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Abstract
Chromosome segment substitution lines MBI9804, MBI9855, MBI9752, and MBI9134,

which were obtained by advanced backcrossing and continuously inbreeding from an inter-

specific cross between CCRI36, a cultivar of upland cotton (Gossypium hirsutum) as the

recurrent parent, and Hai1, a cultivar of sea island cotton (G. barbadense) as the donor par-

ent, were used to construct a multiple parent population of (MBI9804×MBI9855)×(M-

BI9752×MBI9134). The segregating generations of double-crossed F1 and F2 and F2:3 were

used to map the quantitative trait locus (QTL) for fiber quality and yield-related traits. The

recovery rate of the recurrent parent CCRI36 in the four parental lines was from 94.3%–

96.9%. Each of the parental lines harbored 12–20 introgressed segments from Hai1across

21 chromosomes. The number of introgressed segments ranged from 1 to 27 for the individ-

uals in the three generations, mostly from 9 to 18, which represented a genetic length of

between 126 cM and 246 cM. A total of 24 QTLs controlling fiber quality and 11 QTLs con-

trolling yield traits were detected using the three segregating generations. These QTLs

were distributed across 11 chromosomes and could collectively explain 1.78%–20.27% of

the observed phenotypic variations. Sixteen QTLs were consistently detected in two or

more generations, four of them were for fiber yield traits and 12 were for fiber quality traits.

One introgressed segment could significantly reduce both lint percentage and fiber micro-

naire. This study provides useful information for gene cloning and marker-assisted breeding

for excellent fiber quality.
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Introduction
Cotton is one of the most important cash crops in the world and cotton fiber provides the
main natural raw material for the textile industry. Upland cotton (Gossypium hirsutum) has a
high yield and wide adaptability, but a relatively low fiber quality. On the other hand, sea island
cotton (G. barbadense) has excellent fiber quality with low yield and limited adaptability.
Therefore, one way to improve fiber quality of upland cotton is to introgress the favorable
genes from sea island cotton to upland cotton. However, the yield and quality of cotton are
quantitative traits that are affected by multiple genes and often negatively correlated [1–3].
Therefore, the simultaneous improvement of cotton fiber quality and yield is a tall task for
breeders in conventional breeding [4]. With the continuous development and improvement of
molecular marker technologies, researchers have conducted extensive studies to construct cot-
ton genetic maps and identify quantitative trait locus (QTL). This would make it possible to
simultaneously improve both of fiber quality and yield in a breeding program.

The construction of the first cotton molecular genetic map [5] had facilitated QTL mapping.
Completion of the cotton genome draft sequence laid a foundation for further molecular design
breeding at the whole genomic level [6–9]. Most segregating populations for QTL identification
are F2 [10–12], BC1 [13], BIL [14] and RIL [15–18]. However, because these segregating popu-
lations (e.g., F2) are usually not immortal, the results of QTL identification are usually difficult
to repeat. Furthermore, although several QTLs for cotton fiber quality or yield traits have been
identified, fine mapping and cloning of these genes have rarely begun. Chromosome segment
substitution lines (CSSLs), also known as introgression lines, are permanent populations that
possess the same genetic background as the recurrent parent. Differences among CSSLs usually
involve only one or a few of the introgressed chromosome segments, which in turn effectively
eliminate interference of the genetic background. CSSLs are also highly efficient in detecting
QTLs with minor effects. Therefore, CSSLs are ideal materials for QTL fine mapping, gene
cloning, and investigating QTL interactions. Since Eshed and Zamir first constructed introgres-
sion lines of tomato [19], these have been successfully applied in rice, corn, and other plants
[20–23].

CSSLs are seldom reported in QTL studies in cotton. Stelly et al. first constructed 17 chro-
mosome substitution lines of G. barbadense in TM-1 background of G. hirsutum [24]. Subse-
quently, the same research team performed a thorough analysis of the genetic effects of CSSLs
[25–31]. Their results showed that the sea island cotton genotype has positive effects on fiber
quality traits, suggesting that these particular traits are influenced by multiple genes [32].
Other researchers also used CSSLs for QTL mapping of fiber quality and yield traits [33–37].
Although these CSSL populations are beneficial for QTL mapping, a large gap between the
QTL mapping and the application of these lines in breeding programs remains to be resolved.

To simultaneously obtain brand-new lines for direct application in breeding while conduct-
ing basic researches, we constructed a CSSL population using upland cotton CCRI36 and sea
island cotton Hai1, both of which are commercially grown cultivars. A genetic linkage map
containing 2,292 markers was constructed [38] and cotton fiber quality and yield-related QTLs
were identified in this CSSL population. Liang et al. [39] detected 20 yield-related QTLs in
BC5F2 of this CSSL population. Through multi-ecological environment evaluations of the yield
and fiber quality of the population (BC5F3, BC5F3:4, and BC5F3:5), Zhang et al. [40] and He
et al. [41] mapped specific QTLs for fiber quality and yield-related traits using selected lines
with stable and excellent fiber quality and yield.

In the present study, based on the phenotypic performance of this CSSL population [38],
as well as previous findings from multi-ecological environment investigations [38–41], four
introgression lines MBI9804, MBI9855, MBI9752, and MBI9134 with excellent fiber quality
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were selected as parental lines, and a double-crossed population of (MBI9804×MBI9855)×
(MBI9752×MBI9134) was constructed. The introgressed Hai1 segments were evaluated in the
segregating generations F1 and F2 and verified in the following F2:3 generation using SSR mark-
ers. We also performed QTL mapping for fiber quality and yield related traits with these three
generations. New stable QTLs for fiber quality and yield traits were identified and validated in
multiple generations. Our study lays a foundation for fine mapping of fiber quality QTLs and
using them in breeding via marker assisted selection (MAS).

Materials and Methods

Materials
CSSL population was constructed by crossing and backcrossing between donor parent Hai1
and the recurrent parent CCRI36. Hai1 was a commercially grown cultivar of G. barbadense
with a dominant glandless gene, highly resistant to Verticillium wilt, and has excellent fiber
quality [42]. While CCRI36 was a widely grown upland cotton cultivar with high yield and
early maturity, and developed by the Institute of Cotton Research of Chinese Academy of Agri-
cultural Sciences (State Approval Certificate of Cotton 990007). The development of the CSSL
population was reported by Shi et al. [38]. The four BC5F4 introgression lines, MBI9804,
MBI9855, MBI9752, and MBI9134, with stable and excellent fiber quality performance, were
selected as parental lines to construct a double-crossed population of (MBI9804×MBI9855) ×
(MBI9752×MBI9134). In 2012, the double-crossed F1 was planted in the experimental farm
(Anyang, Henan Province) of the Institute of Cotton Research of Chinese Academy of Agricul-
tural Sciences. All parental lines were planted in two rows and a total of 868 individuals of dou-
ble-crossed F1 were planted in 45 rows. Each row was 5m long and 0.8m apart with 20 plants.
The F1 plants were selfed and their fiber and seeds were harvested by individual. In 2013, A
total of 839 F2 individual plants were randomly selected from mixture seeds of all F1 plants in
Anyang in 45 rows, with row length of 5 m, row spacing of 0.8 m, and plant spacing of 0.25 m.
In 2014, 237 F2:3 families were randomly selected with the different fiber quality and planted in
Shihezi, Xinjiang Autonomous Region, in two-narrow-row plots, with row length of 3 m and
plant spacing of 0.12 m. The plastic-membrane covering technique and a wide/narrow row
spacing pattern were used. Row spacing alternation was 0.2 m and 0.6 m.

Investigation of Fiber Yield and Quality Traits
In 2012 and 2013, the phenotypic traits of each plant were investigated. Naturally opened bolls
per plant were harvested for indoor testing, including seed cotton weight, fiber weight, boll
weight (BW), lint percentage (LP), fiber length (FL), fiber uniformity (FU), fiber micronaire
(FM), and fiber strength (FS). In 2014, 30 naturally opened bolls for each plot were harvested
for indoor testing same as those in 2012 and 2013. The fiber quality traits were tested with
HFT9000 in the Cotton Quality Supervision and Testing Center of the Ministry of Agriculture
of China. HVICC international calibration cotton samples were used.

DNA Extraction and SSRMolecular Detection
In 2012 and 2013, young leaves of the parental lines and the double-crossed F1 and F2 individ-
ual plants were sampled. DNA was extracted using a modified CTAB method [43]. SSR ampli-
fication and polyacrylamide gel electrophoresis were performed following Zhang’s description
[44]. Based on the previously constructed CCRI36×Hai1 BC1F1 genetic linkage map [38], SSR
markers were selected at a distance of 10–20 cM. A total of 526 pairs of polymorphic SSR
markers between CCRI36 and Hai1 were selected for screening of polymorphisms among the
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four parental lines. Finally, 51 out of the 526 markers were identified to be polymorphic for
genotyping of the double-crossed F1 and F2 individual plants. The sequences of the SSR prim-
ers were uploaded to the CMD database (http://www.cottonmarker.org/). The primers used in
the present study were synthesized by Beijing Sunbiotech Co., Ltd. (Beijing, China).

Analysis of Phenotypic Traits
EXCEL 2013 software was used for the descriptive statistical analysis of fiber quality traits
(including FL, FS, FM, and FU) and yield related traits (including BW and LP) for the double-
crossed F1 and F2 individual plants and the F2:3 family lines. The statistical values included
average, maximum, minimum, the transgressive rate over the recurrent parent (%), coefficient
of variation, skewness and kurtosis. Correlation analysis and ANOVA were performed using
the SPSS20.0 software.

Genotypic Analysis for Parents and Population
Genotypic analysis of the parental lines and population was performed based on the SSR poly-
morphic results using the GGT2.0 software developed by van Berloo (http://www.
plantbreeding.wur.nl/UK/software_ggt.html) [45]. The background recovery rate of the CSSLs
to the recurrent parent, number of introgressed segments, and length were calculated.

QTL mapping
The linkage map was constructed using the MapChart2.2 software [46]. QTL mapping was per-
formed using the QTL IciMappingV4.0 software developed by Wang et al. [47]. The nomencla-
ture of QTL was: q + trait abbreviation + chromosome number + serial number of the marker
closely linked to the trait. For example, qFS-2-7 represented a QTL controlling fiber strength
near the seventh marker on chromosome 2 (Chr2).

Results

Fiber Quality and Yield Traits and Correlation Analysis
The four parents had longer fiber than the recurrent parent CCRI36 (P< 0.05). MBI9804 and
MBI9134 had significant stronger fiber than that of CCRI36 (P< 0.01) (Tables 1 and 2). In the
three generations, except for FU in 2013 and FM in 2014, the average values of the other traits
were higher than those of the recurrent parent CCRI36 (P< 0.05). The absolute value of the
skewness was<1, indicating that the fiber quality and yield traits showed a normal distribution
in the three generations. The recovery rates to the recurrent parent CCRI36 for FL, FU, FM,
and FS increased from F1 to F2:3, whereas those of BW and LP decreased. The coefficient of var-
iation indicated that fiber quality traits, FM, FS, and FL were highly variable compared to FU.

Correlation analysis between fiber quality and yield traits (Table 3) showed that FS was sig-
nificantly positively correlated with FL in all three generations, significantly positively corre-
lated with FU in F1 and F2. FL was significantly positively correlated with FU in F1 and F2,
significantly negatively correlated with FM in F2 and F2:3, whereas significantly positively cor-
related were FM in F1.

Genotypic Analysis of the Parents and Populations
Introgressed Hai1 chromosome segments in the four parental lines were identified by SSR
markers using the GGT2.0 software (S1 Table, Fig 1). The background recovery rate in the four
parental lines ranged from 94.1% to 97.6%. Each of the parental line harbored 12–20 intro-
gressed Hai1 chromosome segments, spanning a genetic length of 116.3 cM–283.1 cM, and
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accounting for 2.4%–5.9% of the total detected genetic length. The introgressed Hai1 segments
were distributed across 21 chromosomes in all four parental lines, mainly on Chr10, Chr11,
Chr20 and Chr23. Chr20 had the most introgressed segment number, whereas no introgressed
segments were detected on Chr4, Chr19, Chr22, Chr24 and Chr25. The number of

Table 1. Phenotypic analysis of parent fiber quality and yield traits.

Parents Environment FL(mm) FU(%) FM(unit) FS(cN/tex) BW(g/boll) LP(%)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

CRI36 2012AY 29.14 1.48 85.18 1.56 4.25 0.45 29.53 1.8 5.05 0.71 36.45 4.73

2013AY 28.29 0.82 85.2 0.9 4.51 0.11 29.9 1.65 5.4 0.63 37.86 1.77

2014XJ 28.69 0.6 85.25 1.1 4.27 0.38 29.8 1.46 5.17 0.44 40.22 0.01

MBI9804 2012AY 30.83** 1.63 85.90** 1.55 4.10** 0.47 30.45** 1.15 4.8 0.87 34.45 3

2013AY 29.93* 1.2 85.99 1.17 4.59 0.12 32.79** 1.58 4.95 0.47 32.87 1.24

MBI9855 2012AY 32.22** 1.61 85.6 1.19 3.6 0.45 32.65 1.28 4.80* 0.78 34.50* 4.08

2013AY 30.99** 0.81 85.64 0.65 3.71** 0.08 33.12 1.47 5.50* 0.35 30.82* 1.44

MBI9752 2012AY 29.34** 1.03 83.9 1.48 4.01 0.43 31.2 1.32 5.05 0.64 30.1 3.51

2013 AY 29.32* 1.34 86.15 0.95 4.38 0.12 31.65 1.64 4.8 0.53 35.52 2.83

MBI9134 2012AY 30.22** 2.05 84.75** 1.45 4.02** 0.35 30.40** 1.62 4.02 0.68 34.15 6.18

2013AY 29.84* 1.01 84.85 0.99 4.17 0.17 32.06** 1.75 4.47 0.47 34.3 4.17

Note: AY: Anyang; XJ: Xinjiang

** indicates P < 0.01;

* indicates P < 0.05

doi:10.1371/journal.pone.0159101.t001

Table 2. Phenotypic analysis of fiber quality and yield traits in the three populations.

Trait Year CCRI36 generation

Mean Min. Max. SD Mean Min. Max. SD Transgressive rate (%) CV(%) Skewness Kurtosis

FL (mm) 2012 29.14 24.65 30.28 1.48 F1 29.39** 23.88 33.63 1.49 86.29 5.06 -0.45 0.11

2013 28.29 27.41 30.14 0.82 F2 30.26** 25.67 34.00 1.23 85.94 4.06 -0.01 0.08

2014 28.69 27.51 29.77 0.60 F2:3 30.43** 27.28 34.08 1.21 94.09 3.99 0.27 0.19

FU(%) 2012 85.18 81.40 86.20 1.56 F1 84.48** 88.00 88.00 1.48 72.58 1.76 -0.49 0.18

2013 85.20 83.50 86.50 0.90 F2 85.82 89.20 89.20 1.28 73.30 1.49 -0.73 1.63

2014 85.25 85.25 83.50 1.10 F2:3 86.06* 89.20 89.20 0.97 73.84 1.13 -0.21 0.34

FM 2012 4.25 2.61 4.33 0.45 F1 3.65 2.06 7.18 0.58 39.29 16.03 0.05 3.90

2013 4.51 3.88 4.92 0.11 F2 4.07** 2.71 5.44 0.46 80.70 11.30 -0.29 0.02

2014 4.27 3.69 4.91 0.38 F2:3 4.00** 2.93 5.09 0.38 84.81 9.44 0.00 -0.16

FS(cN/tex) 2012 29.53 25.20 41.40 1.80 F1 29.58** 24.30 34.40 1.71 72.35 5.78 -0.29 -0.27

2013 29.90 29.00 34.80 1.65 F2 32.65** 26.40 41.50 2.21 78.55 6.77 0.21 0.15

2014 29.80 27.40 32.70 1.46 F2:3 32.68** 26.90 37.50 1.80 90.72 5.52 -0.09 0.42

BW 2012 5.05 2.85 5.20 0.71 F1 4.57* 2.57 7.96 0.73 57.83 15.86 0.24 0.24

2013 5.40 4.09 6.36 0.63 F2 4.90** 2.69 8.42 0.70 46.18 14.36 0.39 1.30

2014 5.17 4.67 6.65 0.44 F2:3 5.16* 3.48 6.24 0.38 41.07 7.44 -0.34 1.25

LP(%) 2012 36.45 19.75 37.24 4.73 F1 31.26** 14.22 50.76 0.03 94.70 8.96 -0.16 3.87

2013 37.86 34.76 39.31 1.77 F2 32.38 22.58 57.15 0.03 36.47 10.45 0.38 3.09

2014 40.22 36.47 41.18 0.01 F2:3 36.79** 27.72 45.66 0.03 18.07 7.07 -0.22 0.82

Note:

** indicates P < 0.01;

* indicates P < 0.05

doi:10.1371/journal.pone.0159101.t002
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homozygous introgressed Hai1 segments were more than that of the heterozygous introgressed
segments in three parental lines, except for MBI9855.

Genotyping analysis (S2 Table) showed that the average recovery rates to CCRI36 in F1, F2
and F2:3 generations were 96.1%, 96.3% and 96.0%, respectively. The average length of the
homozygous introgressed Hai1 segments ranged from 71.8–110.0 cM in the three generations,
whereas the average length of the heterozygous introgressed Hai1 segments was 68.5–
103.5 cM. The average length of the total introgressed Hai1 segments was 172.0–182.8 cM.

In all three generations, most individual plants contained 4 or more introgressed Hai1 seg-
ments, whereas a few plants contained 1–3 introgressed Hai1 segments. The minimum number
of introgressed Hai1 segments was one and the maximum was 27, with an average of 13.6–14.5
introgressed Hai1 segments. The length of the introgressed segments was mainly between
126 cM and 246 cM. In F2, no heterozygous segments were detected in three plants. In F1, no

Table 3. Correlation between fiber quality and yield traits in the three populations.

traits Population FL FU FM FS LP

FU F1 0.465**

F2 0.274**

F2:3 0.037

FM F1 0.106** 0.402**

F2 -0.203** 0.239**

F2:3 -0.370** 0.093

FS F1 0.566** 0.528** -0.022

F2 0.504** 0.290** -0.008

F2:3 0.724** 0.117 -0.312**

LP F1 0.133** 0.155** 0.101** 0.004

F2 -0.108** -0.018 0.375** -0.257**

F2:3 -0.213** -0.004 0.533** -0.252**

BW F1 0.327** 0.460** 0.452** 0.320** -0.055

F2 0.054 0.155** 0.250** 0.125** -0.133**

F2:3 -0.049 0.006 0.123 -0.031 -0.131*

Note:

** indicates P < 0.01 (two-sided);

* indicates P < 0.05 (two-sided).

doi:10.1371/journal.pone.0159101.t003

Fig 1. Introgressed Hai1 chromosome segments in the parents. 1: MBI9804; 2: MBI9855; 3: MBI9752; and 4: MBI9134; A: genome of
recurrent parent CCRI36; B: homologous Hai1 segments; H: heterozygous Hai1segments.

doi:10.1371/journal.pone.0159101.g001
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homozygous segments were detected in four plants and one introgressed segment was detected
in only one plant (S3 Table, Fig 2a and 2b).

QTL Mapping
A total of 35 QTLs for the yield and fiber quality traits was identified in F1, F2, and F2:3, includ-
ing 24 QTLs controlling four cotton fiber quality traits and 11 QTLs controlling two cotton
yield traits (S4 Table, Fig 3). These QTLs were distributed across 11 chromosomes, with LOD
values between 2.31 and 26.38, collectively explained 1.78%–20.27% of the observed

Fig 2. Numbers and total length of the introgressed Hai1 segments in the three generations. a: Number of the introgressed Hai1 segments; b: Total
length of the introgressed Hai1 segments.

doi:10.1371/journal.pone.0159101.g002
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Fig 3. Mapping of QTLs for cotton fiber quality and yield traits on the linkagemap.

doi:10.1371/journal.pone.0159101.g003
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phenotypic variations. Three QTLs were detected in 3 generations, and the 13 QTLs were
detected in two generations, these 16 QTLs were regarded as stable ones, of which included 12
fiber quality-related QTLs and 4 yield-related QTLs.

Fiber length: Eight QTLs controlling FL were detected on four chromosomes (Chr2, Chr14,
Chr5 and Chr20), explaining 1.93%–19.68% of the observed phenotypic variations. Among
these QTLs, one on Chr2 (qFL-2–7) and three on Chr14 (qFL-14-5, qFL-14-6 and qFL-14-7)
were detected in both F1 and F2 generations. Three QTLs in F2:3 were mapped on Chr5 (qFL-5-
1) and Chr20 (qFL-20-3 and qFL-20-17), explaining 4.91%, 5.37%, and 19.68% of the observed
phenotypic variations, respectively. The negative additive effect for qFL-5-1 indicated that
CCRI36 alleles increased fiber length.

Fiber strength: A total of 10 QTLs for FS were detected on six chromosomes (Chr2, Chr8,
Chr10, Chr11, Chr14 and Chr20), explaining 1.84%–6.49% of the observed phenotypic varia-
tions. Among these QTLs, four that were detected in both F1 and F2 were mapped on Chr2
(qFS-2-7) and Chr14 (qFS-14-5, qFS-14-6 and qFS-14-7), explaining 2.07%–5.77%, 5.53%–
6.49%, 5.06%–6.06%, and 5.24%–5.78% of the observed phenotypic variations, respectively.
One QTL mapped on Chr20 was detected in F2:3 (qFS-20-3), explaining 4.73% of the observed
phenotypic variations. Of the remaining QTLs, one was detected in F1 and four in F2.

Micronaire: Four QTLs for FM were mapped on three chromosomes (Chr3, Chr17 and
Chr20), explaining 1.95%–11.69% of the observed phenotypic variations. Among these QTLs,
three were detected both in F2 and F2:3, and mapped on Chr3 (qFM-3-12) and Chr17 (qFM-
17-7 and qFM-17-8), explaining 8.86%–10.46%, 5.12%–11.69% and 6.78%–7.67% of the
observed phenotypic variations, respectively. The negative additive effects indicated that
CCRI36 alleles increased micronaire value.

Fiber uniformity: Two QTLs for fiber uniformity were mapped on Chr17 and Chr20. qFU-
17-5 explained 2.49%–3.83% of the observed phenotypic variations with a negative additive
effect. QTL qFU-20-9 was detected in both F1 and F2, explaining 3.57% of the observed pheno-
typic variations, with a positive additive effect which indicated Hai1 alleles increased fiber
uniformity.

Boll weight: Two QTLs for BW were mapped on Chr11 and Chr12, explaining 6.02%–
9.50% of the observed phenotypic variations. The positive additive effects indicated that Hai1
alleles increased boll weight.

Lint percentage: Nine QTLs for LP were mapped on 6 chromosomes (Chr3, Chr11, Chr12,
Chr13, Chr17 and Chr20), explaining 1.84%–13.50% of the observed phenotypic variations.
Three QTLs, qLP-3-12, qLP-17-7 and qLP-17-8, were detected in all F1, F2 and F2:3, explaining
8.01%–9.91%, 5.28%–13.5% and 4.4%–11.57% of the observed phenotypic variations, respec-
tively. qLP-12-13 was detected in both F2 and F2:3, and explained 5.05%–10.77% of the
observed phenotypic variations. The negative additive effects indicated that CCRI36 alleles
increased lint percentage.

Discussion

Assessment and Application of Chromosome Segment Substitution
Lines
CSSLs are usually applied to investigate the genetic behavior and effects of chromosome intro-
gression Segment from the donor parent in the background of the recurrent parent. Its applica-
tion for QTL mapping generally improves accuracy. CSSLs also provide permanent segregation
populations for studying multi-environmental stability of the mapped QTLs. In the previous
studies, a set of CSSL population was constructed using a widely planted upland cotton culti-
var, CCRI36 as the recurrent parent, which is characterized of high yield and early maturity,
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and a sea island cotton Hai1 as the donor parent, which had good fiber quality and a high level
of resistance to Verticillium wilt [38, 39, 40, 41]. In the current study, four introgression lines
with excellent fiber quality which derived from this CSSL population were used to construct
the segregating populations of double-crossed F1, F2, and F2:3. The introgressed Hai1 Chromo-
some segments were detected in individual plants of all three generations. The genotyping of
each individual plant in the three generations was relatively clear. The recovery rate to the
recurrent parent in all three generations was>95%. These introgression lines are ideal materi-
als for further fine mapping, gene interaction analysis, heterosis mechanism study, and func-
tional genomics.

Comparison of Our Results with the Previous Findings
The QTLs detected in the present study, including 35 QTLs controlling fiber quality traits and
11 QTLs controlling yield traits, were mapped to 11 chromosomes (Chr2, Chr3, Chr5, Chr8,
Chr10, Chr11, Chr12, Chr13, Chr14, Chr17, and Chr20). Among these QTLs, three (qLP-17-7,
qLP-17-8, and qLP-3-12) were consistently detected in all three generations, and 13 were con-
sistently detected in two generations (qFL-14-5, qFL-14-6, qFL-14-7, qFL-2-7, qFS-14-5, qFS-
14-6, qFS-14-7, qFS-2-7, and qFU-20-9 detected in F1 and F2; qFM-17-7, qFM-17-8, qFM-3-
12, and qLP-12-13 detected in F2 and F2:3) (S4 Table). Fifteen QTLs detected in the present
study were reported in previous studies, including qFL-2-7, qFS-2-7, qBW-11-27, qBW-12-13,
qLP-12-13, qFL-14-5, qFS-14-5, qFS-14-5, qFM-17-7, qFM-17-7, qFU-17-5, qLP-17-5, qFL-
20-3, qFS-20-3, and qFS-20-15 [40–41; 48–50], based on the common markers harbored in the
same confidence intervals of the same chromosome positions where these QTLs were mapped.
Eight QTLs (qLP-17-8, qLP-3-12, qFL-14-6, qFL-14-7, qFS-14-6, qFS-14-7, qFM-17-8 and
qFM-3-12) are reckoned to be novel stable QTLs. The detection of QTLs in multiple genera-
tions and different genetic backgrounds was suggestive of the stabilities of the genetic effects.
The special attentions should be paid to these stable QTLs because the quantitative traits are
usually susceptible to the various environmental factors, and the stable QTLs might increase
reliability and efficiency of selection and play important roles in fiber yield and quality
improvement via MAS [51–56].

QTL Cluster and Linkage Distribution
Cluster distribution of QTLs is a relatively common phenomenon [14, 17, 53, 55–58]. Said
et al. [59] comprehensively analyzed 2,134 previously reported QTLs in intra- and inter-species
populations and detected numerous QTLs, which were distributed in clusters in certain chro-
mosome regions in the specific populations. In the present study, QTLs controlling different
traits were also detected at the same SSR marker locus. QTLs for FL and FS were mapped to the
neighboring regions of markers HAU1980b on Chr2, NAU3648, NAU5421 and HAU1980a on
Chr14, and CGR5565a, NAU5013, and NAU3665 on Chr20. QTLs for FU and LP were
mapped to the neighboring regions of marker NAU5013 (S4 Table). QTLs for FM (qFM3-12,
qFM-17-7, and qFM-17-8) were consistently detected in the neighboring regions of the molec-
ular markers linked to the QTLs for LP (qLP-3-12, qLP-17-7, and qLP-17-8), suggesting that
these major QTLs are closely linked to the same markers in the introgressed Hai1 segment,
thereby providing an explanation for the significant correlations between the two traits in all
three generations (Table 3). These results indicate that these loci might function as pleiotropic
genes or are closely linked to the various other genes.

The chromosome segments of these QTL hotspot clusters could be useful for molecular
breeding based on common molecular markers [59]. When the chromosome segments clus-
tered both the favorable alleles of the QTLs for cotton fiber quality and yield traits, it could be
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more easily used for simultaneous improvement of traits. However, when the chromosome seg-
ments clustered the negatively correlated favorable alleles of QTLs, it would be very difficult to
simultaneously improve these traits. An in-depth study of this linkage mechanism and break-
ing the linkage between cumbersome genes would play a significant role in cotton molecular
breeding.

Sources of QTL Synergistic Genes
Among the QTLs for fiber quality traits mapped in the present study, the synergistic genes for
14 QTLs were from CCRI36, whereas the synergistic genes for 21 QTLs were from Hai1.
Among the QTLs controlling cotton yield traits, the synergistic genes for 8 QTLs were from
CCRI36, whereas the synergistic genes for 3 QTLs were from Hai1. These results suggest that
fiber quality or yield QTLs are not necessarily derived from the superior parent and the parent
with relatively poor traits can also contribute genes that favor fiber yield and quality. Our find-
ings also indicate that introgression between upland cotton and sea island cotton may broaden
genetic variations as well as increase the potential of favorable gene rearrangements.
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