Skip to main content
. Author manuscript; available in PMC: 2016 Sep 7.
Published in final edited form as: SIAM J Imaging Sci. 2015 May 5;8(2):1030–1069. doi: 10.1137/140984002

Table 1.

Notation (frequently used acronyms and symbols).

Notation Description

GN Gauss–Newton
KKT system Karush–Kuhn–Tucker system
PCG preconditioned conjugate gradient method
PDE partial differential equation
PDE solve solution of hyperbolic PDEs of optimality systems (4.1) and (4.3)

mR reference (fixed) image (mR : RdR)
mT template image (image to be registered; mT: RdR)
y mapping (deformation; y : RdRd)
v velocity field (control variable; v : Rd × [0, 1] → Rd)
m state variable (transported image; m : Rd × [0, 1] → R)
m1 state variable at t = 1 (deformed template image; m1 : RdR)
λ adjoint variable (transported mismatch; λ : Rd × [0, 1] → R)
f body force (drives the registration; f : Rd × [0, 1] → Rd)
F1 deformation gradient (tensor field) at t = 1 (F1 : RdRd×d)
𝒥 objective functional
𝒮 regularization functional
𝒜 differential operator (first and second variation of 𝒮)
β regularization parameter
γ parameter that enables (γ = 1) or disables (γ = 0) the incompressibility constraint
nt number of time points (discretization)
nc number of coefficient fields (spectral Galerkin method in time)
nx number of grid points (discretization; nx=(nx1,,nxd))
g reduced gradient (first variation of Lagrangian with respect to v)
reduced Hessian (second variation of Lagrangian with respect to v)