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Thin vegetal shells have recently been a significant
source of inspiration for the design of smart materials
and soft actuators. Herein is presented a novel
analytical family of isometric deformations with a
family of θ -folds crossing a family of parallel z-folds;
it contains the isometric deformations of a banana-
shaped surface inspired by a seedpod, which converts
a vertical closing into either an horizontal closing or
an opening depending on the location of the fold.
Similarly to the seedpod, optimum shapes for opening
ease are the most elongated ones.

1. Introduction
Thin vegetal shells and rods have recently been a
significant source of inspiration for the design of smart
materials and soft actuators: pinecone for a bending
actuator [1], orchid seedpod [2] and the seed of Erodium
for a twisting actuator [3]. Recent progress in chemistry
and in the synthesis of fibrous material has reproduced
this behaviour in biomimetic devices [4]. Theoretical
progress involving differential geometry has procured
a deeper insight into the design principles of these
structures [3,5,6]. In parallel, the description of folds on
plates has significantly been improved in the last 20
years: an energy for straight folds has been rigorously
derived and validated [7,8] and some examples of curved
folds have been treated [9]; current focus is rather on
more complicated Miura-Ori structures [10–15]. Folds on
shells have comparatively received much less attention,
two topics having been well-studied: the rigidity induced
by folds on shells [16] and the ridge bounding a
dimple on a sphere for which a rigorous energy has
been derived [17,18]. Once again classical differential
geometry could be of great use for the understanding of
folded shells. Herein is described another kind of folded
smart shell inspired by the banana-shaped seedpod of
Accacia caven from southern Chile. While dessicating,
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Figure 1. (a) (Left) A sealed and turgid seedpod of Acaccia caven. (Right) An open and desiccated seedpod. k1, k2 stand for the
meridional and the longitudinal curvatures at the saddle point. During desiccation the shortening of some external fibres at the
back could increase k2 and by consequence as the product k1 k2 is conserved for an isometry k1 should decrease; it would thus
actuate the opening of the seedpod. (b) A folded Goursat surface behaving similarly to the seedpod. (R1 = 0.58, α1 = α2 =
0.7752, b= 0.5, c = 10, d = 30, ε = sign(ujun,2 − u),v0 = 0.94). (Left) Rest state h= 0. (Right) Deformed state h= 0.05.
u (grey dashed line) and v (black dashed line) are the two coordinates lines of the system presented in §3a crossing at the
saddle point. (Online version in colour.)

the longitudinal curvature at the saddle point of the banana-shaped seedpod increases while its
meridional curvature decreases which triggers the opening of the shell and enables seed-dispersal
(figure 1a,b). It is a classical result that the most energetically economical modes of deformation
for thin shells are the isometric ones, when they are possible [19]. The local scenario is compatible
with isometry as the product of the principal curvatures (Gaussian curvature) at the saddle
point could be kept constant if both curvatures vary inversely. Proving this local scenario can
be extended for the whole surface is in general a complex problem of PDE [20]. Another possible
approach is to construct an analytical solution.

While looking for such a solution, we ended up with a new family of W1,2 isometric
deformations generalizing the classical Goursat family [21,22] (i.e. isometric deformations
conserving both z-contour lines and θ -contour lines in conjugate coordinates) by naturally adding
folds: the simple yet original idea of this article is that any of these θ -planes or z-planes can be used
as a permanent mirror-symmetry plane, thus creating a wide family of isometric deformations
with non-moving θ -folds and z-folds. Our family of surfaces includes banana-shaped surfaces
which behave similarly to the seedpod around the saddle point (an increase in longitudinal
curvature induces meridional opening) while further away the fold antagonistically tends to
close the shell. Depending on the fold location, either the opening component or the closing
component will dominate. Two examples are provided in this article: a C∞ family of shells for
which an increase of the longitudinal curvature at the saddle point does not trigger the opening
but triggers the closing of the aperture instead, and a biomimetic family of folded shells for which
an increase of the longitudinal curvature at the saddle point does indeed trigger the opening.
Shape optimization in the latter family, easily carried out thanks to the analytic formulation, shed
a new light on the elongated seedpod design which minimizes the cost both in energy and in
longitudinal deformation for the opening.

2. Folded Goursat surfaces and pure bending energy

(a) Geometry of Goursat surfaces
In 1891, Goursat discovered the widest family of surfaces which can be isometrically deformed
while preserving two orthogonal systems of parallel planes (§4 of [21], rewritten more clearly
in [22]); 10 years later, Raffy [23] even proved that this family could not be enlarged requiring
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only one system of parallel planes to be preserved. At the time, the family was coined:
‘Surfaces deforming such as contour lines remain contour lines’ [22]. Let umin < umax, vmin < vmax,
I = [umin, umax], J = [vmin, vmax], h > 0, U1, U2, U3 three real functions on I and V1, V2 two real
functions on J. The Goursat family can be written as

∀ h ≥ 0, ∀ u ∈ I, ∀ v ∈ (J ∩ (V′2
2 − hV′2

1 )−1(]0, +∞[))

and S(u, v, h) = V1(v)f (u, h)er +
∫ t=u

t=0
U3(t)Γ (t, h) dt +

(∫ v

0

√
V′2

2 − hV′2
1 dv

)
ez

⎫⎪⎬
⎪⎭ , (2.1)

where f , θ , er, eθ , ez and Γ read:1

∀ h ≥ 0, ∀ u ∈ I, f (u, h) =
√

U1(u)2 + U2(u)2 + h

θ (u, h) =
∫u

0

√
(U1U′

2 − U2U′
1)2 + h(U′2

1 + U′2
2 )

f 2 du

er(u, h) = (cos(θ (u, h)), sin(θ (u, h)), 0)

eθ (u, h) = (− sin(θ (u, h)), cos(θ (u, h)), 0)

ez = (0, 0, 1)

Γ (u, h) = ∂( fer)
∂u

(u, h) = fu(u, h)er(u, h) + θu(u, h)f (u, h)eθ (u, h), (2.2)

where u, v are the coordinates (figure 1b) and h is the parameter of deformation. An example of
Goursat surface is represented in figure 2b(i). The set where v can be chosen is smaller than J and
depends on h because if h is superior to hmax = V′

2(v)2/V′
1(v)2, V′

2(v)2 − hV′
1(v)2 is negative and

thus the surface becomes partly imaginary.
For h > 0, for u ∈ I and for v ∈ ( J ∩ (V′2

2 − hV′2
1 )−1(]0, +∞[)), the first fundamental form reads

E = S2
u = (V1 + U3)2(U′2

1 + U′2
2 ),

F = Su · Sv = (V1 + U3)V′
1(U1U′

1 + U2U′
2)

and G = S2
v = V′′2

1 (U2
1 + U2

2) + V′2
2

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

It is easy to check that the first fundamental form does not depend on the parameter h, which
implies that the deformation is an isometry (2.3).

The second fundamental form reads

L = det(Suu, Su, Sv)√
EG − F2

=
(V1 + U3)2

√
V′2

2 − hV′2
1 δ√

EG − F2
,

M = det(Suv , Su, Sv)√
EG − F2

= 0

and N = det(Svv , Su, Sv)√
EG − F2

= f 2θu
(V1 + U3)V′

2(V′′
1 V′

2 − V′
1V′′

2 )√
V′2

2 − hV′2
1 (

√
EG − F2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (2.4)

where δ = (fuu − f θ2
u )f θu − fu(2fuθu + f θuu).

The third coefficient N of the second fundamental form diverges, where V′2
2 − hV′2

1 = 0 as well
as the pure bending energy given by

Eb =
∫

u

∫
v

B((κ1 − κ1,0)2 + 2ν(κ1 − κ1,0)(κ2 − κ2,0) + (κ2 − κ2,0)2)
√

EG − F2 du dv, (2.5)

1Notations: For a function f , ∂f/∂u is notated fu.



4

rspa.royalsocietypublishing.org
Proc.R.Soc.A472:20150760

...................................................

h = 0 h = 1.0h = 0.5

g2

g1

(i)

(ii)

(iii)

(iv)

(i)

(ii)

(iii)

(iv)

x

y
z

(b)(a)

Figure 2. (a) Each panel (i–iv) represents the z = 0-trace, or intersection between the horizontal plane z = 0 and a surface
of the family at rest state (h= 0). Some of the parameters are shared by all the surfaces: R1 = 1, α1 = 0.7752 and b= 1. In
each case, we choose umax = ucl,0 to close the contour. The trace of the Goursat surface (ε = 1) is represented by a full-blue
line in (i) and by a dashed-blue line in (iii–iv). The black (resp. grey) straight line forming an angle γ1 (resp. γ2) with the x-axis
correspond to the trace of the black (resp. grey) mirror-plane in the plane z = 0: (i)α1 = α2 and ε = 1, it is a Goursat surface
without fold; (ii)α1 = α2, γ1 = θε (ufo,1, 0)= θε (ujun,1, 0), there is no fold as the mirror-plane is tangent to the surface; (iii)
α1 = α2, γ2 = θε (ufo,1, 0)> θε (ujun,1, 0), there is two folds (located at the intersection between the grey straight lines and
the blue contour) as the mirror-plane is not tangent to the surface; (iv)α1 > α2,γ2 = θε (ufo,1, 0)= θε (ujun,2, 0), there is no
fold as the mirror-plane is tangent to the surface. (b) Family of isometric deformations corresponding to the traces in (a) with
c = 10 and d = 10. The deformation increases from left to right (h= 0, 0.5, 1). The black (resp. grey) plane corresponds to the
mirror-plane containing the z-axis and making an angle γ1 (resp. γ2) with the x-axis. The curves in black (resp. grey) are the
intersections of the banana-shaped surface with the mirror-planes. (i) The surface opens with increasing h. (ii) The presence of
the fold counteracts the opening at the saddle point. The surface closes on itself while increasing its longitudinal deformation.
(iii) As the fold is further away along the surface, the opening dominates the closing effect of the fold. (iv) As the fold is further
away along the surface, the opening dominates the closing effect of the fold. (Online version in colour.)

where κ1, κ2 stand for the principal curvatures2 at the deformed state (h > 0) and κ1,0, κ2,0 stand
for the curvatures at the rest state, h = 0.

The expression of the square of the element of surface can be simplified as

EG − F2 = (V1 + U3)2(V′2
1 (U′

1U2 − U′
2U1)2 + V′2

2 (U′2
1 + U′2

2 )). (2.7)

2κ1 = H + √
H2 − K, κ2 = H − √

H2 − K, where H is the mean curvature and K is the Gaussian curvature

K = LN
EG − F2

and H = LG + NE
2(EG − F2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.6)
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(b) Folded Goursat surface, isometricW1,2 deformations
The Goursat family of isometric deformations conserves two systems of planes mutually parallel:
one defined by a constant u (θ -planes) and the other by a constant v (z-plane); the simple yet
original idea of this article is that any of these planes can be used as a plane for a mirror-symmetry,
thus providing the widest-known family of analytical isometric deformations with folds. An
admissible fold for an isometric deformation is a non-moving line joining two surfaces both
deforming with an isometry.

Mathematically, the presence of a vertical fold or θ -fold (mirror-plane defined by u = cst) can
be encoded by incorporating a piece-wise constant function ε : I → {−1, 1} into the formula for θ .

∀ h ≥ 0, ∀ u ∈ I, θε(u, h) =
∫u

0
ε

√
(U1U′

2 − U2U′
1)2 + h(U′2

1 + U′2
2 )

f 2 du. (2.8)

Let N be the number of points (ufo,i)i∈{1,...,N}3 where τ = εsign(U1U′
2 − U2U′

1) switches its sign on
the interval I. θεu can be rewritten

θε
u = ε

√
(U1U′

2 − U2U′
1)2

U2
1 + U2

2
= τ

U1U′
2 − U2U′

1

U2
1 + U2

2
= τ

(
arctan

(
U2

U1

))′
. (2.9)

The integration gives, for u ∈ [ufo,i, ufo,i+1]

θε(u, 0) =
i∑

j=1

τ

(ufo,j + ufo,j−1

2

)[
arctan

(
U2

U1

)]ufo,j

ufo,j−1

+ τ (u)
[

arctan
(

U2

U1

)]u

ufo,i

. (2.10)

For a general ε, the jump in slope of θε at each ufo,i will correspond to a fold on the shell for
any h ≥ 0. For a given v ∈ J, Ωi(v, h), the dihedral angle of the fold situated along the line u = ufo,i is
fully prescribed by the mirror-symmetry. The dot product between N−, the normal to the surface
calculated in (u−

fo,i, v) on one side of the fold, and N+, the normal in (u+
fo,i, v) on the other side,

yields

cos(Ωi(v, h)) = (V1 + U3)2 (f 2θ
ε,+
u θ

ε,−
u (V′2

2 − hV′2
1 ) + f 2

u (V′2
2 − hV′2

1 ) + f 4θ
ε,+
u θ

ε,−
u V′2

1 )
EG − F2 . (2.11)

There is not a fold at the rest state (h = 0) if and only if ε = sign(U1U′
2 − U2U′

1). In this latter case,
the expression for θε is simpler

θε(·, 0) = arctan
(

U2

U1

)

and (cos(θε(·, 0)), sin(θε(·, 0))) = (U1, U2)√
U2

1 + U2
2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.12)

as well as for the expression of the rest state surface (h = 0)

∀ u ∈ I, ∀ v ∈ J, S(u, v, 0) = V1(v)(U1(u), U2(u), 0) +
∫u

0
U3(U′

1, U′
2, 0) + (0, 0, V2(v)). (2.13)

The undeformed surface S(·, ·, 0) is a C∞ surface.
Horizontal folds or z-fold are introduced by incorporating a piece-wise constant function η :

J → {−1, 1} into the formula for the z-coordinate of the surface.

∀ h ≥ 0, ∀ v ∈ (J ∩ (V′2
2 − hV′2

1 )−1(]0, +∞[)),

and zη(v, h) =
∫ v

0
η

√
V′2

2 − hV′2
1 dv

⎫⎪⎬
⎪⎭ (2.14)

Let M be the number of points (vfo,i)i∈{1,..., M} where η switches its sign on the interval J. For a given
u ∈ I, Λi(u, h), the dihedral angle of the ith z-fold situated along the line v = vfo,i is fully prescribed

3Notations: The index fo in ufo,i stands for fold.
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by the mirror-symmetry. The dot product between N− the normal to the surface calculated in
(u, v−

fo,i) on one side of the fold and N+ the normal in (u, v+
fo,i) on the other side gives cos(Λi(u, h))

cos(Λi(u, h)) = (V1 + U3)2 (−f 2(θε
u )2(V′2

2 − hV′2
1 ) − f 2

u (V′2
2 − hV′2

1 ) + f 4(θε
u )2V′2

1 )
EG − F2 . (2.15)

θ -folds and z-folds are two families of folds laying in two orthogonal families of planes; they do
not affect the bending energy as the mirror-symmetries simultaneously change the sign of both
the fundamental forms and the principal curvatures

(Lε , Mε , Nε) = εη(L, 0, N)

and (kε
1, kε

2) = εη(k1, k2)

}
(2.16)

For straight and curved folds on developable surfaces, the dihedral angles, (Ωi) and (Λi), serve
to express the energy associated with the fold [9,24]; no such general expression of the energy is
known for shells.

3. Isometric deformations of a banana-shaped family of surfaces

(a) A family of banana-shaped surfaces
Let us choose the following parameters: R1 > 0, α1 ∈ [0, π/2], α2 ∈ [0, α1], α2 
= π/2, b > 0, c > 0,
d > 0. We introduce the two circles C1, C1,r of identical radius R1, centred respectively at

(x1, y1) = R1

(
1

cos(α1)
, 0

)

and (x1,r, y1,r) = R1

(
1

cos(α1)
− 2 cos(α1), 2 sin(α1)

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.1)

and the circle C2 of radius R2 = (2 sin(α1)/sin(α2) − 1)R1 centred at

(x2, y2) = (x1,r + (R1 + R2) cos(α2), 0). (3.2)

By construction, C1 is tangent to C1,r, and C1,r is tangent to C2; a C1 curve (U1, U2) can be
constituted by joining arcs of these three circles at the two tangent intersections (figure 2a).
We note: ujun,1

4 = R1α1, ujun,2 = ujun,1 + R1(α1 − α2), ucl,0
5 = ujun,2 + R2(π − α2). U1 and U2 are

piece-wise functions on [0, ucl,0] defined by

∀ u ∈ [0, ujun,1],

(U1(u), U2(u)) =
(

x1 + R1 cos
(

π − u
R1

)
, bR1 sin

(
π − u

R1

))
,

∀ u ∈ [ujun,1, ujun,2],

(U1(u), U2(u)) =
(

x1,r + R1 cos
(

u − ujun,1

R1

)
, b

(
y1,r + R1 sin

(
u − ujun,1

R1

)))

and ∀ u ∈ [ujun,2, ucl,0],

(U1(u), U2(u)) =
(

x2 + R2 cos
(

π − α2 − u − ujun,2

R2

)
, bR2 sin

(
π − α2 − u − ujun,2

R2

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)
b is an additional parameter tuning the ellipticity of the shape. In the case, α1 = α2, the curve
(U1, U2) coincides with the circle C1.

4The index ‘jun’ stands for ‘junction’.

5The index ‘cl’ stands for ‘close’: ucl,h closes the contour at deformation corresponding to the parameter h.
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The additional function U3 is chosen null on [0, ucl,0], η = 1 and V1, V2 are defined by

∀ v ∈
[
−π

2
,
π

2

]
, (V1(v), V2(v)) = (c cos(v), d sin(v)). (3.4)

If either ε = sign(ujun,1 − u) or ε = sign(ujun,2 − u), the folded Goursat surface has no apparent fold
at the undeformed state; if additionally α1 = α2, the rest state surface is C∞. The curve (U1, U2) is
complemented by its y = 0 mirror-symmetry (U1, −U2).

The behaviour of the surfaces under bending depends on the presence of the folds and
their location: the Goursat isometric family of deformations (ε = 1) opens while increasing the
longitudinal curvature at the saddle point (figure 2b (i)); the presence of the fold tends to
counteract this effect and to close the shell (figure 2b (ii)). However, provided the fold is far enough
from the junction point (i.e. ufo,1 sufficiently bigger than ujun,1), the opening dominates the closure
for small enough deformations and biomimetic thin shells can be devised (figure 2b (iii,iv)). The
upper and lower extremities of the surface progressively become imaginary when the parameter
h increases and thus progressively disappear on figure 2b.

(b) Design of a C∞ thin shell transferring a vertical closing movement into an horizontal
closing movement

The family of isometries derived herein is an interesting tool to design self-sealing thin shells. For
instance, given v0 ∈ [0, π/2] the size of the aperture uc which seals the shell at a prescribed vertical
deformation

λ = zc

z0

can be worked out by simply looking for the solutions (ucl,hλ
, hλ) of (3.5) (figure 3a,b).

0 = θ (ucl,hλ
, hλ)

and λ =
∫v0

0

√
d2 cos(v)2 − hλc2 sin(v)2 dv

c sin(v0)

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

The quantitative behaviour of the curvatures at the saddle point can also be observed: the
meridional curvature decreases in absolute value (figure 3c) while the longitudinal curvature
increases. When reaching

hmax = d2

c2 tan(v2
0)

,

both the longitudinal curvature k2 (figure 3d) and the bending energy (2.5) diverge (figure 3e).

(c) Design optimization of the biomimetic thin shell family transferring a vertical closing
movement into an horizontal opening movement

Constraint optimization on the parameters can be carried out, the cost function being either the
energy or the vertical deformation, and the utility function being the opening area �S defined by

�S(R1, α1, α2, b, c, d, v0, h) =
∫ v=+v0

v=−v0

y(ucl,0, v, h)z′(v) dv, (3.6)

with R1 > 0, α1 ∈ [0, π/2], α2 ∈ [0, α1], α2 
= π/2, b > 0, c > 0, d > 0, v0 > 0, h > 0.6

As the rest state surface is closed, the inner volume, Vol, is well-defined. Changing R1, b, c, d
corresponds to applying an affine transformation on the rest state surface which modifies Vol

6y and z coordinates of the surface also depend on these parameters but it is not written to lighten the expression.
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Figure 3. (a) Isometric deformations of a banana-shaped surface (R1 = 1, α1 = α2 = 0.7752, b= 1, c = 10, d = 10,
v0 = 0.94,ε = sign(ujun,1 − u),h ∈ {0, 0.26, hmax = 0.52}). Thewidth of the aperture has been calculated to close the shell
at the maximal deformation corresponding to the initial surface. (b) Horizontal section of the surface: the family of isometries
behaves similarly at the saddle point as the seedpod but not globally. Owing to the fold, the decrease in meridional curvature
triggers a closing rather than anopening of the shell. The black, dark-grey and light-grey contours correspond to the intersecting
planes in the (a) panel. (c) Meridional curvature k1 in the horizontal plane of symmetry: the meridional curvature decreases in
absolute valuewith thedeformations. (d) Longitudinal curvature k2 in the vertical planeof symmetry: the longitudinal curvature
increases in absolute value with the deformations. It diverges at the lower and upper boundary when reaching the maximal
deformation. (e) Pure bending energy. The bending energy diverges at hmax. (Online version in colour.)

according to

Vol(R1, α1, α2, b, c, d, v0) = R2
1bc2d Vol(1, α1, α2, 1, 1, 1, v0). (3.7)

For this reason, the constant Vol is a convenient hard constraint in the minimization: modifying
a parameter can easily be compensated by inversely changing another one. For the constant Vol
minimization, it is convenient to normalize the opening: �S = S/Vol2/3.

Another possible hard constraint for the minimization is λ, the vertical deformation, defined
by

λ(R1, α1, α2, b, c, d, v0, h) = z(v0, h)
z(v0, 0)

. (3.8)

For hmax = d2/(c2 tan(v2
0)) λmax, the maximal deformation after which the upper part of the surface

becomes imaginary, simplifies into

λ(R1, α1, α2, b, c, d, v0, hmax) =
∫v=v0

v=0

√
d2 cos(v)2 − (d2/(c2 tan(v2

0)))c2 sin(v)2 dv

d sin(v0)

and λ(R1, α1, α2, b, c, d, v0, hmax) =
∫v=v0

v=0

√
cos(v)2 − (sin(v)2/ tan(v2

0)) dv

sin(v0)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.9)

λmax is thus independent of both d and c but depends only of v0.
The influence of some of the parameters have been studied around an initial shape determined

by the parameter (R1,0, α1,0, α2,0, b0, c0, d0, v0):
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Figure 4. (a,b) Influence of x − z shape, the rest state volume Vol being identical. R1 ∈ {0.71, 0.96, 1.23, 1.48, 1.73},
α1 = 0.54, α2 = 0.37, b= 0.5, c = 10, d = 10/R21 (the darkness of the grey of the line in the plot increases with d).
v0 = 0.94, 0< h< d2/(c2 tan(v2

0)). (a) Normalized opening �S versus vertical deformation 1 − λ. The arrows point to
the corresponding rest state contour (x(0, ., 0), z(0, ., 0)) and deformed contour (x(0, ., h), z(0, ., h)) at maximal opening. (b)
Normalized opening�S versus energetical costW. The arrows point to the corresponding rest state contour (x(0, ., 0), y(0, ., 0))
and deformed contour (x(0, ., h), y(0, ., h)) at maximal opening (the scale is 0.3 smaller than that for the x − z curve
on (a)). (c,d) Influence of x − y shape: (c) at constant Vol, normalized opening �S versus energetic cost W. R1 ∈
{0.71, 0.96, 1.23, 1.48, 1.73}, α1 = 0.54, α2 = 0.37, b= 1/R21 (the darkness of the grey of the line in the plot increases
with b), c = 10, d = 50, v0 = 0.94, 0< h< d2/(c2 tan(v2

0)). The arrows point to the corresponding rest state contour
(x(0, ., 0), y(0, ., 0)) and deformed contour (x(0, ., h), y(0, ., h)). (d) Energetic cost normalized by its minimum versus R1
for constant �S and constant rest state volume Vol. R1,0 ∈ {0.71, 0.96, 1.23, 1.48, 1.73}, 0.1< R1/R1,0 < 1.1, α1,0 = 0.54,
α2,0 = 0.37, b= 1, c = 10, d = 10/R21,0,v0 = 0.94, 0< h< d2/(c2 tan(v2

0)). The three contours represented at the bottom
are the rest state contours (x(0, ., 0), y(0, ., 0)), while R1 is varying.

— The influence of the y = 0 trace (or x − z contour) on opening efficiency has been
assessed. The parameter d was made to vary while maintaining Vol constant by adjusting
R1 = R1,0

√
d0/d. If increasing d does not affect λmax, it increases hmax and thus the

maximal x − y deformation. Provided d is sufficiently large, the movement first consists
in an opening dominated by the saddle point (�S > 0, figure 4a), and then in a closure
dominated by the fold (�S < 0, figure 4a); for smaller d, the shell opens, but the top of
the shell becomes imaginary before reaching the closing phase. Increasing d increases the
opening amplitude (maximum of �S on figure 4a) and decreases the vertical deformation
necessary to trigger this maximum; increasing d also decreases the energetic cost of the
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maximal opening (figure 4b). The elongated shapes are the most efficient to trigger an
opening according to both criteria of vertical deformation efficiency and energetic cost.

— The influence of the z = 0 trace (or x − y contour) on opening efficiency has been assessed:
the ellipticity b was modified while maintaining Vol constant by adjusting R1 = R1,0

√
b0/b.

Decreasing b increases the amplitude of the maximal opening and decreases the energetic
cost of it (figure 4c). The most efficient shapes are obtained for ellipsis elongated in the
x direction (b small). A second minimization was carried out with two hard constraints:
constant opening and constant initial volume. The influence of the even repartition of the
curvature along the x − y closed profile on the energetic cost was investigated. Practically,
R1 was modified while both Vol and �S were maintained constant by only adjusting α1,
α2. For each R1, α1 and α2 were obtained by solving the two following equations with the
Matlab function ‘fsolve’

Vol(1, α1, α2, 1, 1, 1, v0) =
(

R1,0

R1

)2
Vol(1, α1,0, α2,0, 1, 1, d, v0)

and �S(R1, α1, α2, b, c, d, v0, h) = �S(R1,0, α1,0, α2,0, b, c, d, v0, h).

⎫⎪⎬
⎪⎭ (3.10)

The location of the minimum for the energetic cost strongly depends on the x − z shape (figure 4d):
for d high enough (i.e d � 1), the optimum is located at the highest R1 which corresponds to the
most homogeneous repartition of curvature (see the z = 0 trace rest state profile at the bottom of
figure 4d); for d ≈ 1, the minimum shifts to lower R1 which means more even distribution of
curvature; for smaller d there are two optima, one with the least homogeneous distribution
of curvature (R1 minimal) and one with the most homogeneous distribution of curvature
(R1 maximal).

4. Conclusion
Isometric families of deformations were traditionally one of the few ways to provide analytical
examples for the deformation of thin shells. The geometers and mechanicians of the late
nineteenth century and early twentieth century have intensely looked for such solutions. In 1890,
Bianchi proved that surfaces in conjugate systems of coordinates admit one integrable mode of
deformation [25]. Constructing a conjugate system of coordinate for a surface involves finding
solutions of Moutard equations verifying additional conditions: Goursat [21] & Tzizeica [26]
families are two fully integrable examples, though they were obtained by methods different to
Bianchi’s method. While the subsequent research improved the integration of Moutard equations
[27,28], it did not lead to any new simple family of analytical isometric deformations [29]. Some
of these results were proposed by Eisenhart as exercises without the references of the authors
[30]. This work is nowadays rather forgotten and not even mentioned in modern textbooks. In
this context, this article provides a new one-parameter family of W1,2 surfaces extending the
classical C∞ family of Goursat by naturally adding two families of mutually crossing curved
folds. This theoretical family of surfaces is illustrated by two examples of banana-shaped surfaces:
a shell transforming a vertical closure into an horizontal sealing, similar to the carnivorous plant
Aldrovanda [31] which has recently inspired architects for smart shutters [32,33], and a biomimetic
shell triggering an horizontal opening by a vertical closure. In order to actually trigger these
modes of deformation in experiments, the fold area has to be elastically softer than the remaining
part of the shell: this effect has been studied numerically by varying both the fold thickness and
the fold width [32].

Even if folded Goursat surfaces only describe restricted modes of deformation, their analytical
formulation could help both experimentalists to conceive set-ups estimating fold energy on shells
other than spheres and cylinders, and theoreticians to calibrate and to check the accuracy of
their simulations of folded shells. Analytical isometric deformations of maps similar to Miura-
Ori patterns but with non-zero Gaussian curvature are also included in our family corresponding
to periodic patterns of z-folds crossed by patterns of θ -folds.
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Vegetal thin shells, e.g. pollen grains and seedpods, are a biomimetic source of inspiration
for packaging designers. Analytical families of deformations are obtained much more rapidly
than simulations; as such they constitute a valuable guide for designers enabling them to explore
the potentialities of different shapes and to design precisely the apertures. As illustrated herein,
parametric optimization for opening or closing shells can be easily carried out thanks to the pure
bending energy; the actual energy necessary to trigger a given deformation is slightly lowered
by some stretching which nevertheless corresponds to very mild geometrical distortions [5,6].
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