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Between-subject and within-subject variability is ubiquitous in biology and

physiology, and understanding and dealing with this is one of the biggest chal-

lenges in medicine. At the same time, it is difficult to investigate this variability

by experiments alone. A recent modelling and simulation approach, known as

population of models (POM), allows this exploration to take place by building

a mathematical model consisting of multiple parameter sets calibrated against

experimental data. However, finding such sets within a high-dimensional

parameter space of complex electrophysiological models is computationally

challenging. By placing the POM approach within a statistical framework,

we develop a novel and efficient algorithm based on sequential Monte Carlo

(SMC). We compare the SMC approach with Latin hypercube sampling

(LHS), a method commonly adopted in the literature for obtaining the

POM, in terms of efficiency and output variability in the presence of a drug

block through an in-depth investigation via the Beeler–Reuter cardiac electro-

physiological model. We show improved efficiency for SMC that produces

similar responses to LHS when making out-of-sample predictions in the

presence of a simulated drug block. Finally, we show the performance

of our approach on a complex atrial electrophysiological model, namely the

Courtemanche–Ramirez–Nattel model.
1. Introduction
Many complex mathematical models, such as those for neural or cardiac excit-

ability, are characterized by parameters living in a high-dimensional parameter

space. In these applications, it is possible that only a small subset of this

parameter space is required to explain the between-subject variability observed

in experimental data.

A number of studies in systems electrophysiology have explicitly addressed

the challenge of explaining between-subject variability in the response of

specific neurons or particular cardiac muscle cells to an externally applied elec-

trical stimulus by introducing the concept of ‘population of models’ (POM)

[1–5]. The term ‘population of models’ arises from the notion that a mathemat-

ical model is typically considered to be the underlying set of model equations in

conjunction with a specific set of model parameter values. In the statistical lit-

erature, however, this would be considered as being only a single model, with a

set of parameter values sampled from some underlying population distribution.

Such a model is often referred to as a random effects model.

In the POM approach, a particular system of equations is fixed (typically a given

set of differential equations), and different combinations of the equation parameters

are considered in order to generate a collection of models. These models are then cali-

brated, so that only the ones consistent with observed experimental data are kept in

the final POM. The calibrated POM is then often used to make ‘out-of-sample’
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predictions, such as predicting the cellular electrophysiological

changes produced by a drug-induced conduction block [2] or by

different expression levels of mRNA in failing human hearts [6].

In the POM literature, different methods have been used to

sample from a multidimensional parameter space and to

generate the initial collection of models. Gemmell et al. [7],

for example, combine random sampling with a method

known as clutter-based dimension reordering, enabling the

visualization of a multidimensional parameter space in two

dimensions, whereas Sánchez et al. [3] adopt a sampling

method based on decomposition of model output variance,

known as the extended version of the Fourier amplitude sensi-

tivity test originally developed by Saltelli et al. [8]. Another

option often found in the POM literature to explore the multi-

dimensional parameter space and generate the initial collection

of models is a method known as Latin hypercube sampling

(LHS; see [2,9–11] for example). LHS is a technique first intro-

duced by McKay et al. [12]. Suppose that the d dimensional

parameter space is divided into n equally sized subdivisions

in each dimension. A Latin hypercube trial is a set of n
random samples with one from each subdivision; that is,

each sample is the only one in each axis-aligned hyperplane

containing it. McKay et al. [12] suggest that the advantage of

LHS is that the values for each dimension are fully stratified,

whereas Stein [13] shows that with LHS there is a form of

variance reduction compared with uniform random sampling.

In this work, we focus on the POM method using a statisti-

cal framework, both in terms of methodological development

and data analytic considerations. We show connections

between a method originating in population genetics, known

as approximate Bayesian computation (ABC), and POM, in

particular, to develop a computationally efficient algorithm

for POM. ABC has been developed in order to perform

Bayesian statistical inference for models that do not possess

a computationally tractable likelihood function [14]. ABC

algorithms involve searching the parameter space until a

certain number of parameter values are found that generate

simulated data that are close to the observed data. ‘Close’ is

typically defined as a user-specified discrepancy function

involving some carefully chosen summary statistics of the

data. The optimal choice of summary statistics represents a

trade-off between information loss and dimensionality [15].

The output of ABC is a sample of parameter values from

an approximate posterior distribution (the probability dis-

tribution of the parameters conditional on the data). The

approximation depends on the choice of summary statistics

and on how stringently the simulated data are matched

with the observed data.

The original ABC rejection algorithm [14] involves repeated

random sample selections from the parameter space until a cer-

tain number of sufficiently close samples is generated. If the

posterior distribution is quite different from the prior distri-

bution, then this method is known to be highly inefficient.

To improve efficiency, Markov chain Monte Carlo (MCMC)

methods can be used to sample from the approximate

posterior (referred to as MCMC ABC [16]). MCMC involves pro-

posing new parameter values locally via a Markov chain and

accepting those proposals with a certain probability to ensure

that the limiting distribution of the Markov chain is the posterior

distribution of interest. However, because MCMC ABC relies on

a single chain, it can sometimes get stuck in low posterior

regions, so a collection of sequential Monte Carlo (SMC)

methods has been developed (referred to as SMC ABC) [17–19].
The aims of this article are as follows. First, we develop a

statistical framework for POM that provides insight into the

outcomes of a POM approach and the impact of data sum-

marization. We devise a novel computational algorithm for

POM based on SMC using the developments in SMC ABC

as guidance. We then compare this method with an exist-

ing approach based on LHS and random sampling. As a case

study, we consider the Beeler–Reuter (BR) cardiac cell model

[20]. We compare the performance of the POM methods (LHS

and SMC) by analysing how certain biomarkers behave, based

on the action potential, as a function of the ‘maximal current

densities’ associated with four ion channels (see §3), and also

for different summary statistic dimensions. We then make some

predictions as to how the two approaches compare when we

reduce the maximal current density of a selected potassium chan-

nel, thus mimicking the effect of a pharmaceutical drug block. As

a by-product of our analysis, we also gain insights into how

reliably parameter ranges of this model can be recovered based

on what information of the solution profile is used.
2. Methods
2.1. A statistical framework for population of models
We generally assume that the phenomenon under study can be mod-

elled by a mathematical model, denoted by m(u), with u being an

unknown parameter of the model with parameter space Q # Rd

where d is the number of components in the parameter vector. We

assume that the output of the model is deterministic with a solution

function denoted by x(u), where x(�) is a scalar function. The methods

that we specify later still apply if x(�) is a vector-valued function.

We also assume that a highly accurate numerical solver for x(u) is

available, so that the numerical error is negligible.

Data are collected on n subjects. We assume that data y from

a subject have the same support as the model output x(u). For

simplicity, we assume that observations on the ith subject are

replicated a sufficiently large number of times, so that the data y
are assumed to be sample averages with negligible standard error.

Under this assumption, it is reasonable to suggest that the averaged

data from a particular subject may be explained by a differential

equation with a certain parameter configuration. Further, we

assume the data y are measured without error, which may not

be realistic. We will consider the case of measurement error in

future research. Interest then is in finding parameter values of this

differential equation model in order to capture the between-subject

variability in the averaged data. That is, it is assumed that the within-

subject variability is negligible compared with the between-subject

variability. Note that in actual experiments [2,3] it is unlikely that

it is possible to replicate the experiment many times on an indivi-

dual subject. For such cases, the objective is to capture both the

within-subject and between-subject variability.

We assume that u i denotes the (unobserved) parameter

specific to the ith subject. The parameter for the ith subject is

drawn from some probability distribution, i.e. u i � gðuÞ. Our

objective is to estimate or learn the distribution g(u) based on

the observed data, y ¼ (y1, . . . , yn) by finding a set of u values

that produces model outputs x(u) close to y in some sense.

We assume there is an underlying population of subjects with

a population density for y given by f (y) and that the data y are a

random sample from the population with density f (y). We

define the population distribution, h(x), of the model output x(u)

when u is drawn from the distribution g(u), that is, h(x) is the

density of x(u) when u � g(u)

hðxÞ ¼ lim
dx!0

1

dx

ð
xðuÞ[ðx,xþdxÞ

gðuÞdu:
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Estimation of g(u) can be formulated in various ways, using ideas

from the statistics literature. For example, an approach adopted

from variational Bayes theory (e.g. Bishop [21, ch. 10]), where an

intractable posterior distribution is approximated analytically,

would involve finding g(u) to minimize the Kullback–Leibler

divergence (KLD) between h(�) and f (�).
As xðuiÞ is a function, we cannot store or observe all the

information from it for each subject. In the case of cardiac

electrophysiology models, the action potential has a character-

istic shape, and so a general functional form is known. Thus, it

is common practice in the POM literature to summarize the

data for the ith subject to give Si ¼ S(yi), where S(�) is a function

that maps the action potential onto a vector of finite dimension K.

Here, Si ¼ (Si
1, . . . , Si

K). The full set of observed summary

statistics for all n subjects is denoted S ¼ (S1, . . . , Sn).

This dimension reduction of the full dataset leads to a loss of

information and impacts on the estimation of g(u). The summary

statistic function S(�) should be chosen carefully, so that the sum-

mary statistic carries most of the information regarding u present

in the data y. The ABC literature suggests choosing S(�) so that

the summary statistics are sensitive to changes in u. As is

common practice in ABC, it might be necessary to run POM

with different choices of S(�). To emphasize that the output of

POM depends on S(�), we note that POM will produce an esti-

mate of gS(u) rather than g(u). In the case study highlighted

later in this section, we propose two different functions for S(�)
and present the outcomes in §3.

In the POM literature, a method is devised to generate

samples from gS(u) based on the information contained in S

without having to propose some parametric form for gS(u),

which might be a common approach in the random effects stat-

istics literature. Instead of using a closeness measure based on

a functional metric such as the KLD, a common approach in

the POM literature is to use a data analytic approach by keeping

all u values proposed that produce simulated summary statistics

Su ¼ S(u) that satisfy a set of K constraints formulated from the

observed data summary statistics S. Implicitly, gSðuÞ is defined

uniformly over the set fu [ Qg>K
c¼1 (Su

c [ Ac), where Q denotes

the parameter space that is searched. Here, (�) denotes the indi-

cator function, Su
c is the cth simulated summary statistic obtained

from the model parameter u and Ac is a set of values of the cth

summary statistic formulated from the observed summary stat-

istics Sc ¼ (S1
c , . . . , Sn

c ) and defines a range for which the

simulation is said to ‘match’ the cth summary statistic.

For example, Britton et al. [2] set Ac ; ( min (S1
c , . . . , Sn

c ),

max (S1
c , . . . , Sn

c )). We note that the min/max range generally

increases with the sample size n, but it might be a reasonable

choice when n is small. The repeated sampling probability cover-

age of this Ac, based on the range of the population distribution

of Sc, is (n 2 1)/(n þ 1) [22]. Small sample sizes are common in

cardiac electrophysiology experiments as they are expensive

and subject to many ethical constraints.

Here, we consider another way to form the constraints. Let �Sc

and sc denote the sample mean and standard deviation of the

data for the cth summary statistic. Then, we set Ac ; �Sc + ksc

for some chosen value of k. Here, we set k ¼ 2, indicating an

approximate 95% confidence interval (CI) for the population

mean of the cth summary statistic. The calibration of the value

of k using the 95% CI does assume that each summary statistic

is approximately normally distributed. Using an interval based

on quantiles, such as the 95% central quantile interval of the

data for Ac, would better accommodate asymmetry in the data.

We note that the CI and quantile interval approaches are less

dependent on the sample size, n, in the sense that the constraints

will converge in probability to fixed quantities as the sample size

increases and are therefore more stable. Our methodology can be

applied to any form of the constraints, and for simplicity, we

consider the range and CI constraints.
2.2. A sequential Monte Carlo algorithm for population
of models

We consider three sampling approaches for POM. The first simply

randomly samples parameter values from the specified parameter

space (we refer to this as the random (RND) method). The second

is LHS (see [2] for an example in electrophysiology). See appendix

A of the electronic supplementary material for more details on our

LHS approach. Below, we describe our novel method, based on SMC.

Here, we formulate the problem of finding parameter values

that satisfy a set of K constraints into one of sampling from a prob-

ability distribution. The ‘target’ distribution, pK(u), is given by the

following expression:

pKðuÞ/ pðuÞ
YK
c¼1

ðSu
c [ AcÞ: ð2:1Þ

The range of the probability distribution p(u) defines the original

parameter space to search. A natural choice for p(u) is a uniform dis-

tribution over the specified range of the parameters. In Bayesian

statistics, p(u) is termed the prior distribution, and it is possible to

incorporate information from previous experiments and expert

opinion into this distribution. Note that the construction in (2.1)

does not assume that the summary statistics are independent. For

a particular u to have non-zero probability mass, it must generate

statistics Su that satisfy the constraints jointly.

The target distribution in (2.1) appears as a target distri-

bution commonly encountered in ABC. ABC involves searching

the parameter space of a stochastic model with a computationally

intractable likelihood function until a certain set of parameter

values are found that lead to simulated summary statistics that

are close to the observed summary statistics. In ABC, the con-

straint might be defined as (rc(S
u
c ,Sc(y)) � 1c), where Sc(y) is

the cth summary statistic of the observed data and rc(S
u
c ,Sc(y))

is some user-specified discrepancy function that measures the

similarity between Su
c and Sc(y). In the context of ABC, interest

is in bringing ec as close to 0 as possible. The motivation of

our work is different, because we pre-specify some interval

of allowable summary statistic values Ac in order to find

sets of parameters that can explain the between-subject varia-

bility of the observed data. However, we may harness the

methodological developments in SMC ABC to build an efficient

computational algorithm to generate samples from (2.1).

SMC methods have been developed for generating samples

from a sequence of smoothly evolving probability distributions

p0(u), p1(u), . . . , pT(u), where p0(u) is easy to sample and pT(u)

is the target distribution (assumed to be difficult to sample).

It does this by traversing a set of N weighted samples (or ‘par-

ticles’) through the sequence of distributions by iteratively

applying a set of importance sampling, re-sampling and pertur-

bation steps. Importance sampling is used to move particles

between distributions, the re-sampling step is used to maintain

a reasonable effective sample size (ESS, the number of perfect

samples that the weighted sample is worth) and the perturbation

step ensures that a diverse set of particles represents each distri-

bution. After the tth iteration of SMC, a set of properly weighted

samples fui
t, Wi

tg
N
i¼1 are obtained from the distribution pt(u),

where u i
t and Wi

t are the ith sample and weight from target t,
respectively (see [23,24]). Note that SMC can provide a better

exploration of the total parameter space than MCMC, and in

SMC, it is possible to perform expensive computations associated

with each particle in parallel.

In the context of the target distribution in (2.1), a natural

choice for the sequence of target distributions required for

SMC is to introduce the constraints one at a time

ptðuÞ/ pðuÞ
Yt

c¼1

ðSu
c [ AcÞ, for t ¼ 1, . . . , K:
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However, if a particular constraint results in a significant

reduction in the plausible parameter space, then SMC may not

be very robust. For example, there may be only a small

number of particles that satisfy the next constraint (with all

other particles having zero weight), implying that it could be dif-

ficult to construct an efficient proposal for the perturbation step

(referred to as particle degeneracy). In the worst case, there may

be no particles satisfying the next constraint, and the method

breaks down completely (all particles have zero weight). There-

fore, we allow the (novel) possibility of several intermediate

distributions between distributions t and t þ 1

pj
tðuÞ/ pðuÞ

Yt

c¼1

ðSu
c [ AcÞ

( )
ðSu

tþ1 [ Aj
tþ1Þ,

for j ¼ 1, . . . , Ktþ1,

ð2:2Þ

where A1
tþ1 . A2

tþ1 . � � � . AKtþ1

tþ1 ;Atþ1. Here, pKtþ1

t (u) ; ptþ1(u).

In this sequence of targets, we do not enforce the algorithm to

satisfy the (t þ 1)th constraint straightaway, but allow it to

move smoothly between distributions t and t þ 1. We are able

to determine the sets Aj
tþ1 adaptively in the algorithm (see

below). If a particular constraint does not reduce the plausible

parameter space substantially, then it is likely that these inter-

mediate distributions are not required. Our SMC algorithm is

able to determine when the intermediate distributions are necess-

ary. To illustrate, consider the specific example where Ac is the

interval �Sc + ksc. The set of values in Ac is controlled by the

value of k. In this case, A1
tþ1 . A2

tþ1 . � � � . AKtþ1

tþ1 ;Atþ1 becomes

k1 . k2 . � � � . kKtþ1 ¼ k. Alternatively, if the range of the

sample is used, then Ac ; (Smin
c , Smax

c ). Here, we set

Aj
tþ1 ; (Smin

tþ1 � kj, Smax
tþ1 þ kj) and we have that k1 . k2 . � � � .

kKtþ1 ¼ 0. The specific values of kj are selected so that there is a

certain number of particles (here N/2) that satisfy the current

set of constraints (that includes the constraint involving kj).

When setting kj ¼ k (CI constraints) or kj ¼ 0 (range constraints)

results in at least N/2 particles satisfying the current set of con-

straints, then we do not reduce kj further. Our method ensures

that the SMC does not suffer from particle degeneracy.

Note that Golchi & Campbell [25] consider SMC algorithms

for sampling from constrained distributions. Our developments

are specific to the POM application and include the novel

aspect of introducing a sequence of distributions between

adjacent distributions to improve the robustness.

The algorithm we propose here has similarities with the SMC

ABC algorithm of Drovandi & Pettitt [18]. Denote the particle set

at target t as fui
t, Wi

tg
N
i¼1. First, the particles are re-weighted to

reflect the next target t þ 1. In our application, this involves

removing the particles that do not satisfy the next constraint. If

more than N/2 particles do not satisfy the next constraint, then

the intermediate sequence in (2.2) is used where the Aj
tþ1 (here

the values of k for our choice of Ac) are adaptively chosen, so

that there are at least N/2 particles that satisfy the constraint. It

is important to note that we never have Aj
tþ1 , Atþ1 (i.e. kj , k)

for any value of j. The ESS can be boosted to N by resampling

from the remaining particles. Then, to help remove particle

duplication, an MCMC kernel [23] with proposal density q is

applied to the re-sampled particles. Owing to the way that the

sequence of targets is formed via indicator functions, the ESS

after each iteration of the SMC will always be N. Furthermore,

the algorithm is of complexity O(N ). However, the MCMC

kernel does not guarantee that each particle will be moved, result-

ing in inevitable particle duplication. This issue can be mitigated

by repeating the MCMC kernel several times on each particle.

However, this decreases the efficiency as various particles will

attempt to be moved even after they have satisfied the next set

of constraints. On the other hand, it is possible to reject proposed

parameter values by the MCMC kernel early if it does not satisfy

the initial part (i.e. without the imposed constraints) of the
Metropolis–Hastings ratio. Our SMC algorithm that uses an

MCMC kernel for particle diversity is shown in algorithm 1 of

appendix B of the electronic supplementary material.

For the case study described later, we assume that the model

parameters are independent and uniformly distributed a priori
between the specified lower (lb) and upper (ub) bounds, so our

SMC algorithm samples over a re-parametrized space where

each parameter is transformed based on

f ¼ log
u� lb

ub� u

� �
,

where u is the model parameter and f is the re-parametrized

version. SMC can then search an unrestricted space while still

enforcing that u remains within its bounds. If u is assumed

uniform on (lb,ub), then the implied prior density on f is

pðfÞ ¼ expðfÞ
ð1þ expðfÞÞ2

, �1 , f , 1,

that is, the logistic density.

For q in the MCMC move step in SMC, we fit a three com-

ponent normal mixture model to the re-sampled particle set

and draw proposals independently from the mixture model.

Note that other choices are possible for q. For example, a multi-

variate normal random walk centred on the current particle

may be used with a covariance matrix estimated from the

resampled particles. We find that using the independent mixture

model for q works well for this application, but the multivariate

normal random walk also works well (albeit slightly less efficient

in general). We use N ¼ 500 for the SMC algorithm and R ¼ 3

when there is only one parameter of interest and R ¼ 5 when

there are two to four components in the parameter vector.

There are a number of tuning parameters in the SMC algor-

ithm. First, we select the smallest fraction of particles to keep at

each iteration as N/2, which is a common choice in the SMC litera-

ture. However, any fraction may be selected here. The smaller the

fraction is, the less intermediate distributions will be required,

leading to potentially fewer model simulations. However, there

will be fewer particles to estimate the hyperparameter of the

importance distribution q, which here consists of the normal mix-

ture means, covariance matrices and weights. Further, there will be

more particle duplication after the resampling step. Here, we fix

the number of MCMC repeats, R, which works for our application.

Drovandi & Pettitt [18] provide an approach to adapt the value of

R based on the overall MCMC acceptance rate of the previous per-

turbation step. Elsewhere, we are investigating adapting the value

of R at each perturbation step.
2.3. Case study: Beeler – Reuter model
The BR cell model [20] is a system of ordinary differential

equations (ODEs) describing the excitability of ventricular myocar-

dial fibres. This ODE system models the temporal evolution of the

transmembrane potential of a single ventricular cell via the

dynamics of certain ion channels present in the cell membrane in

response to the application of a sufficiently strong electrical stimu-

lus such that once the stimulus is removed, the action potential

does not immediately return to rest but rather undergoes a large

excursion, before eventually reaching the resting state. While this

model has been superseded by much more complex cardiac

electrophysiological models [26,27], it still produces a realistic

action potential and is ideal for our study in this paper.

We assume there is between-subject variability in the ampli-

tude of the ionic currents and generate the POMs of this study

by varying four model parameters (gIna, gIk, gIx and gIs) corre-

sponding to the maximal current densities of the four ionic

currents. A complete description of the model equations, the initial

conditions, the stimulation protocol and implementation details

are given in appendix C of the electronic supplementary material.
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Varying gIna, gIk, gIx, gIs has a direct influence on the shape of

the action potential (AP). In order to characterize the data pro-

duced by a particular combination of these parameters, we

compute a set of four biomarkers (figure 1) representing quantities

of physiological interest from the AP profile generated by the

model. Specifically, we consider the AP peak, the peak of the

dome, the maximum upstroke velocity (defined as the maximum

v0(t) during the initial rapid depolarization of the cell membrane)

and the action potential duration (APD90). The APD90 is defined

as the difference between the repolarization and depolarization

times. The depolarization time is measured as the time when the

voltage reaches 10% of its full depolarization. The repolarization

time is measured as the time when the voltage repolarizes to the

same value, that is, the transmembrane potential reaches 90% of

repolarization to its resting value. Linear interpolation is used to

obtain better resolved time values.

As the exclusive use of these biomarkers may lead to a poor

characterization of the AP profile, we additionally use a set of

specific time points and their corresponding solution values to

obtain a more informative characterization of the solution—see

appendix C of the electronic supplementary material. One of

our aims will be to see whether this additional information

will help in the identification of the parameter distribution g(u).
3. Results
For all results, we consider the approximate 95% CIs of the

summary statistics to form the matching constraints unless

otherwise specified.

3.1. Data
We simulate 10 trajectories from the model and assume they

are 10 observations from different subjects in a population.

We simulate the model by varying the four parameters

u ¼ (gIna, gIk, gIx, gIs) by +10% around the vector of orig-

inally published values uT ¼ (4, 0.35, 0.8, 0.09). We note the

variability of the action potentials produced by this range

of parameter values is typically less than what might be

observed in experiments [2,3]. However, these simulated

data are sufficient to allow us to perform a comparison of
different methods for POM. To investigate how the POM

methods perform with an increase in the dimension of the

parameter vector, we consider four datasets where u ¼ gIna,

u ¼ (gIna, gIk), u ¼ (gIna, gIk, gIx) and u ¼ (gIna, gIk, gIx, gIs),

where the datasets are generated by varying the relevant

parameters and fixing the others at the values specified

in uT. The resulting trajectories can be seen in grey in

figure 2. We refer to these as parameter sets 1–4, respectively.

For illustrative purposes, we set the original parameter space

to search as +50% of the values in uT, fixing parameters as

necessary depending on the parameter set. In practice, this

‘prior’ range may be informed by experts.

To test the methods’ ability to handle an increasing

number of constraints, we consider two sets of summary stat-

istics. The first set consists of the four biomarkers presented

in §2.3. The second option is to consider a set of summary

statistics that includes the four biomarkers and the solution

value corresponding to 28 selected time points for a total

of 32 constraints. We refer to the first and second set of

summaries as biomarker and biomarker/time statistics,

respectively. The data are summarized in appendix D of the

electronic supplementary material.
3.2. Performance comparison
The number of simulations required for SMC to generate N¼ 500

matches for the four different parameter sets is shown in

table 1. Table 1 also shows the number of unique values out

of 500 in the SMC particle sets. It can be seen that there is a

steady increase in the number of simulations required as the

number of parameters is increased. Further, more simulations

are required for the biomarker/time statistics as the AP time

statistics bring more information and a reduction in the

parameter space consistent with the data.

From tables 2–4, we can see that in terms of estimated

efficiency, RND outperforms LHS over a one-dimensional

parameter space. When the dimension of the parameter

space is increased, the two methods become comparable in

efficiency. It is evident that both the LHS and RND

approaches do not scale to an increase in the parameter and

summary statistic dimension compared with the SMC

approach. For parameter set 4 and the biomarker/time

statistics, the SMC approach has 6% efficiency, whereas it is

only 1% for the other approaches.

We also run the methods when the min/max range of the

data are used to form the constraints instead of the approxi-

mate 95% CIs. We consider parameter set 4 and the

biomarker/time statistics. We find that a smaller subset of

the parameter space is consistent with these constraints,

implying a more difficult sampling problem. This is likely

due to the fact that we investigate only a small sample that

produces a relatively narrow range. Here, n ¼ 10, so that

the range has expected coverage of size (n 2 1)/(n þ 1) or

9/11 of the population distribution of the corresponding

statistic. Larger values of n would produce larger coverage

probabilities. For a single run, the SMC approach needs

9700 simulations when N ¼ 500. In contrast, with 50 000

simulations, LHS produces 129 matches. Thus, SMC

produces an efficiency of roughly 5% versus 0.3% for LHS.

We also consider other datasets with larger variabi-

lity ((210%, þ20%), (210%, þ40%), (220%, þ10%), (220%,

þ20%), (230%, þ30%), (240%, þ10%), (240%, þ40%)

around uT) and find that the efficiency gain of SMC is lost.
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statistics, respectively. From top to bottom shows results for parameter sets 1 – 4, respectively. The observed data are shown as grey trajectories, whereas the
simulated trajectories from the POMs are shown in black.

Table 1. Number of simulations required and number of unique values produced when running the SMC algorithm with N ¼ 500. Shown are the mean values
(and standard deviations in parentheses) from 10 independent runs and the estimated efficiency of the algorithm (mean number of simulations divided by N ).

dim(u)

biomarker biomarker/time

mean sims (s.d.) mean unique (s.d.) eff (%) mean sims (s.d.) mean unique (s.d.) eff (%)

1 1792 (39) 495 (3) 28 2023 (98) 495 (2) 25

2 4531 (175) 492 (3) 11 5513 (116) 494 (3) 9

3 5131 (238) 489 (2) 10 6796 (118) 488 (2) 7

4 5587 (114) 474 (5) 9 8330 (157) 473 (7) 6
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In appendix E of the electronic supplementary material, we

provide details of a more complex model with 12 parameters

and a dataset with more realistic variability. The benefits of

SMC become re-apparent. For the biomarker statistics, we
obtain a 4.4% efficiency for SMC over 0.7% for LHS and for

the biomarker/time statistics an efficiency of 3.7% for SMC

over 0.01% for LHS. We expect the relative efficiency gain of

SMC to increase as the relative volume of parameter space



Table 2. Mean number of matches over 10 runs (with standard deviation
shown in parentheses) using RND, along with the estimated efficiency.

dim(u)

biomarker biomarker/time

mean
matches (s.d.) eff (%)

mean
matches (s.d.) eff (%)

1 1322 (26) 26 1196 (30) 24

2 333 (20) 7 256 (13) 5

3 222 (13) 4 115 (6) 2

4 145 (10) 3 41 (4) 1

Table 3. Mean number of matches over 10 runs of LHS (with standard
deviation shown in parentheses) using a total of 5000 simulations, along
with the estimated efficiency of the algorithm.

dim(u)

biomarker biomarker/time

mean
matches (s.d.) eff (%)

mean
matches (s.d.) eff (%)

1 1154 (4) 23 756 (9) 15

2 301 (14) 6 222 (9) 4

3 176 (13) 4 80 (6) 2

4 215 (15) 4 66 (8) 1

Table 4. Mean number of matches over 10 runs of LHS (with standard
deviation shown in parentheses) using a total of 10 000 simulations, along
with the estimated efficiency of the algorithm.

dim(u)

biomarker biomarker/time

mean
matches (s.d.) eff (%)

mean
matches (s.d.) eff (%)

1 2306 (7) 23 1510 (8) 15

2 592 (23) 6 434 (19) 4

3 352 (11) 4 151 (11) 2

4 421 (19) 4 133 (11) 1
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satisfying the constraints of the data decreases, which naturally

occurs as the number of parameters increase and the variability

in the data decreases.

3.3. Parameter range recovery
Owing to the increased efficiency of the SMC approach, we

discuss the results obtained from the SMC algorithm in

terms of the information content of the summary statistics

in order to recover the parameter ranges used to generate

the data. Note that if LHS and RND are run for long

enough we find that the results they produce are similar to

the output of SMC.

Figure 2 shows simulated trajectories (black) from par-

ameter values kept from the SMC algorithm for both sets of

summary statistics. It is evident from the left column that
the four biomarkers are not capturing the majority of the infor-

mation available in the observed trajectories (grey), because the

between-subject variability of the simulated trajectories from

the POM is substantially larger than that of the observed trajec-

tories especially around the trough before the AP dome.

Further, many parameter values are kept that lead to solu-

tion profiles that are well above the data between times

200–300 ms. The right column demonstrates that the set of

parameter values kept when including additional constraints

at various time points lead to solution profiles that follow the

general shape of the observed trajectories well, but also capture

the between-subject variability of the observed profiles.

Figure 3 shows the distributions of parameter values kept

from SMC for the two sets of summary statistics for par-

ameter set 1, and the distributions and bivariate scatter

plots for parameter sets 2 and 3. The histograms and bivariate

scatter plots for parameter set 4 are shown in figure 4. In gen-

eral, there is a reduction in the parameter space consistent

with the data when the time summary statistics are included,

indicating that the four biomarkers do not carry all the

information available in the data.

The histograms in figures 3 and 4 show the ability of SMC

to recover parameter ranges for the four parameter sets with

appendix F of the electronic supplementary material showing

the results for a single parameter. It is evident that when only

one parameter is allowed to vary, the parameter values kept

are constrained reasonably within the values used to generate

the data.

From figures 3 and 4, we find that the first parameter, gIna,

is constrained to a similar range used to generate the data,

regardless of how many parameters are varied and the

choice of the summary statistics. It appears that the biomarkers

may be sufficiently informative about gIna.

The results for the second parameter gIk can be seen in the

second row of each correlation plot in figures 3a,b and 4a,b.

When only two parameters are varying (second plot in col-

umns of figure 3a,b), the biomarkers are able to constrain

the parameters well. However, when three or four par-

ameters are varying (bottom row of plots in figure 3a,b and

both plots in figure 4), the biomarker/time statistics are

necessary to constrain the parameters to a range similar to

that used to simulate the data.

The relevant rows of figures 3 and 4 demonstrate that in

general there is a lack of information in the data to constrain

the parameters gIx and gIs close to the ranges used to simulate

the data. This phenomenon is often referred to as a lack of

identifiability in the statistics literature. Here, we note that

using the biomarker/time statistics provides improvements

over just the biomarker statistics. One possible reason for the

identifiability problem is that we observe only one out of the

eight variables of the ODE model and observing more vari-

ables should improve identifiability. Another reason is that

we expect complex relationships between parameters and the

biomarker/time statistics which would, if known and

exploited, provide improvements. Figures 3 and 4 show corre-

lation plots and values for the parameters. For some

combinations, plots suggest strong linear relations between par-

ameters with correlation coefficients in excess of 0.8. In more

complex situations, when the number of parameters exceeds

four, it would be expected that a dimension reduction

technique, such as principal components analysis or partial

least-squares, could be applied to the parameter space to

simplify and increase the robustness of the POM analysis.
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3.4. Out of sample predictions
POMs are often used to obtain out of sample predictions, that

is, to test particular scenarios and observe how the variability

of the calibrated population is affected under these particular

circumstances. One example of interest in pharmacology is

the case of conduction block of selected transmembrane

ionic currents owing to drug action.

We assume that the injection of a suitable blocker signifi-

cantly reduces the amplitude of one of the four ionic currents

of the model (namely Ik) and observe the effects of this hypoth-

esis on three populations of 200 models each, generated with

the LHS, the SMC, and the RND methods, respectively. For

all strategies, we start by selecting 200 values of u generating

matches with the considered experimental data when the

min/max range is considered to constrain the biomarker/

time statistics. In the first column of figure 5, we plot the
solution trajectories corresponding to these three POMs

(grey), and the 10 solution trajectories corresponding to our

original dataset (black).

Under the drug block assumption, we then reduce

by 75% the value of gIk in all the u of our three POMs,

obtaining three modified sets umod of 200 parameters each.

The solution trajectories corresponding to the new sets of

parameters are shown in the right-hand column of figure 5

(grey). Once again, in each plot, we include 10 trajectories

(black) corresponding to a reduction of 75% in the value of

gIk in the parameters corresponding to the original dataset.

The 75% reduction in gIk has some evident consequences

on the solution profile: the resting membrane potential

increases, the dome peak is much higher and the AP becomes

significantly elongated, hence resulting in a larger APD90.

However, a comparison of the three rows of figure 5 shows
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very minor differences in the results produced by the three

POMs suggesting that the variability captured by the three

strategies is essentially the same. The similarity of the results

is further validated by looking at the effect of the drug block

on the APD90 distribution produced by the three POMs as

shown by figure 6a, and by considering the spread of the

clouds of particles corresponding to the validated POM

parameters (figure 6b).

When comparing our POMs before and after drug block,

we observe a very interesting result. Although the constraints
imposed on the summary statistics confine the solution tra-

jectories of all three calibrated POMs, once drug block is

applied a large proportion of the resulting solutions no

longer falls within the limits given by the trajectories corre-

sponding to the original dataset. The wider variety of AP

shapes found in the drug block case is likely owing to all

those parameters in the calibrated POMs that did not orig-

inally belong to the hypercube given by the min/max

ranges of the data summary statistics. This does not have

to be seen as a limitation of the POM approach. In fact,
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POMs are often used in electrophysiology to investigate

whether abnormalities hide among experimental data and

whether the application of a certain perturbation to the

system (such as the injection of a drug) would lead to

undesired electrophysiological effects such as delayed after-

depolarizations. This does not happen in the presented

case, and all solutions remain reasonably smooth after the

application of the drug. However, if more variability was

observed in the experimental data and larger min/max

ranges were used in the calibration of the POM, then differ-

ent outcomes would be possible and abnormalities could

easily arise. On the other hand, we believe that if data

under the drug block assumption were available, then

additional information obtained from these new trajectories

could be used to further constrain the parameters of interest,

thus improving our ability to recover the population

distribution g(u).

In appendix G of the electronic supplementary material,

we show the results of the drug block test when cali-

brating the three POMs using the 95% CI constraints for the

32 biomarker/time statistics. This condition results in looser

constraints than the ones given by the min/max range. Conse-

quently, we find that the clouds of particles corresponding to

the validated parameters are more spread out and cover a

larger region of the parameter space (electronic supplementary

material, figure S5b). Although more visible differences in the

AP profiles (electronic supplementary material, figure S4)

and in the APD90 distributions between the three POM
strategies can be seen (electronic supplementary material,

figure S5a), the overall behaviour before and after drug block

remains unchanged.
4. Discussion
The three strategies considered for this study essentially differ

in the way the search of the multidimensional parameter space

is made when matches with the experimental data are sought.

The results shown in the conduction block test revealed that

all three strategies produced very similar POMs and captured

a very similar degree of variability in AP responses both

before and after drug block. However, this might not be the

case when the experimental data are characterized by a

larger degree of variability or when a parameter space of

higher dimensionality is explored by each sampling strategy.

Furthermore, the considerations made on the tightness of the

validation criteria used to produce the calibrated POM high-

light the need of a thorough investigation into the nature

of the POM produced by different algorithms and into the

capability of a given population to capture the variability of

experimental data before a particular sampling strategy

could be chosen over the many possible alternatives available

in the literature.

We find that the SMC algorithm proposed in this

paper is quite efficient in terms of the number of model

simulations required when there is a moderate number of
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parameters and constraints, as for the BR model. The major

disadvantage of the SMC approach adopted here is that

it results in duplicated particles and also the MCMC

step must be run for a fixed number of R iterations, even

if a proposal has been accepted prior to the Rth iteration.

The latter leads to some inefficiencies of the SMC approach.

An alternative method to overcome both of these issues

may be to use the Liu–West kernel [28] instead of an

MCMC kernel.

It is possible that the ordering of the constraints may have

an effect on the efficiency of SMC. In some applications, there

may be a natural ordering of the constraints, as in time-series

data. Using only the AP times as summary statistics is an

example of this. In this case, it might be possible to save all infor-

mation from the simulation run to the current time point and

simulating forward to the next constraint without re-starting

the simulation. However, in general, there is currently no

method for determining the optimal ordering of constraints.

We selected the AP times based on a visual inspection of

the data profiles in an attempt to include most of the infor-

mation. We have not yet considered a more principled

method for selecting these. We note, however, that our SMC

method is robust to the inclusion of unnecessary constraints;

if a constraint brings little additional information about the par-

ameters, then very few (or even 0) of the particles will have zero

weight and need to be replenished, resulting in little extra

model simulations.
We will also consider emulating cardiac electrophysiologi-

cal models using Gaussian processes [29] as well as using ideas

from Sarkar & Sobie [30], who use a partial least-squares linear

model as an emulator. We also plan to further compare the

performance and the variability accounted for by POMs gener-

ated with the LHS and the SMC algorithms for more complex

cardiac atrial electrophysiology models (see appendix E of the

electronic supplementary material for the initial investigation

on the Courtemanche–Ramirez–Nattel model).
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