleoprotein (snRNP) complex, called the spliceosome,
which is de novo assembled onto each intron. The spliceo-
some is composed with several snRNP particles, namely U1,
U2, U4, U5 and U6, each containing a small RNA (typically
100 to 300 nucleotides [nts]) and many other proteins.1-3

Splicing takes place in 2 steps. In the first transesterification
reaction, U1 small RNAs basepair with the 5ss and U2 small
RNAs basepair with the branch site sequence. Interactions
between U1 and U2 bring the splice sites together to pro-
mote splicing. The initial basepairing between the 5ss and
U1 is disrupted and replaced by U6 interaction with the 5ss
after the engagement of the U4/U6/U5 tri-snRNP complex.
U2 and U6 basepairing displaces the original U4 and U6
basepairing, forming a catalytically active site that carries out
the first transesterification reaction. The 20-OH group of the
branchpoint nucleotide is bulged out to perform nucleophilic
attack on the 30 end of the upstream exon, resulting in a lar-
iat intermediate and a free upstream exon. Following rear-
rangement of snRNPs, the second transesterification step
occurs. In this step, the 30-OH group of the upstream exon

ligates to the 50 end of the downstream exon (3ss), producing
an excised intronic lariat and spliced exons.4,5

The recognition of the 3ss is distinct from 5ss recognition by
the nature of the signal. While U1snRNP recognizes the 9nt 5ss,
the 3ss is a bipartite signal that comprises a polypyrimidine tract
about¡4 to¡20 nt upstream of the 3ss6 and the 3ss AG dinucle-
otide. Many proteins in the U2 snRNP complex promote 3ss rec-
ognition and defects in these proteins are associated with
diseases.7-11 The U2 auxiliary factors U2AF1 recognizes 3ss AG
and U2AF2 binds to the polypyrimidine tract upstream from
the 3ss (Fig. 1A). The affinity of these elements to spliceosomal
small RNAs or auxiliary protein factors varies among transcripts
and thus lead to variable level of exon inclusion. In depletion
and add-back studies in vitro, U2AF2 has been suggested to play
an essential role in splicing.12-14 It is an essential gene for viabil-
ity in fly, worms and yeast.15-19 However, genome-wide U2AF2
binding studies show that »12% of human introns are not
bound by U2AF2, and knockdown of U2AF2 only affects the
inclusion level of »6% of the exons analyzed, suggesting that
some introns are more dependent on U2AF2 than others.20 Sim-
ilarly, studies utilizing human cell lines show that knockdown of
U2AF2 shifts the splicing toward introns harboring strong poly-
pyrimidine tracts,21 and that U2AF2 dependency can be elimi-
nated by replacement of a stronger 5ss.22 In addition, in fission
yeast S. pombe, a large number of introns remain efficiently
spliced upon the inactivation of U2AF,59 the U2AF2 homolog.
In this case stronger 5ss and A/U-rich sequence in the 50 intronic
region are associated with U2AF59-insensitive introns.23 Taken
together, these studies suggest that there exist compensatory
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mechanisms to bypass the need of essential splicing factors for
splice site recognition.

Structure-mediated splicing

Two key features of RNA molecules are the ability to form sec-
ondary structures and the transient nature of RNA. RNA is
bound by protein partners and forms structure soon after or
even during transcription. Complexes are recycled as RNA
degrades in the cell. RNA structures can alter the physical spac-
ing among sequence elements and may provide binding plat-
forms for RNA-binding proteins.24 Proteins recognizing
seemingly the same primary sequences may prefer distinct sec-
ondary structures or may differ in their ability to unwind struc-
tures.25 In this regard, RNA structures of the transcripts could
play important roles of regulating protein binding and splice
site interactions but, until recently, specific examples of RNA
structure and splicing remained anecdotal.

It is hypothesized that pre-mRNA splicing evolved from the
autocatalytic splicing observed in group II introns. Group II
introns are found in rRNA, tRNA, and mRNA of organelles
(chloroplasts and mitochondria) in fungi, plants, and protists,
and also in mRNA in bacteria. This hypothesis is due to the
remarkable structural similarity between domain V of group II
introns and the active catalytic site formed by U2 and U6 small
RNA pairing.26 Both group II introns and spliceosomal introns
utilize 2 transesterification steps and generate an intronic lariat

byproduct with an adenine branchpoint.27,28 For splicing to
occur, 2 splice sites must be brought to proximity.29 In group II
introns, the correct identification and pairing of splice sites is
performed exclusively through RNA secondary structure. For
spliceosomal introns, the self-catalytic features of group II
introns are largely replaced by spliceosomal RNPs and RNA-
binding proteins. For example, heterogeneous nuclear ribonu-
cleoproteins (hnRNPs) at 2 ends of an intron could interact
with each other to aid in the looping out of introns.30 Addition-
ally, interactions between U1 hnRNP at the 5ss and the exon-
binding serine/arginine-rich (SR) proteins,31 and interactions
between U1 and U2AFs at the 3ss32,33 are known to enhance
splicing (Fig. 1A). The correct pairing of splice sites in nuclear
introns could also be achieved by RNA-RNA interaction simi-
lar to the mechanism observed in group II introns.

Secondary structures can either inhibit or enhance splicing.
Studies have shown that stem structures at splice sites weaken
exon inclusion34 in a dosage-dependent manner.35,36 Sequence
variations that disrupt secondary structures of the splice sites
or introns can direct expression of disease-specific or tissue-
specific mRNA isoforms.37,38 Also, splicing enhancers and
silencers residing in a double-stranded region have less effect
on splicing because most of the RNA-binding proteins bind to
single-stranded sequences.39 Interestingly, regional variation of
GC composition can favor the formation of stronger or weaker
secondary structure. Systematic analysis of splice sites show
that high GC content of splice sites is associated with

Figure 1. Models of U2AF2-dependent and structure-dependent splicing. (A) U2AF2 recognizes the polypyrimidine tract upstream of the 3ss. It dimerizes with U2AF1 (not
shown) which recognizes the 3ss AG to facilitate U2 docking on the 3ss. The interactions between U1 and U2 snRNPs bring the 5ss and 3ss in close proximity, forming a
pre-splicing complex (A complex) toward the first step of splicing. (B) A special class of introns identified in fish and lamprey contains complementary runs of AC’s and
GU’s across introns. The complementarity bridges the introns so that the 5ss and 3ss are positioned for splicing. (C) Intronic bridging by complementary repeat sequences
were also suggested in humans. A variety of G, C and GC-rich repeats could play structural roles in pairing splice sites across introns. (D) Highly polymorphic genes, such as
human HLAs exhibit rapid and frequent sequence changes in the coding exons to accommodate the need of peptide variety. Therefore the exonic splicing elements, for
example exonic splicing enhancers (ESE’s), are not preserved. Introns flanking the highly polymorphic exons are GC-rich and have lower folding energy compared to
introns within the same length range. We hypothesize that the secondary structures of such introns bridge the splice sites, similarly to the fish AC- and GT-repeat contain-
ing introns, which compensate for the potential loss of exon definition. Red lines in the exons indicate single nucleotide polymorphisms.
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alternatively spliced exons,40 suggesting that regulation of
openness or accessibility of splicing elements could be a means
of alternative splicing regulation. Positive examples of second-
ary structure include the well-studied structure-mediated splic-
ing of Drosophila Dscam (Down syndrome cell-adhesion
molecule) gene. Dscam gene can potentially produce 38,016 dif-
ferent mRNA isoforms (in D. melanogaster) by selecting mutu-
ally exclusive exons from multiple exon clusters. Selection of
exons relies on competitive basepairing between the “docking”
element and the complementary “selector” element of each
exon cluster to bring the splice site to proximity for splicing.41-
48 In yeast S. cerevisae, secondary structures between 5ss and
branch site have been shown to facilitate splicing by minimiz-
ing physical distance between the U1 and U2 complex.49-51

Similarly, stem-loop structures between the branch site and 3ss
also facilitate splicing for distally located branch sites.52,53 A
very interesting example in S. cerevisiae shows that the stem
structure between the branch site and 3ss could serve as a ther-
mosensor for alternative 3ss selection, depending on which 3ss
was accessible by the spliceosome under the temperature-mod-
ulated structure.54 In addition, in mouse, long-range RNA-
RNA interactions that position Rbfox binding sites close to its
regulated exon facilitate the exon inclusion.55 These reports all
together indicate that secondary structure plays a critical role
throughout evolution in regulating the accessibility and the
functional outcome of primary sequence elements for pre-
mRNA splicing.

RNA structure replaces the need for essential factors in
splicing

In our recent report published in Genome Research,56 we identi-
fied evolutionarily conserved long complementary runs of AC
and GT repeats co-occurring at both ends of introns, bringing
the 5ss and 3ss in close proximity, thereby enhancing splicing
(Fig. 1B). Introns containing these repeats comprise »2% of
total introns and are found in »10% of zebrafish genes. This
analysis introduced thousands of new examples of structured
introns to the field. These repeat elements are enriched in fish
and lamprey but lost in mammals, suggesting it may be an
ancient splicing mechanism that preceded the divergence of tet-
rapods from fish. Interestingly, the sizes of AC and GT repeat-
containing introns across species regress toward a mean. In
other words, they tend to be larger than average in fish with
short introns and shorter than average in fish species with
larger introns, arguing that they evolved toward an optimal
range of length due to structural constraints. Importantly, The
AC and GT repeat-containing introns contain weaker polypyri-
midine tracts and are insensitive to U2AF2 antibody blockage
or knockdown. Systematic search of the intronic conserved
complementary “boxes” in Drosophila has shown the optimal
stem structures are 50 and 100 nt away from the 5ss and 3ss,
respectively, potentially to avoid disrupting essential splicing
elements, such as polypyrimidine tracts and splice sites; other-
wise the boxes would have inhibitory effect for exon inclu-
sion.57 Therefore, the proximity of AC and GT runs to the
splice sites are unusual in that the secondary structures reduce
the need of essential splicing signals encoded closely to the
splice sites.

It has not yet been proved that a similar mechanism of sec-
ondary structure replacing the need for essential splicing fac-
tors exists for human pre-mRNAs. However, the simultaneous
pairing of G triplets at the 50 end of introns with C triplets at
the 30 end of introns are enriched in human introns.56 More-
over, complementary C-rich and G-rich intronic sequences
occurring across conditionally skipped exons may loop out the
exon to support exon skipping.58 Systematic search of human
intronic complementary “boxes” suggest that long range RNA-
RNA interactions could facilitate splicing of introns with sub-
optimal splice sites.59 These observations suggest that comple-
mentary sequences and intronic secondary structures could
potentially bring splice sites to proximity and regulate splicing
in mammalian genomes (Fig. 1C).

While no enriched gene ontology was identified from zebrafish
genes containing AC-GT repeat introns, one property of structured
introns is a reduced dependence on trans-acting factors (i.e. the
activators and repressors of splicing). A typical exon encodes 4-5
exonic splicing enhancers in addition to the codons required to
specify the amino acids in the gene’s product. Certain genes (e.g.
human leukocyte antigen, HLA) are under unusual selective pres-
sure that drives those loci to increased levels of polymorphism. In a
case where splice site recognition is dependent on exonic splicing
enhancers (ESE’s) in exonic sequence, increased polymorphism
may result in a loss of processing. The HLA locus is a potentially
instructive example of this dilemma.HLA encodes proteins present
peptide fragments on the cell surface. Foreign (e.g., viral) protein
fragments that are successfully loaded intracellularly into the HLA,
effectively target the infected cell for clearance by the immune sys-
tem. This mechanism creates selective pressure on the pathogen to
evolve away from the specificity of the HLA receptor. Pathogens
that escape recognition create selective pressure on the host to gen-
erate a new allele of HLA loci to recognize the novel pathogen and
the ensuing “arms race” drives diversity at the HLA loci. One way
to compensate for the potential loss of splicing enhancer and/or
generation of splicing silencer in a rapidly evolving exon is to utilize
an alternate method of enforcing the correct splice site pairing that
is independent of variations in the exon (Fig. 1D). Extensive regions
of secondary structure that pair the 5ss to the 3ss are likely to be
resistant to pointmutations. Intron 2 inHLA gene family is flanked
by exons that encode the recognition cleft of the HLA receptor, the
most variable exons in the transcript. This second intron is by far
the most structured intron in the transcript but also ranks highly in
the genome: DG of intron 2 of HLA-A, HLA-B and HLA-C are:
¡124.61 (stability of structure: 96th percentile in genome),
¡132.46 (98th percentile) and ¡135.70 kcal/mol (98th percentile),
respectively (Fig. 2A). Expanding the search to all genes, exons that
neighbor structured introns are significantly enriched for SNPs
(Fig. 2B). These results suggest that intron bridging structure can
bypass the need for auxiliary splicing elements such as ESE’s in the
primary sequence. Structured introns may also be less vulnerable
to variants that create negative silencer elements in the exon, mak-
ing this region unaffected by high levels of exonic variation.

RNA structures in evolution

Mutation and selection drive evolution and are major determi-
nants of sequence conservation observed between orthologous
loci in different species. Mutations can alter primary sequence
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information as well as residues involved in secondary structure
formation. However, stable structures can be more resistant to
mutations and it is why mutations occur at higher frequencies
in many structured introns. Indeed, human structured introns
are significantly less conserved than average (PhyloP100wayAll
score ¡0.2 vs. 0.0, P-value < 0.0001). The dimer repeats used
to bridge introns in fish are one of the fastest-evolving motifs
presumably due to the high rate of mutation through replica-
tion slippage.60,61 The expansions and contractions of zebrafish
AC repeats occur at a frequency of 1.5 £ 10¡4 per locus per
gamete per generation, about 10 thousand times higher than
other types of mutations.62,63 Although the mutation rate of
microsatellites (i.e., AC repeats) in fish corresponds to that in
mammals, the mutation in fish often causes gain or loss of mul-
tiple repeats whereas it rarely does in mammals.62,64, 65 Given
this bias toward creating short blocks of AC or GT repeats, it is
possible to see how a hairpin that bridges introns could arise or
be destroyed by a single mutational event. However, we have
shown that the bridging efficiency plateaus at 6 repeats, which
may explain how its function is preserved even with high muta-
tion rates.56

Concluding remarks

The recently discovered class of structured introns shares char-
acteristics of both spliceosomal and group II introns. In this
regard, these introns, which predate the divergence of tetrapods
from teleosts, could represent a potential intermediate in the
origin of modern nuclear intron.

Probing RNA secondary structure is not a simple task. The
computational calculation often has length limitations and bias
toward to a close-end structure,66,67 in which the lowest energy
structure often places the ends of the RNA folding window in
close proximity. Additionally, the biochemical approach is lim-
ited to a few number of candidates and is best established in
vitro without taking the dynamic in vivo environment into
account. However, as no RNAs are unstructured, secondary

structure must be considered for all aspects of RNA biology,
including but not limited to intermolecular interactions, spac-
ing of sequence elements and catalytic functions. Cis-regulatory
elements could be buried deep in the intron for splicing regula-
tion. Moving forward, a major focus of RNA biology will be
increasing the understanding of how secondary structures are
controlled under different stimuli and various physiological/
pathological conditions.
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