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Abstract

Many have suggested a bootstrap procedure for estimating the sampling variability of principal 

component analysis (PCA) results. However, when the number of measurements per subject (p) is 

much larger than the number of subjects (n), calculating and storing the leading principal 

components from each bootstrap sample can be computationally infeasible. To address this, we 

outline methods for fast, exact calculation of bootstrap principal components, eigenvalues, and 

scores. Our methods leverage the fact that all bootstrap samples occupy the same n-dimensional 

subspace as the original sample. As a result, all bootstrap principal components are limited to the 

same n-dimensional subspace and can be efficiently represented by their low dimensional 

coordinates in that subspace. Several uncertainty metrics can be computed solely based on the 

bootstrap distribution of these low dimensional coordinates, without calculating or storing the p-

dimensional bootstrap components. Fast bootstrap PCA is applied to a dataset of sleep 

electroencephalogram recordings (p = 900, n = 392), and to a dataset of brain magnetic resonance 

images (MRIs) (p ≈ 3 million, n = 352). For the MRI dataset, our method allows for standard 

errors for the first 3 principal components based on 1000 bootstrap samples to be calculated on a 

standard laptop in 47 minutes, as opposed to approximately 4 days with standard methods.
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1 Introduction

Principal component analysis (PCA) (Jolliffe, 2005) is a dimension reduction technique that 

is widely used fields such as genomics, survey analysis, and image analysis. Given a 

multidimensional dataset, PCA identifies the set of basis vectors such that the sample 

subjects' projections onto these basis vectors are maximally variable. These new basis 

vectors are called the sample principal components (PCs), and the subjects' coordinates with 

respect to these basis vectors are called the sample scores. The sample PCs can be thought of 

as estimates of the population PCs, or the eigenvectors of the population covariance matrix. 

It has been shown that, as dimension increases, whether or not the sample PCs converge to 

their population counterparts depends on the rate of sample size growth, the rate of 

dimension growth, and the spacing of the eigenvalues of the population covariance matrix 

(Shen et al. (2012a), for a recent literature review, see Koch (2013)). Nadler (2008) and Shen 
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et al. (2012a) discuss PC consistency under the “spike covariance” model introduced by 

Johnstone (2001), where the first several eigenvalues of the population covariance matrix are 

assumed to be much larger than the remaining eigenvalues. Jung and Marron (2009) 

introduced consistency conditions for cases where sample size is fixed, dimension grows, 

and groups of eigenvalues grow with dimension at different rates. Shen et al. (2013) discuss 

consistency conditions for sparse PCA, when the first eigenvector of the population 

covariance matrix can be assumed sparse. Consistency conditions for the n-length, right 

singular vectors of high dimensional sample data matrices are discussed by Leek (2011) and 

Shen et al. (2012b).

A fundamental drawback of the PCA algorithm is that it is purely descriptive – there is no 

clear method for estimating the sampling variability of the scores, the PCs, or proportion of 

variance that each PC explains. Analytically derived, asymptotic confidence intervals for 

PCs typically require the assumption of normally distributed data (Girshick, 1939; Tipping 

and Bishop, 1999), or existence and computation of fourth order moments which results in 

O(p4) complexity (Kollo and Neudecker, 1993, 1997; Ogasawara, 2002), where p is the 

sample dimension. As an alternative to analytical, asymptotic confidence intervals, Diaconis 

and Efron (1983) proposed bootstrap based confidence intervals for PCA results. Hall and 

Hosseini-Nasab (2006) gave a theoretical justification for using bootstrap confidence regions 

to estimating sampling variability of functional PCA output. Goldsmith et al. (2013) applied 

a bootstrap procedure in functional PCA to estimate confidence bands for subject-level 

underlying functions, accounting for additional uncertainty coming from the PC 

decomposition. Salibián-Barrera et al. (2006) use the bootstrap in the context of a robust 

PCA procedure. There, the authors applied an eigenvalue decomposition to a robust estimate 

of the population shape matrix, which is a scaled version of the population covariance 

matrix. The bootstrap has also been discussed in the context of factor analysis (Chatterjee, 

1984; Thompson, 1988; Lambert et al., 1991), and in the context of determining the number 

of nontrivial components in a dataset (Lambert et al., 1990; Jackson, 1993; Peres-Neto et al., 

2005; Hong et al., 2006). However, when applying the bootstrap to PCA in the high 

dimensional setting, the challenge of calculating and storing the PCs from each bootstrap 

sample can make the procedure computationally infeasible.

To address this computational challenge, we outline methods for exact calculation of PCA in 

high dimensional bootstrap samples that are an order of magnitude faster than the current 

standard methods. These methods leverage the fact that all bootstrap samples occupy the 

same n-dimensional subspace, where n is the original sample size. Importantly, this leads to 

bootstrap variability of the PCs being limited to rotational variability within this subspace. 

To improve computational efficiency, we shift operations to be computed on the low 

dimensional coordinates of this subspace before projecting back to the original p-

dimensional space.

There has been very little work applying bootstrap to PCA in the high dimensional context, 

largely due to computational bottlenecks. The methods we propose drastically reduce these 

bottlenecks, allowing for simulation studies of PCA in high dimensions, and for further 

study of bootstrap PCA in real world, high dimensional scientific applications.
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Our methods can also be directly applied to determine the resampling-based variability of 

any model that depends on a singular value decomposition of the sample data matrix. For 

example, in Independent Component Analysis (ICA, Bell and Sejnowski, 1995), the first 

step is typically to use PCA to represent the data on a low dimensional space (Calhoun et al., 

2001). Other examples include bootstrap and cross-validation variability for principal 

component regression (PCR), ridge regression, and, more generally, regression with 

quadratic penalties.

The remainder of this paper is organized as follows. Section 1.1 presents some initial 

mathematical notation, and gives a basic summary of PCA and the bootstrap procedure. 

Section 1.2 outlines the intuition for fast bootstrap PCA. Section 2 discusses two motivating 

data examples – one based on sleep electroencephalogram (EEG) recordings, and one based 

on brain magnetic resonance images (MRIs). Section 3 presents the full details of our 

methods for fast, exact bootstrap PCA. The computation complexity of our methods depends 

on the final sampling variability metric of interest. For example, pointwise standard errors 

for the PCs can be calculated more quickly than the full, high dimensional bootstrap 

distribution of the PCs. Section 4 uses simulations to demonstrate coverage rates for 

confidence regions around the PCs. Section 5 applies fast bootstrap PCA to the EEG and 

MRI datasets.

1.1 A brief summary of PCA, SVD, the bootstrap, and their accompanying notation

In the remainder of this paper, we will use the notation X[i,k] to denote the element in the ith 

row and kth column of the matrix X. The notation X[,k] denotes the kth column of X; X[k,] 

denotes the kth row of X; X[,1:k] denotes the first k columns of X; and X[1:k,1:k] denotes the 

block of matrix X defined by the intersection of the first k columns and rows. The notation 

v[j] denotes the jth element of the vector v, the notation 1k denotes the k-length vector of 

ones, and the notation Ik denotes the k × k identity matrix. We will also generally use the 

term “orthonormal matrix” to refer to rectangular matrices with orthonormal columns.

In order to create highly informative feature variables, PCA determines the set of 

orthonormal basis vectors such that the subjects' coordinates with respect to these new basis 

vectors are maximally variable (Jolliffe, 2005). These new basis vectors are called the 

sample principal components (PCs), and the subjects coordinates with respect to these basis 

vectors are called the sample scores.

Both the sample PCs and sample scores can be calculated via the singular value 

decomposition (SVD) of the sample data matrix. Let Y be a full rank, p × n data matrix, 

containing p measurements from n subjects. Suppose that the rows of Y have been centered, 

so that each of the p dimensions of Y has mean zero. The singular value decomposition of Y 
can be denoted as VDU′, where V is the p × n matrix containing the orthonormal left 

singular vectors of Y, U is the n × n matrix containing the right singular vectors of Y, and D 
is a n × n diagonal matrix whose diagonal elements contain the ordered singular values of Y. 

The principal component vectors are equal to the ordered columns of V, and the sample 

scores are equal to the n × n matrix DU′. The diagonal elements of (1/(n − 1))D2 contain the 

sample variances for each score variable, also known as the variances explained by each PC. 
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Approximations of Y using only the first K principal components can be constructed as 

. Existing methods for fast, exact, and scalable calculation of the 

SVD in high dimensional samples are discussed in the supplemental materials.

The sampling variability of PCA can be estimated using a bootstrap procedure. The first step 

of this procedure is to construct a bootstrap sample, by drawing n observations, with 

replacement, from the original demeaned sample. PCA is reapplied to the bootstrap sample, 

and the results are stored. This process is repeated B times, until B sets of PCA results have 

been calculated from B bootstrap samples. We index the bootstrap samples by the 

superscript notation b, so that Yb denotes the bth bootstrap sample. Variability of the PCA 

results across bootstrap samples is then used to approximate the variability of PCA results 

across different samples from the population. Unfortunately, recalculating the SVD for all B 
bootstrap samples has a computation complexity of order O(Bpn2), which can make the 

procedure computationally infeasible when p is very large.

1.2 Fast bootstrap PCA – resampling is a low dimensional transformation

It's important to note that the interpretation of principal components (PCs) depends on the 

coordinate vectors on which the sample is measured. Given the sample coordinate vectors, 

the PC matrix represents linear transformation that aligns the coordinate vectors with the 

directions along which sample points are most variable. When the number of coordinate 

vectors (p) exceeds the number of observations (n), this transformation involves first 

reducing the coordinate vectors to a parsimonious, orthonormal basis of n vectors1 whose 

span still includes the sample data points, and then applying the unitary transformation that 

aligns this basis with the directions of maximum sample variance. The first step, of finding a 

parsimonious basis, is more computationally demanding than the alignment step. However, 

if the number of coordinate vectors is equal to the number of data points, then the 

transformation obtained from PCA consists of only an alignment.

The key to improving computational efficiency of PCA in bootstrap samples is to realize that 

all resampled observations are contained in the same low dimensional subspace as the 

original sample. Because the span of the principal components V includes all observations in 

the original sample, the span of V also includes all observations in any bootstrap sample. 

Thus, in each bootstrap sample, Yb, we can skip the computationally demanding dimension 

reduction step of the PCA by first representing Yb in terms of the parsimonious, orthonormal 

basis V. Viewing the bootstrap procedure as a loop operation over several bootstrap samples, 

we see that the low dimensional subspace on which all sample points lie is loop invariant.

To translate this intuition into the calculation of the SVD for bootstrap samples, we first note 

that Yb can be represented as YPb, where  If  and zero otherwise. In each 

bootstrap sample, we then calculate its SVD, denoted by VbDbUb′, via the following steps

1Note, if the data has been centered, then n − 1 basis vectors are sufficient. For brevity of notation though, we will generally refer to 
the subspace under either scenario, centered or uncentered, as n-dimensional.
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Rather than directly decomposing the p-dimensional bootstrap sample Yb, we reduce the 

problem to a decomposition of the n-dimensional resampled scores, svd(DUPb) =: AbSbRb′. 

Because V and Ab are both orthonormal, their product VAb is orthonormal as well. Since S 
is diagonal and Rb is orthonormal, (VAb)Sb(Rb) is equal to the SVD of Yb. The singular 

values, and right and left singular vectors of the Yb can then be written respectively as Db = 

Sb, Ub = Rb, and Vb = VAb. If only the first K principal components are of interest, then it is 

sufficient to calculate and store Ab, Ub, and Db as the matrices containing only the first K 
singular vectors and values of DU′Pb. Full details of our proposed methods for bootstrap 

PCA are discussed in section 3.

Daudin et al. (1988) applied an equivalent result to eigen-decompositions of bootstrap co-

variance matrices in the p < n setting, but this result has not been widely used, nor has it 

been generalized to the p ≫ n setting. Daudin et al. (1988) suggested that, rather than 

decomposing the p × p covariance matrix, a more computationally efficient approximation is 

to decompose the covariance matrix of the k leading resampled score variables. The 

eigenvectors of this k × k covariance matrix can then be projected onto the p-dimensional 

space to approximate the eigenvectors of the full p × p covariance matrix. In the p ≫ n 
setting, however, if k is set equal to n, then the approximation becomes exact. Note also that 

in the p ≫ n setting, it is the projection onto the p-dimensional space that is most 

computationally demanding step (computational complexity O(KBpn)), rather than the n-

dimensional decompositions (computational complexity O(KBn2)).

To gain intuition for why that the columns of VAb are the principal components of Yb, note 

that the resampled scores, DU′Pb, are equivalent to the resampled data, Yb, expressed in 

terms in terms of the coordinate vectors V. This implies that the principal components of the 

resampled scores, Ab, give the transformation required to align the coordinate vectors of the 

scores, V, with the directions along which the resampled scores are most variable. Applying 

this transformation yields VAb – the bootstrap principal components in terms of the sample's 

original, native coordinate vectors.

Random orthogonal rotations comprise the only possible way that the fitted PCs can vary 

across bootstrap samples. Because of this, the bootstrap procedure will not be able to 

directly estimate PC sampling variability in directions orthogonal to the observed sample, 

not unlike how a bootstrap mean estimate must be a weighted combination of the observed 

data points. However, when the inherent dimension of the population is small, the sampling 

variability of the PCs will generally be dominated by variability in a handful of directions, 

and these directions will generally be well represented by the span of the bootstrap PCs. 

Variability in directions not captured by the bootstrap procedure will tend to be of a much 

smaller magnitude.
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The rotational variability of the bootstrap PCs is directly represented by the Ab matrices. 

More specifically, information about random rotations within the K leading PCs is captured 

by the  block matrices, which show how much each of the K leading bootstrap PCs 

weight on each of original K leading components. When the majority of bootstrap PC 

variability is due to rotations within the K leading PCs, the  matrices provide a 

parsimonious description of this dominant form of variability.

Decomposing Vb into an alignment operation, Ab, applied to the original sample 

components, V, can drastically reduce the storage and memory requirements required for the 

bootstrap procedure, making it much more amenable to parallelization. Using this method, 

we're able to store all the information about the variability of Vb only by storing the Ab 

matrices, which can later be projected onto the high dimensional space. Calculating the Ab 

matrices only requires the low dimensional matrices DU′ and Pb, and does not require either 

operations on the p × n matrix Yb, or access to the potentially large data files storing Y. In 

the context of parallelizing the bootstrap procedure, this allows for minimal memory, 

storage, and data access requirements for each computing node.

Furthermore, in many cases, it is not even necessary to calculate and store the p-dimensional 

components, . Instead we can calculate summary statistics for the bootstrap 

distribution of the low dimensional matrices Ab, and translate only the summary statistics to 

the high dimensional space. For example, we can quickly calculate bootstrap standard errors 

for V[,1:K] by first calculating the bootstrap moments of Ab, and projecting these moments 

back onto the p-dimensional space (see section 3.2). Joint confidence regions for the PCs 

can also be constructed solely based on the bootstrap distribution of Ab (see section 3.3). 

Similar complexity reductions are available when calculating bootstrap distribution of linear 

functions of the components, such as the the arithmetic mean of the kth PC (i.e. 

). For any bootstrap statistic of the form , where q is a p-

length vector, the n-length vector q′V can be pre-calculated, and the complexity of the 

bootstrap procedure will be limited only by n.

2 Motivating data

In this section we apply standard PCA to a dataset of sleep EEG recordings (p=900), and to 

a dataset of preprocessed brain MRIs (p=2,979,666). A bootstrap procedure is later applied 

in section 5, to estimate sampling variability for the fitted PCs.

There has been demonstrated interest in the population PCs corresponding to both datasets 

(Di et al., 2009; Crainiceanu et al., 2011; Zipunnikov et al., 2011a,b). For our purposes, the 

functional EEG data form an especially useful didactic example, as the sample PCs are also 

functional, and easily visualizable. We include the MRI dataset primarily to demonstrate 

computational feasibility of the bootstrap procedure when dimension (p) is large.
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2.1 Sleep EEG

The Sleep Heart Health Study (SHHS) is a multi-center prospective cohort study designed to 

analyze the relationships between sleep-disorder breathing, sleep metrics, and cardiovascular 

disease (Quan et al., 1997). Along with many other health and sleep measurements, EEG 

recordings were taken for each patient, for an entire night's sleep. An EEG uses electrodes 

placed on the scalp to monitor neural activation in the brain, and is commonly used to 

describe the stages of sleep. Our goal in this application is to estimate the primary patterns in 

EEG signal that differentiate among healthy subjects, and to quantify uncertainty in these 

estimated patterns due to sampling variability.

To reflect this goal, we selected a subsample of 392 healthy, comparable controls from the 

SHHS (n = 392). Our sample contained only female participants between ages 40 and 60, 

with no sleep disordered breathing, no history of smoking, and high quality EEG recordings 

for at least 7.5 hours of sleep. In order to more easily register EEG recordings across 

subjects, only the first 7.5 hours of EEG data from each subject were used. Although the 

EEG recordings consist of measurements from two electrodes, we focus for simplicity only 

on measurements from one of these electrodes (from the left side of the top of the scalp).

To process the raw EEG data, each subject's measurements were divided into thirty second 

windows, and the proportion of the signal in each window attributable to low frequency 

wavelengths (0.8-4.0 Hz) was recorded. This proportion is known as normalized δ power 

(NPδ), and is particularly relevant to deep stage sleep (NREM Stage 3). The preprocessing 

procedure used here to transform the raw EEG data into NPδ is the same as the procedure 

used by Crainiceanu et al. (2009). A lowess smoother was then applied to each subject's NPδ 
function, as a simple means of incorporating the assumption that the underlying NPδ process 

is a smooth function. This preprocessing procedure resulted in 7.5 hours × (60 minutes/hour) 

× (2 thirty second windows/minute) = 900 measurements of NPδ per subject (p = 900).

The left panel of Figure 1 shows examples of NPδ functions for five subjects, as well as the 

mean NPδ function across all subjects, denoted by μ. The first five principal components of 

the NPδ data are shown in the right panel of Figure 1. The first PC (PC1) appears to be a 

mean shift, indicating that the primary way in which subjects differ is in their overall NPδ 
over the course of the night. The remaining four PCs (PC2, PC3, PC4, and PC5) roughly 

correspond to different types of oscillatory patterns in the early hours of sleep. These 

components are fairly similar to the results found by (Di et al., 2009), who analyze a 

different subset of the data, and employ a smooth multilevel functional PCA approach to 

estimate eigenfunctions that differentiate subjects from one another.

Collectively, the first five PCs explain approximately 55% of the variation, and the first ten 

PCs explain approximately 76% of the variation (see scree plot in supplemental materials). 

These estimates for the variance explained by each component are much lower than the 

estimates from Di et al. (2009). The difference is most likely due differences in how the 

MFPCA method employed by Di et al. (2009) incorporates the assumption of underlying 

smoothness in NPδ.
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2.2 Brain magnetic resonance images

We also consider a sample data processed using voxel based morphometry (VBM) 

(Ashburner and Friston, 2000), a technique that is frequently used to study differences in the 

size of brain regions across subjects, or within a single subject over time. Our data came 

from an epidemiological study of former organolead manufacturing workers (Stewart et al., 

2006; Schwartz et al., 2007, 2010; Bobb et al., 2014). We focused on the baseline MRIs 

from the 352 subjects for which both baseline and followup MRIs were recorded.

VBM images were constructed based on brain MRIs. The original MRIs were stored as 3-

dimensional arrays, with each array element corresponding to tissue intensity in a voxel, or 

volumetric pixel, of the brain. Creating VBM images typically begins by registering each 

subject's brain MRI to a common template image, using a non-linear warping. The number 

of voxels mapped to each voxel of the template image during the registration process is 

recorded. This information is used to create subject-specific images on the template space, 

where each voxel's intensity represents the size of that voxel in the subject's original MRI. 

The VBM images used here were processed using a generalization of the regional analysis 

of volumes examined in normalized space (RAVENS) algorithm (Goldszal et al., 1998; 

Davatzikos et al., 2001), and are the same as the baseline visit images used in (Zipunnikov et 

al., 2011b,a).

To create a single p × n data matrix, each subject's VBM image was vectorized, omitting the 

background voxels that did not correspond to brain tissue. The vector for each subject 

contained 2,979,666 measurements (p=2,979,666). Because the resulting data matrix was 

3.5 Gb, it is difficult to store the entire data matrix in working memory, and block matrix 

algebra is required to calculate the sample PCs (see supplemental materials).

A central slice from each of the first three PCs is shown in the first row of Figure 3. PC1 

appears to roughly correspond with grey matter, indicating that the primary way in which 

subjects regions tend to differ is in their overall grey matter volume. Together, the first 30 

PCs explain approximately 53.3% of the total sample variation (see scree plot in 

supplemental materials).

In the remainder of this paper, we refer to this dataset primarily as to demonstrate the 

computational feasibility of bootstrap PCA in especially high dimensions. Additional 

interpretation of the sample PCs is given in (Zipunnikov et al., 2011b,a).

3 Full description of the bootstrap PCA algorithm

In this section we outline calculation methods for bootstrap standard errors, bootstrap 

confidence regions, and for the full bootstrap distribution of the principal components (PCs). 

The overall computational complexity of the procedure depends on the bootstrap metric of 

interest, but the initial steps of all our proposed methods are the same.

Building on the notation of sections 1.1 and 1.2, let K be the number of principal 

components that are of interest, which typically will be less than n – 1. For simplicity of 

presentation, we assume that each dimension of the bootstrap sample Yb has mean zero. 
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Manually recentering Yb however will not add any high dimensional complexity to the 

procedure, as this is equivalent to recentering the n × n matrix of resampled scores DU′Pb 

(see supplemental materials).

For each bootstrap sample, we begin by calculating the leading K singular vectors and 

singular values of the resampled scores DU′Pb. As noted in section 1.2, the leading left and 

right singular vectors of DU′Pb are stored as solutions for the n × K matrices Ab and Ub 

respectively. The leading singular values of DU′Pb are the solutions for the diagonals of the 

K × K matrix Db. In the typical case where K is less than or equal to the rank of DU′Pb, the 

first K singular values of DU′Pb are positive and unique, and the solutions for the columns 

of Ab and Ub are unique up to sign changes. Arbitrary sign changes in the columns of Ab 

will ultimately result in arbitrary sign changes in the bootstrap PCs. Adjusting for these 

arbitrary changes is discussed in section 3.1.

We find in approximately 4% of bootstrap samples from the MRI dataset, that although a 

solution to the SVD of DU′Pb exists, the SVD function fails to converge. We handle these 

cases by randomly preconditioning the matrix DU′Pb, reapplying the SVD function, and 

appropriately adjusting the results to find the SVD of the original matrix. The full details of 

this procedure are described in the supplement materials.

These baseline steps require a computational complexity of order O(KBn2). They are 

sufficient for calculating the leading K bootstrap scores and the variance explained by the 

leading K bootstrap PCs.2

When moving on to describe the bootstrap distribution of the PCs, we have several options, 

each requiring a different level of computational complexity:

• Standard errors for the PCs can be calculated based on the bootstrap 

mean and variance of the columns of Ab (see section 3.2). These standard 

errors can be used to create pointwise confidence intervals (see section 

3.3.1). This option requires additional computational complexity of order 

O(Kpn2 + KBn2).

• Joint confidence regions for the PCs and for the principal subspace can 

be constructed using the methods in section 3.3.3. This option requires no 

additional computational complexity on the high dimensional scale.

• The full bootstrap distribution of PCs can be calculated by projecting 

the principal components of the bootstrap scores onto the p-dimensional 

space (i.e. ). The bootstrap PC vectors ( ) can then be 

used to create pointwise percentile intervals for the PCs (see section 

3.3.1). If p is sufficiently large such that the matrix V cannot be held in 

working memory, block matrix algebra can be used to break down the 

2The bootstrap score matrix is equal to DbUb′, and the variances explained by each bootstrap PC are equal to the diagonals of (1/(n 
− 1))(Db)2. These variances explained can also be expressed as a proportions of the total variance of the bootstrap sample, which can 

be calculated as .

Fisher et al. Page 9

J Am Stat Assoc. Author manuscript; available in PMC 2016 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calculation of VAb into a series low memory operations (see supplemental 

materials). Calculation of all bootstrap PCs requires additional 

computational complexity of order O(KBpn). If K is set equal to n−1, then 

the computational complexity of this method is roughly equivalent to that 

the standard methods (O(Bpn2)). The total computation time, however, 

will still be approximately half the time of standard methods, as the 

matrices Yb′ Yb need not be calculated (see supplemental materials).

3.1 Adjusting for axis reflections of the principal components

Because the singular vectors of Yb are not unique up to sign, arbitrary sign changes, also 

known as reflections across the origin, will induce variability in both the sampling and 

bootstrap distributions of the principal components (Vb). These reflections, however, do not 

affect the interpretation of the PCs, and so their induced variability will cause us to 

overestimate sampling variability of the patterns decomposed by PCA (Efron and Tibshirani, 

1993, see section 7.2; Mehlman et al., 1995; Jackson, 1995; Milan and Whittaker, 1995). For 

example, arbitrary sign changes can cause the confidence interval for any element of any 

principal component to include zero, even if the absolute value of that element is nearly 

constant and nonzero across all bootstrap samples.

To isolate only the variation that affects the interpretation of the PCs, we adjust the sign of 

the columns of Vb so that the dot products  are positive for k = 1, 2, …, K. Note 

that because Vb = VAb, sign changes in the columns of Vb are equivalent to sign changes in 

the columns of Ab. For the same reason, sign adjustments for the columns of Vb are 

equivalent to sign adjustments for the columns of Ab, which can be simpler to compute. 

Here, the dot products  for k = 1, 2, …, K actually do not require any additional 

calculations, as they can be found on the diagonal elements of V′Vb = V′VAb = Ab. 

Independent of our work, this calculation simplification is also noted by Daudin et al. 

(1988). Whenever  is negative, we declare that an arbitrary sign change has occurred, 

and adjust by multiplying  and  by -1. The resulting PCs and scores are still valid 

solutions to the PCA algorithm.

Since  and V[,k] each have norm equal to one, their dot product is equal to the cosine of 

the angle between them. As a result, using the dot product  to adjust for sign will 

ensure that the angle between  and V[,k] is between −π/2 and π/2. This range of angles 

is exactly the range that affects our interpretation of the bootstrapped PCs. Using these dot 

products for sign adjustment is also equivalent to choosing the sign of  that minimizes 

the Frobenius distance , a method that has been previously suggested 

(Lambert et al., 1991; Milan and Whittaker, 1995).

It has also been suggested that the sign of each PC should be switched based on the 

correlation between the columns of Vb and the columns of V, rather than the dot products 

 (Jackson, 1995; Babamoradi et al., 2012).3 We advocate against this correlation 
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method, in favor of the cross product method. Of course, the two methods are very similar, 

as the correlation method is equivalent to applying a cross product operation after first 

centering and scaling the two vectors. Pre-scaling has no practical effect, as only the sign of 

the correlation is retained. However, pre-centering removes information that is potentially 

relevant to the sign switch decision. For example, consider the case where V[,k] is 

proportional to a sine wave, shifted up by 2, and scaled appropriately to have norm 1. 

Furthermore, let  be proportional to the same sine wave, shifted down by 2, and 

similarly scaled to have norm 1. Note that V[,k] has all positive elements, and  has all 

negative elements. These two vectors will be positively correlated, but have a negative 

crossproduct. The correlation rule will not result in a sign change, which can yield a bimodal 

bootstrap PC distribution with PCs clustered on either side of the zero line. Alternatively, the 

cross product rule will result in a sign change, making a bimodal bootstrap distribution less 

likely. In the supplemental materials, we illustrate such cases in more detail, and further 

argue for the use of the cross product over the correlation.

3.2 Bootstrap moments of the principal components

Traditional calculation of the mean and variance of  requires first calculating the 

bootstrap distribution of , and then taking means and variances over all B bootstrap 

samples. However, using our characterization of Vb as VAb, and properties of expectations, 

the same result can achieved without calculating or storing .

Specifically, the bootstrap mean  can be found via , where 

the operation E is the expectation with respect to the bootstrap distribution. The bootstrap 

variance of  can be found via

Where Var and Cov are variance operators with respect to the bootstrap distribution. The 

total computational complexity of finding  and then  for each 

combination of i = 1, 2, …, p and k = 1, …, K is only O(Kpn2 + KBn2)).4

This improvement in computation speed comes from pre-collapsing the complexity induced 

by having a large number of bootstrap samples before transforming to the high dimensional 

space. This allows us to separate calculations of order B from calculations of order p. 

Similar speed improvements are attainable whenever summary statistics or parametric 

models for the bootstrap distribution of Ab can be translated into summary statistics or 

parametric models for the high dimensional components Vb.

3Here, the correlation operation is taken across the p elements of the vector, without the operation's common statistical interpretation 
that each vector element is a new observation of a random variable.

4In practice, we calculate the diagonals of  by the row sums of , where ∘ denotes 
element-wise multiplication as opposed to traditional matrix multiplication.
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3.3 Construction of confidence regions

Several types of confidence regions can be constructed based on the bootstrap distribution 

the PCs. In this section, we specifically discuss (1) pointwise confidence intervals (CIs) for 

the PCs, based on either the bootstrap moments or bootstrap percentiles; (2) confidence 

regions (CRs) for the individual PCs; and (3) CRs for the principal subspace. Only the 

pointwise percentile intervals require calculation of the full bootstrap distribution of the high 

dimensional PCs. All other CRs can be calculated solely based on the bootstrap distribution 

of the low dimensional Ab matrices.

3.3.1 Pointwise confidence intervals for the principal components—The 

simplest pointwise confidence interval for the principal components is the moment-based, or 

Wald confidence interval. For the ith element of the kth PC, the moment-based CI is defined 

as , where α is the desired alpha level, z(1–α/2) is the 100(1 – 

α/2)th percentile of the standard normal distribution, and the E and σ functions capturing the 

mean and standard deviation of  across bootstrap samples. Both  and 

can be attained without calculating or storing the full bootstrap distribution of  (see 

section 3.2).

Another common pointwise interval for  is the bootstrap percentile CI, defined as 

 where  denotes the 100αth percentile of the 

bootstrap distribution of . Unlike the moment-based CI, the percentile CI does require 

calculation of the full bootstrap distribution of .

Estimating the percentile interval tends to require more bootstrap samples (e.g. 

B=1000-2000) than estimating the moment-based interval (e.g. B=50-200), as the quantile 

function is more affect affected by the tails of the bootstrap distribution than the moments 

are (Efron and Tibshirani, 1993). Interpretation of both these pointwise CIs is discussed 

further in section 5.

Our methods can also be used to quickly calculate bias corrected and accelerated (BCa) CIs 

(Efron, 1987), as others have suggested (Timmerman et al., 2007;Salibián-Barrera et al., 

2006).

3.3.2 Confidence regions for the principal components—Each principal 

component can be represented as a point in p-dimensional space. More specifically, because 

of the norm 1 requirement for the PCs, the parameter space for the principal components is 

restricted to the p-dimensional unit hypersphere, Sp = {x ∊ Rp : x′x = 1}. To create p-

dimensional CRs for each PC, Beran and Srivastava (1985) suggest so-called confidence 

cones on the unit hypersphere, of the form
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Here, q(ab, α) is the quantile function denoting the 100αth bootstrap percentile of the 

statistic ab. As noted in section 3.1, the calculation of  can be simplified to 

. Geometrically, the dot product condition of this CR is equivalent to a 

condition on the angle between x and V[,k]. Note that this CR automatically incorporates the 

sign adjustments described in section 3.1. Beran and Srivastava (1985) provide a theoretical 

proof for the coverage of CRs constructed in this way.

It is also possible to create joint confidence bands (jCBs) for the PCs according the method 

outlined by Crainiceanu et al. (2012). However, such bands will also contain vectors that do 

not have norm 1, and may even exceed 1 in absolute value for a specific dimension. As a 

result, many vectors contained within the jCBs will not be valid principal components, 

which complicates interpretation of the jCBs.

3.3.3 Confidence regions for the principal subspace—To characterize the 

variability of the subspace spanned by the first K PCs, also known as the principal subspace, 

it is not sufficient to simply combine the individual CRs for each PC. This is because the 

sampling variability of the individual fitted PCs is influenced by random rotations of the 

fitted PC matrix , while the sampling variability of the subspace is not. Similarly, most 

models whose fit depends on the leading PCs are unaffected by random rotations.

To characterize the sampling variability of the principal subspace, we first note that any 

bootstrap principal subspace can be defined by the p × K matrix with columns equal to the 

leading K PCs. Any such matrix must be contained within the set of all of p × K 
orthonormal matrices. This set can be written as the Stiefel manifold MK(RP) := {X ∈ Fp×K : 

X′X = IK}, where Fp×K is the set of all p × K matrices. To create CRs for the principal 

subspace, we can use the following generalization of CRs for the individual PCs

Here, the norm operation refers to the Frobenius norm. Beran and Srivastava (1985) suggest 

CRs of this form to characterize variability of a set of sample covariance matrix eigenvectors 

whose corresponding population eigenvalues are all equal. However, the CR construction 

method can also be applied in the context of estimating the principal subspace. As with CRs 

for the individual PCs, we can make the simplification that . Note 

that such CRs automatically adjust for random rotations of the first K principal components 

– if R is a K × K orthonormal transformation matrix, then ‖(XR)′V‖ = ‖X′V‖.

3.4 Maintaining informative rotational variability

When several of the leading eigenvalues of the population covariance matrix are close, the 

fitted PCs in any sample may be a mixtures the leading population PCs. In these cases, the 

bootstrap PCs will often be approximate rotations of the leading sample PCs. Others have 

argued if the parameter of interest is the principal subspace or the model fit, then the 
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bootstrap PCs should be adjusted to correct for rotational variability, as the principal 

subspace is unaffected by rotations among the leading PCs. Specifically, it has been 

suggested to use a Procrustean rotation to match the bootstrap PCs to the original sample 

PCs (Milan and Whittaker, 1995), and to then create pointwise confidence intervals (CIs) 

based on the rotated PCs (Timmerman et al., 2007; Babamoradi et al., 2012).5 We argue 

however that bootstrap rotational variability is informative of genuine sampling rotational 

variability, and that adjusting for rotations is not an appropriate way to represent sampling 

variability of the principal subspace, or the sampling variability of model fit. This is because 

pointwise CIs are not designed to estimate the sampling variability of the principal subspace. 

The pointwise CIs generated from rotated bootstrap PCs also do not capture the sampling 

variability of standard PCs, as the rotated PCs are not valid solutions to the PCA algorithm.

Rather than rotating towards the sample, it has also been proposed to rotate both the sample 

and bootstrap PCs towards a p × K target matrix T, which is pre-specified before collecting 

the initial sample Y (Raykov and Little, 1999; Timmerman et al., 2007).6 The target matrix 

T may be based on scientific knowledge, or previous research. Such an approach can also be 

used to test null hypotheses about the principal subspace by rotating  toward a null PC 

matrix V0 (Raykov and Little, 1999), and checking if elements of V0 are contained in the 

resulting CRs.

Our opinion is that if investigators are interested in the sampling variability of the output 

from a model that uses PCA, then it is the model output, and not the principal components, 

for which CRs should be calculated. If the sampling variability of the subspace is of interest, 

than CRs specifically designed for the subspace should be used (see section 3.3.3), rather 

than adjusted CIs for the elements of the PCs. Rotating towards a pre-specified target matrix 

T can also be a useful approach, although it may be more interpretable to calculate the 

bootstrap distribution of the variance explained by the columns of T,7 rather than the 

bootstrap distribution of the fitted PCs after a rotation towards T.

4 Coverage rate simulations

In this section we present simulated coverage rates for the CRs described in section 3.3. In 

order to make these simulations as realistic as possible, we simulated data using the 

empirical PC vectors of the EEG dataset as the true population basis vectors. As a baseline 

simulation scenario we set the sample size (n) equal to 392, and the true number of basis 

vectors in the population (denoted by K0) equal to 5.

Measurement vectors for each subject were simulated according to the model 

, where yi is a p-length vector of simulated measurements for the ith 

5One interpretation of CIs constructed from rotation adjusted bootstrap PCs is that if the population PC matrix is rotated towards the 
each sample from the population, then average pointwise coverage of rotation adjusted CIs should be approximately 100α%
6The computational complexity of finding the appropriate rotation matrix in each bootstrap depends on the taking the SVD of the K × 

K matrix , where V′T can be pre-calculated before the bootstrap procedure.
7In each bootstrap sample, the variance explained by the columns of T is equal to the variance of the resampled data after a projection 
onto the space spanned by T. The projected data is equal to T(T′T)−1T′Yb = (T(T′T)−1T′V)DU′Pb, where T′(T′T)−1T′V is an n 
× n matrix that can be precalculated before the bootstrap procedure.

Fisher et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2016 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subject; Ψk is the kth true underlying basis vector, which is set equal to the kth empirical PC 

of the EEG dataset; sik is a random draw from the empirical, univariate distribution of the 

scores for the kth PC; and ∊i is a vector of independent random normal noise variables, each 

with mean 0 and variance σ2/p. Setting the variance of ∊i equal to σ2/p implies that the total 

variance attributable to the random noise will be approximately equal to σ2, and will not 

depend on the number of measurements (p). The parameter σ2 was set equal to the sum of 

the variances of the K0 + 1 to nth empirical score variables, implying that for each simulated 

sample, the first K0 basis vectors (Ψ1, Ψ2, …, ΨK0) were expected to explain approximately 

the same proportion of the variance that they explained in the empirical sample. For each 

simulated subject, yi, the K0 score variables si1, …, siK0 were all drawn independently. 

Coverage was compared across 1000 simulated samples. For each simulated sample, the 

number of bootstrap samples created for estimation (B) was set to 1000.

As comparison simulation scenarios, we increased the number of measurements (p) to 5000 

and to 20000, by interpolating the empirical EEG data and recalculating the principal 

components and scores. We also compared against simulated sample sizes (n) of 100 and 

250. Because much of the variability in fitting principal components is determined by the 

spacing of eigenvalues in the population, we simulated separate scenarios where the 

empirical score distribution was scaled so that each basis vector explained half as much 

variance as the preceding basis vector. In other words, we scaled true population distribution 

of scores such that the vector of variances of the 5 score variables was proportional to the 

vector (24, 23, 22, 21,1). The total variance of the first 5 score variables was kept constant 

across all simulations. We refer to the modified eigenvalue spacing as the “parametric 

spacing” simulation scenario, and refer to the original eigenvalue spacing as the “empirical 

spacing” simulation scenario. Finally, we also simulated scenarios where the total variance 

due to the random noise (σ2) was scaled up 50%, and where it was scaled down by 50%. 

Considering all combinations of eigenvalue spacing, random noise level, sample size, and 

number of measurements, we conducted 2 × 3 × 3 × 3 = 54 sets of simulations. Thus, our 

simulation study required the calculation of 54 × 1000 × 1000 = 54 million principal 

component decompositions, with the ranges for p and n mentioned above.

The total elapsed computation time for these 54 simulations was 28 hours. The simulations 

were run as a series of parallel jobs on an ×86-based linux cluster, using a Sun Grid Engine 

for management of the job queue. As many as 200 jobs were allowed to run simultaneously. 

Each job required between approximately .5Gb and 2Gb maximum virtual memory, 

depending on the scenario being simulated.

4.1 Simulation results

The left of Figure 2 compares simulation results across different levels of residual variance, 

sample size, and eigenvalue spacing. In this 3 × 2 array of plots we fix p at 900, but results 

were similar for alternate values of p. For each simulation scenario, we calculated the 

median pointwise CI coverage across all 900 measurements. Both the moment-based and 

percentile intervals generally perform well, with all 54 simulation scenarios (including those 

not shown here) having median coverage rates between 92.4% and 98.1%. When the 

eigenvalues of the estimated PCs are well spaced (e.g. for PC1 in the empirical spacing 
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scenario, or PCs 1-3 in the parametric spacing scenario), the coverage rates converge to 95% 

as the sample size increases. However, when the eigenvalues are not clearly differentiated, 

higher sample sizes can lead to slightly overly conservative CIs.

In the supplemental materials we further explore coverage by examining the full distribution 

of coverage rates across each of the p dimensions of the PCs, rather than summarizing by 

taking the median. We find that for both PC2 and PC3, the moment-based intervals give 

close to 95% coverage, but that the percentile intervals may give poor coverage in certain 

regions.

The right side of Figure 2 shows coverage rates of confidence cones for the principal 

components (section 3.3.2). Coverage appears to improve when the eigenvalues are well 

spaced and when sample size increases. Differences in coverage are also more noticeable 

here than in the median coverage rates for pointwise intervals. Coverage rates of CRs for the 

principal subspace (section 3.3.3) are shown in the supplemental materials, and follow the 

same general pattern as CRs for the individual PCs.

To more formally summarize our simulation results for the confidence cones, we modeled 

PC coverage rate as a function of the sample dimension, sample size, eigenvalue spacing, 

and residual noise variance. Specifically, we considered the ordinary linear regression model 

|Coverage–.95| = β0 + β1log(p) + β2n + β3s + β4f + e, where s is an indicator of the 

parametric spacing for the eigenvalues, f is the scaling factor applied to the variance of the 

residual noise in the simulation, and e is a random normal error accounting for unmodeled 

variability in coverage. We separately fit this model on coverage rates for each PC, treating 

the all coverage rates as having independent and identically distributed random errors. For 

PC1, larger sample sizes and the parametric eigenvalue spacing both significantly improved 

coverage (βˆ2 = −5.1 × 10−5, βˆ3 = .0097, with 95% CIs: (−6.5 × 10−5, −3.8 × 10−5) and 

(−0.013, −0.0064) respectively), and higher levels of residual noise significantly worsened 

coverage (βˆ4 = 0.0084, 95% CI: (0.0045,0.012)). For PC2 and PC3, larger sample sizes also 

significantly improved coverage (βˆ2 estimates 6.1 × 10−5 and −6.1 × 10−5 respectively, with 

95% CIs: (−8.0 × 10−5, −4.2 × 10−5) and (−8.5 × 10−5, −3.5 × 10−5)), but no other variables 

had significant effects.

We also studied coverage of parameters relevant to the first three score variables. Because 

the scores themselves are subject-specific random effects rather than population parameters, 

we focused on coverage of best linear unbiased predictors (BLUPs) for the score variables 

(Robinson, 1991). We calculated the true BLUPs conditional on the observed data matrix 

being equal to ΨS, where S is the matrix from which we draw the score variables (si1, si2,…, 

siK0), and Ψ is the matrix of first K0 true population PCs. In each bootstrap sample we then 

calculated the empirical BLUPs (EBLUPs) for the scores (Fitzmaurice et al., 2012), and 

used the bootstrap distribution of the EBLUPs to calculate percentile and moment-based 

CIs.

Coverage rates for the BLUP CIs generally followed a similar pattern as coverage rates for 

the pointwise PC CIs, although the coverage was worse when the sample size was small and 

the residual noise was high. In the smallest sample size tested, coverage of BLUPs was as 
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low as 85% coverage for the percentile CIs, and 90% for the moment-based CIs. Poorer 

coverage in these scenarios is to be expected though, as the EBLUPs depend not only on 

estimates of the PCs, but also on estimates of the eigenvalues of the population covariance 

matrix, which are known to be biased (Daudin et al., 1988). Note that if we had instead 

focused on estimates of Ψ′yi then proper coverage would have been implied by proper 

coverage of the pointwise CIs for the PCs, as both parameters are projections of the true 

basis vectors. A full description of coverage rates for the BLUPs, as well as the calculation 

procedure for the BLUPs and EBLUPs, is given in the supplemental materials.

As a secondary analysis, we also looked at the distribution of the angles between the sample 

PCs and the true population PCs. In general, when the kth eigenvalue of the population 

covariance matrix was on a different order of magnitude than the other eigenvalues, the kth 

sample PC tended to be close to the kth population PC. This was the case for PC1 in the 

empirical spacing scenario, and PCs 1 through 3 in the parametric spacing scenario. When 

the leading five eigenvalues of the population covariance matrix were not well separated 

from each other but were well separated from the remaining eigenvalues, the individual 

sample PCs were not necessarily close to their corresponding population PCs but did tend to 

be close to the subspace spanned by the leading population PCs. This was the case for PCs 2 

and 3 in the empirical spacing scenario. These results are all consistent with what we would 

expect based on Theorem 2 of Jung and Marron (2009). Because we fixed the proportion of 

variability explained by each PC, regardless of dimension, our increases in dimension 

correspond to the case described in Shen et al. (2012a) where the dimension and the leading 

eigenvalues all grow at the same rate. In this context, Theorem 4.1 of Shen et al. (2012a) 

suggests that our sample PCs should converge to their population counterparts as n 
increases, regardless of dimension. This is indeed what we see in our results (see section 6.4 

in the supplemental materials).

5 Applying fast bootstrap PC A

5.1 Sleep EEG

When applying fast bootstrap PCA to the EEG dataset, we find that bootstrap estimates of 

PC1 exhibit minimal variability. PC2 and PC3 are estimated with considerably more 

variability, but most of this variability is due to random rotations among PCs 2 through 4, all 

of which roughly correspond with oscillatory patterns.

Figure 3 shows the results of this analysis. The first row shows 95% pointwise intervals for 

each dimension of each of the three PCs. A random subsample of 30 draws from the 

bootstrap distribution of each PC are shown in gray. We see that the moment-based and 

percentile intervals generally agree, although they tend to differ more when the fitted PC 

elements are further from zero. Since the width of the percentile and moment-based CIs are 

fairly similar, disagreements between the two types of intervals are reflective of skewness in 

the underlying bootstrap distribution.

The sets of pointwise intervals shown in the top row of Figure 3 form bands around the fitted 

sample PCs. It's important to note these bands are only calibrated for pointwise 95% 

coverage – they are not expected to simultaneously contain the true population PC in 95% of 
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samples. Statements about the overall shape of the population PCs that are based on these 

intervals will be somewhat ad hoc. Furthermore, many curves contained within these bands 

do not satisfy the norm 1 requirement for principal components, and are not valid solutions 

to PCA. For example, the upper and lower boundaries of the bands do not have norm 1, and 

thus are not in the parameter space for the PCs. Similarly, the zero vector is also not in the 

parameter space.

The top row of Figure 3 shows that both sets of intervals for PC1 are fairly tight, implying 

that there is little sampling variability in PC1. The pointwise CIs for PC2 are wider, 

especially in the first four hours of the night. If examined alone, this feature of the CIs might 

erroneously lead readers to think that the oscillatory pattern in V[,2] is artificial, and not 

present in the population PC. However, if we also look at a subsample of draws from the 

bootstrap distribution of PC2 (shown in gray), we see that the negative spike in hour 1 and 

the positive spike in hour 2 are often shifted in bootstrap samples. Pointwise variability in 

the oscillatory pattern is better explained by a simultaneous shift of both peaks than by a 

magnitude change in either peak. Those bootstrap draws of  that are most shifted tend to 

bear a closer resemblance to V[,3].

This resemblance is shown more directly in the bottom row of Figure 3, which shows 

pointwise CIs summarizing the distribution of  for k = 1, 2, 3. Recall that the bootstrap 

PCs are equal to Vb = VAb, such that  represents the weight that the kth PC of the bth 

bootstrap sample ( ) places on the jth PC of the original sample (V[,j]). Low bootstrap 

variability for the kth PC is generally characterized by  being close to 1, and all other 

elements of  being close to zero. While this is the case for bootstrap variability in PC1 

(bottom-left panel of Figure 3), the bootstrap draws of PC2 tend to place high weight on 

V[,3], in addition to V[,2]. Equivalently put, bootstrap draws for both  and  tend to 

have high absolute values (bottom-center panel of Figure 3). A similar pattern is shown for 

PC3. Overall, the bottom row of Figure 3 shows that the majority of the variation in PCs 2-3 

is due to rotations among the leading PCs.

Note that the moment-based CIs shown on the right column of Figure 3 can exceed one in 

absolute value, which will surely violate the norm condition for PCs. In practice, such 

violations should be accounted for by truncating the CIs at -1 and 1, but we keep the 

violation for illustrative purposes in Figure 3. It is also worth noting that the percentile CIs 

for  will rarely include the value 1, which can be thought of as the fitted value of 

in the original sample (shown in black in Figure 3). The low dimensional percentile CIs for 

the elements of Ab also fully contain the information required to create confidence cones for 

each PC (section 3.3.2).

Figure 4 shows the bootstrap distribution of the first three eigenvalues of the sample 

covariance matrix (the diagonals of (1/(n − 1))(Db)2). In general, there is a known upward 

bias in the first eigenvalue of the sample covariance matrix, relative to the first eigenvalue of 

the population covariance matrix (Daudin et al., 1988). The amount of bias can be estimated 
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using bias in the bootstrap distribution of covariance matrix eigenvalues. Each bootstrap 

sample can be seen as a simulated draw from the original sample, in which the eigenvalues 

are known. Here, we define the percent bias in the bootstrap eigenvalues as the difference 

between the average eigenvalue across all bootstrap samples and the eigenvalue in the 

original sample, divided by the eigenvalue of the original sample. For the first three 

covariance matrix eigenvalues in the EEG dataset (Figure 4), there is only a slight upward 

bias in the bootstrap estimates (percent bias = 1.1%, 4.5%, and 5.0% respectively).

5.2 Brain MRIs

We also apply our bootstrap procedure to estimate sampling variability of the PCs from the 

brain MRI dataset. This is primarily included as an example to show the computational 

feasibility of our method in the high dimensional setting. A deeper interpretation of the 

sample PCs is provided by (Zipunnikov et al., 2011b,a).

Our results imply that PC1 is estimated with fairly low sampling variability, but that 

sampling variability is higher for PC2 and PC3. The first two rows of Figure 5 respectively 

show the fitted sample PCs and the bootstrap standard errors for the PCs. For PC1, the 

standard errors are generally of a lower order of magnitude than the corresponding fitted 

values. A direct comparison is given in the bottom row of Figure 5, which shows the fitted 

sample PCs divided by their pointwise bootstrap standard errors. These ratios can be 

interpreted as Z-scores under the element-wise null hypotheses that the value of any one 

element of the population PC is zero. Z-scores with absolute value less than 1.96 are omitted 

from the display.

To estimate sampling variability due to rotations of the leading population PCs, Figure 6 

shows pointwise confidence intervals for the truncated vectors , for k = 1, 2, 3. These 

intervals are analogous to the intervals shown in the bottom row of Figure 3. A substantial 

proportion of the bootstrap variability for the second two PCs is due to random rotations 

between them.

The second panel of Figure 4 shows the bootstrap distribution of the eigenvalues of sample 

covariance matrix. Relative to the fitted eigenvalues in the original sample, the bootstrap 

eigenvalues show a small, but notable upward bias (percent bias = 1.7%, 12.2%, and 9.2% 

respectively). Figure 4 also illustrates that, for both datasets, the first eigenvalue is well 

separated from the second and third eigenvalues. This makes the relatively small variability 

in PC1, and the largely rotational variability in PCs 2 and 3, consistent with what we would 

expect from Theorem 2 of Jung and Marron (2009).

6 Discussion

In this paper we outline methods for fast PCA in high dimensional bootstrap samples, based 

on the fact that all bootstrap samples lie in the same low dimensional subspace. We show 

computational feasibility by applying this method to a sample of sleep EEG recordings (p = 

900), and to a sample of processed brain MRIs (p =2,979,666). Bootstrap standard errors for 

the first three components of the MRI dataset were calculated on a commercial laptop in 47 

minutes, as opposed to approximately 4 days with standard methods (see supplemental 
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materials for computational comparisons against standard methods for different values of p 
and n).

Ultimately, the usefulness of high dimensional bootstrap PCA will depend not on its speed, 

but on its demonstrated ability to capture sampling variability. We found that the bootstrap 

performed well in the simulation settings presented here (section 4). However, bootstrap 

PCA has rarely been applied to high dimensional data in the past, and its theoretical 

properties in high dimensions are still not well understood. Specifically, to our knowledge, 

the theoretical coverage of bootstrap-based confidence intervals have not been well studied. 

The lack of study on this topic is likely due, in part, to the computational bottlenecks of 

standard bootstrap PCA, which are compounded in theoretical research that includes 

simulation studies. Our hope is that the methods presented here will expand the use of 

bootstrap PCA, and allow for theoretical properties of the bootstrap PCA procedure to be 

studied and verified via simulations.

When interpreting the results of bootstrap PCA, we find it particularly useful to generate 

confidence intervals around elements of the low dimensional Ab matrices (Figures 3 and 6). 

These CIs are a parsimonious way to display the dominant directions in PC bootstrap 

variability which often correspond to rotations among the leading sample PCs. Calculating 

these CIs also does not require operations on the p-dimensional scale, beyond the initial 

SVD of the sample. Another potential way to summarize the dominant directions of PC 

bootstrap variability would be to create elliptical CRs constrained to the p-dimensional 

hypersphere, a topic which we discuss in the supplementary materials.

Interpretation of bootstrap PCA results is complicated by the fact that many PCA results are 

interdependent. For example, each PC is only defined conditionally on the preceding PCs. If 

we want to isolate only the variability of the kth PC that affects this conditional 

interpretation, it can be useful to first assume that the first k − 1 PCs are estimated without 

error. Logistically, we can condition on the leading k – 1 PCs by resampling from the 

residuals after projecting the dataset onto the matrix V[,1:(k−1)]. This is equivalent to setting 

the first k − 1 score variables to zero before starting the resampling process. Alternatively, 

we could assume that the first PC is a mean shift, and estimate the sampling variability of 

the remaining PCs by resampling from the residuals after projecting the dataset onto a 

constant, flat basis vector. This general approach requires the strong assumption that the 

leading PCs are known, but the procedure can still be useful in exploring the sources of PC 

variability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Summary of EEG dataset - The left panel shows examples of normalized δ power (NPδ) 

over the course of the night for five subjects, as well as the mean NPδ function across all 

subjects (μ). The right panel shows the first five PCs of the dataset.
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Figure 2. 
Coverage across simulation scenarios - The (3 × 2) array of plots on the left shows the 

median coverage rate across all p estimated CIs for the PC elements (p = 900). Rows 

correspond to the PC being estimated. Simulation cases using the empirical eigenvalue 

spacing are shown on the left column, and simulation cases where where each PC explains 

half as much as the previous PC are shown on the right column. The (3 × 2) array of plots on 

the right shows coverage for CRs for the PCs.
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Figure 3. 
Bootstrap PC variability - Each column of plots corresponds to a different PC, either the 

first, second or third. The top row shows the fitted principal components on the original high 

dimensional space (V[,k] for k = 1, 2, 3), along with pointwise confidence intervals, and 30 

draws from the bootstrap distribution. The bottom row shows the same information, but for 

the low dimensional representation of the bootstrap PCs (  for k = 1, 2, 3). In the bottom 

row, the thick black line corresponds to the case when , where In[,k] is the kth 

column of the n × n identity matrix, such that .
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Figure 4. 
Bootstrap eigenvalue distribution - For both the EEG and MRI datasets, we show bootstrap 

distribution for the first three eigenvalues of the sample covariance matrix. Tick marks show 

the eigenvalues from the original sample covariance matrix.
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Figure 5. 
Fitted sample values, bootstrap standard errors, and Z-scores for the MRI PCs - The 

voxelwise values for the PCs and Z-scores (top and bottom rows) have been binned, and 

shaded according to the value of their corresponding bin's midpoint. This allows us to 

visually show both sign (color) and magnitude (opacity). Because the standard errors 

(middle row) are always positive, the binning procedure is not necessary, and the voxels are 

shaded on a continuous scale.
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Figure 6. 
Low dimensional CIs for the MRI PCs - Moment-based CIs, percentile CIs, and 30 random 

bootstrap draws for , where k = 1, 2 and 3.
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