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A stiff thin film bonded to a pre-strained, compliant
substrate wrinkles into a sinusoidal form upon release
of the pre-strain. Many analytical models developed
for the critical pre-strain for wrinkling assume that
the substrate is semi-infinite. This critical pre-strain is
actually much smaller than that for a substrate with
finite thickness (Ma Y et al. 2016 Adv. Funct. Mater.
(doi:10.1002/adfm.201600713)). An analytical solution
of the critical pre-strain for a system of a stiff film
bonded to a pre-strained, finite-thickness, compliant
substrate is obtained, and it agrees well with the
finite-element analysis. The finite-thickness effect is
significant when the substrate tensile stiffness cannot
overwhelm the film tensile stiffness.

1. Introduction
A stiff film bonded to a pre-strained, compliant substrate
wrinkles upon releasing the pre-strain [1,2]. Such a
system has many important applications in stretchable
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Figure 1. Schematic illustrations. (a) A stiff thin film bonded to a pre-strained, compliant substrate with finite thickness;
(b) bending of the film/substrate system upon release of the small pre-strain; and (c) wrinkling of the stiff thin film, along
with bending of the film/substrate system, upon release of large pre-strain. (Online version in colour.)

inorganic electronics [3–8], micro/nano pattern formation [9–11], high-precision micro/nano
measurement techniques [12], tuneable metamaterials [13], nanocomposites [14], stretchable
transistors [15] and biomimetic materials [16]. Analytical models have been developed for
wrinkling of a stiff thin film on a pre-strained compliant substrate [17–21]. The results identify the
critical pre-strain for wrinkling, below which the film remains flat. However, all of these studies
assume that the substrate is semi-infinite such that its tensile stiffness overwhelms that of the
film. Consequently, the substrate recovers the initial length after the pre-strain is released and its
bottom remains flat.1

The critical pre-strain for wrinkling obtained for a semi-infinite substrate, however, is smaller
than the numerical and experimental results for a substrate with finite thickness [22], even for
substrates that are more than 1000 times thicker than the film. This is because the substrate elastic
modulus Es is often more than five orders of magnitude smaller than the film elastic modulus Ef
[1,2], such that the substrate tensile stiffness EsH cannot overwhelm the film tensile stiffness Efh,
where H and h are the substrate and film thicknesses, respectively (figure 1a). Consequently,

(1) the substrate cannot shrink back to its initial length after release of the pre-strain; and
(2) the film/substrate system may bend after the pre-strain is released (figure 1b).

The recent study by Ma et al. [22] accounted for (1), while this paper aims to establish an
analytic model for both (1) and (2). The resulting critical pre-strain will be useful for many
applications such as the strain-limiting design of materials [22] and tuneable optical design of
the intensity for diffraction peaks [23].

2. Analytical model
A stiff thin film is bonded onto a pre-strained (εpre), compliant substrate (figure 1a). For small
pre-strain, the stiff film does not wrinkle upon release of the pre-strain; instead, the film and
substrate bend (figure 1b). Let ε denote the membrane strain in the film. The strain in the substrate

1Huang et al. [24] studied the finite thickness of a substrate subjected to compression, to be discussed below.
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is εs(y) = εpre + ε − κ(H − y), where κ is the curvature of the substrate, and the co-ordinate y is
shown in figure 1a. The potential energy is

Ubend = 1
2

Ēfhε2 + 1
2

Ēs

∫H

0
[εpre + ε − κ(H − y)]2dy, (2.1)

where Ēf = Ef/(1 − v2
f ) and Ēs = Es/(1 − v2

s ) are the plane-strain moduli of the stiff thin film and
compliant substrate, respectively, and vf and vs are the Poisson’s ratios.

Minimization of the potential energy ∂Ubend/∂ε = 0 and ∂Ubend/∂κ = 0 gives ε =
−ĒsHεpre/(4Ēfh + ĒsH) and κ = −6Ēfhεpre/[H(4Ēfh + ĒsH)]. Equation (2.1) then becomes

Ubend =
ĒfhĒsHε2

pre

2(4Ēfh + ĒsH)
. (2.2)

Once the pre-strain exceeds the critical pre-strain (to be determined), the stiff film wrinkles
on the top surface of the substrate (figure 1c) and the film/substrate bends. In addition to the
membrane strain ε, the film is also subjected to wrinkling with amplitude A and period λ to be
determined. The strain energy in the film is [24]

Ufilm = 1
2

Ēfhε2 − 1
4

Ēfh|ε|k2A2 + 1
32

Ēfhk4A4 + 1
48

Ēfh
3k4A2, (2.3)

which degenerates to the first term on the right-hand side of equation (2.1) when the amplitude
A = 0; here k = 2π/λ. The strain energy in the substrate is

Usubstrate = 1
2

Ēs

∫H

0
[εpre + ε − κ(H − y)]2dy + Ēs

4
kA2g(kH), (2.4)

which degenerates to the last term in equation (2.1) when the amplitude A = 0. The last term in
the above equation is the strain energy in the substrate due to wrinkling [24], and the function g is

g(x) = cosh(2x) + 1 + 2x2

2 sinh(2x) − 4x
, (2.5)

for an incompressible substrate (vs = 0.5), and g approaches 1/2 for a semi-infinite substrate. The
potential energy is the sum of Ufilm and Usubstrate,

Ubend+wrinkle =1
2

Ēfhε2 + 1
2

Ēs

∫H

0
[εpre + ε − κ(H − y)]2dy

+ 1
4

Ēfh( f − |ε|)k2A2 + 1
32

Ēfhk4A4, (2.6)

where

f = k2h2

12
+ Ēsg(kH)

khĒf
. (2.7)

Minimization of the potential energy with respect to k and A, ∂Ubend+wrinkle/∂k = 0 and
∂Ubend+wrinkle/∂A = 0, gives

6
g(kH) − g′(kH)kH

(kH)3 = Ēfh3

ĒsH3
(2.8)

and
k2A2 = 4(|ε| − f ), (2.9)

where g′(x) = dg(x)/dx. Equation (2.8) suggests that the normalized period, λ/[(Ēf/Ēs)1/3h], or
equivalently kh/(Ēs/Ēf)1/3, depends only on the film/substrate bending stiffness ratio Ēfh3/ĒsH3,
as shown in figure 2. The period becomes independent of the substrate thickness H when the
bending stiffness ratio Ēfh3/ĒsH3 is less than 0.01, which is consistent with Huang et al. [24].

Minimization of the potential energy with respect to ε and κ , ∂Ubend+wrinkle/∂ε = 0 and
∂Ubend+wrinkle/∂κ = 0, gives ε = 4Ēfhf/(ĒsH) − εpre, and κ = 6Ēfhf/(ĒsH2), where f is obtained
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Figure 2. The normalized wrinkle periodλ/[(Ēf/Ēs)1/3h] versus the film-to-substrate bending stiffness ratio [Ēfh3/(ĒsH3)].
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Figure 3. The critical pre-strainεcpre versus the substrate-to-film thickness ratio (H/h) for a polyimide filmon a PDMS substrate.
FEA, finite-element analysis; PDMS, polydimethylsiloxane. (Online version in colour.)

from equation (2.7). The potential energy then becomes

Ubend+wrinkle = Ēfhf

[
εpre − 1

2

(
4Ēfh

ĒsH
+ 1

)
f

]
. (2.10)

Comparison of the potential energy in equations (2.2) and (2.10) suggests that wrinkling occurs
when Ubend > Ubend+wrinkle, which gives

εpre >

(
4Ēfh

ĒsH
+1

)
f =

(
4Ēfh

ĒsH
+1

)[
k2h2

12
+ Ēsg(kH)

khĒf

]
, (2.11)

where k, f and g are obtained from equations (2.5), (2.7) and (2.8), respectively. It should be pointed
out that equation (2.11) also ensures that the right-hand side of equation (2.9) is positive such that
there is a solution for the amplitude A.
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3. Discussion
When the bending stiffness of the substrate overwhelms that of the film, i.e. Ēfh3/(ĒsH3) <∼ 0.01,
equation (2.11) can be further simplified as

εpre > εc
pre = 1

4

(
4Ēfh

ĒsH
+1

)(
3Ēs

Ēf

)2/3

. (3.1)

For H → ∞, the above equation degenerates to that for a semi-infinite substrate [1,2]. The critical
pre-strain εc

pre in equation (3.1) is larger than 1
4 ((Ēfh/ĒsH)+1)(3Ēs/Ēf)2/3 [22], which neglects the

effect of film/substrate bending. Figure 3 shows the critical pre-strain εc
pre versus the thickness

ratio H/h for a polyimide film (Ef = 2.5 GPa, vf = 0.34) on a polydimethylsiloxane substrate (Es =
1 MPa, vs = 0.5). The results obtained from finite-element analysis agree well with the critical pre-
strain in equation (3.1).
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