
R E S EARCH ART I C L E
ENV IRONMENTAL STUD I ES
1Department of Agricultural and Biological Engineering, University of Florida, Gainesville,
FL 32611, USA 2Departamento de Biología, Facultad de Ciencias, Universidad Autónoma
de Madrid, 28049 Madrid, Spain. 3Departamento de Ingeniería Química, Universidad
de Alcalá, Alcalá de Henares, 28871 Madrid, Spain. 4Institut Català de Recerca de
l’Aigua, Carrer d’Emili Grafhit, 101, 17003 Girona, Spain. 5Instituto de Ecología Acuática,
Universidad de Girona, Campus de Montilivi, 17071 Girona, Spain.
*These authors contributed equally to this work.
†Corresponding author. Email: francisca.pina@uam.es (F.F.-P.); carpena@ufl.edu (R.M.-C.)

Rodea-Palomares et al. Sci. Adv. 2016; 2 : e1601272 7 September 2016
2016 © The Authors, some rights reserved;

exclusive licensee American Association for

the Advancement of Science. Distributed

under a Creative Commons Attribution

NonCommercial License 4.0 (CC BY-NC).

10.1126/sciadv.1601272
Hidden drivers of low-dose pharmaceutical
pollutant mixtures revealed by the novel GSA-QHTS
screening method

Ismael Rodea-Palomares,1,2* Miguel Gonzalez-Pleiter,2* Soledad Gonzalo,3* Roberto Rosal,3 Francisco Leganes,2

Sergi Sabater,4,5 Maria Casellas,4 Rafael Muñoz-Carpena,1† Francisca Fernández-Piñas2†
The ecological impacts of emerging pollutants such as pharmaceuticals are not well understood. The lack of exper-
imental approaches for the identification of pollutant effects in realistic settings (that is, low doses, complexmixtures,
and variable environmental conditions) supports the widespread perception that these effects are often un-
predictable. To address this, we developed a novel screening method (GSA-QHTS) that couples the computational
power of global sensitivity analysis (GSA) with the experimental efficiency of quantitative high-throughput screening
(QHTS).Wepresent a case studywhereGSA-QHTS allowed for the identificationof themainpharmaceutical pollutants
(and their interactions), driving biological effects of low-dose complexmixtures at themicrobial population level. The
QHTS experiments involved the integrated analysis of nearly 2700 observations froman array of 180 unique low-dose
mixtures, representing the most complex and data-rich experimental mixture effect assessment of main pharmaceu-
tical pollutants to date. An ecological scaling-up experiment confirmed that this subset of pollutants also affects typ-
ical freshwatermicrobial community assemblages. Contrary to our expectations and challenging established scientific
opinion, the bioactivity of themixtures was not predicted by the null mixturemodels, and themain drivers that were
identified by GSA-QHTS were overlooked by the current effect assessment scheme. Our results suggest that current
chemical effect assessment methods overlook a substantial number of ecologically dangerous chemical pollutants
and introduce a new operational framework for their systematic identification.
INTRODUCTION
How can the effects of long‐term exposure to low concentrations of
pharmaceutical and personal care product (PPCP) mixtures be as-
sessed on nontarget organisms? This question was recently ranked
as number 1 among the 22 scientific priorities regarding PPCPs in
the environment as part of a “big question exercise” hosted by the
Society of Environmental Toxicology and Chemistry (SETAC), involving
more than 500 environmental scientists from 57 countries (1). PPCPs
are widely released into the aquatic environment, where they mix at
low concentrations over extended periods of time via diverse path-
ways, resulting in a very complex fate (1–3). Despite their ubiquity, the
effects of PPCPs in the environment are not well understood (1, 2, 4).
Part of the difficulty in the elucidation of the risks associated with
PPCP pollution arises from the different nature of their effects with
respect to classical, acutely toxic pollutants. PPCPs consistently pro-
duce sublethal effects even at low concentrations (2, 4–7) but usually
do not present clear evidence of lethality even at unrealistically high
doses (2, 4, 6). Sublethal effects are important because they eventu-
ally affect natural systems via direct or cascading effects (6–9). The
complexity of the fate of PPCPs and their sublethal effects pose im-
portant challenges to our present understanding of pollutant mixture
effects (7, 10, 11). Null additive models such as concentration addi-
tion (CA) are usually considered to be a reliable hypothesis to accu-
rate mixture effect predictions (12–14). CA and its related dose-
response theory do not consider low-dose nonlinear/nonadditive
sublethal effects (15, 16). The current assumption that effects cannot
be understood below a certain threshold, usually the 10 to 20% relative
effect termed the “gray zone” (13), has limited the study of the sub-
lethal region of the dose-response curves. Preliminary evidence indi-
cates that significant sublethal effects may occur at doses well below
the gray zone, for both individual chemicals and mixtures (5, 10, 16–19),
although these findings are criticized because of large uncertainties
in existing experimental methods (13, 16, 20).

To address the current limitations in the study of sublethal effects of
low-dose PPCP mixtures, we propose a new tool consisting of global
sensitivity analysis coupled with quantitative high-throughput screen-
ing (GSA-QHTS). GSA-QHTS provides a novel perspective for chemical
effect assessments by taking advantage of the family of computational
GSA techniques to guide experimental design and data analysis ofQHTS
laboratory experiments (see Fig. 1). In general, GSA apportions the ob-
served variability of the system response (output) onto the system’s dri-
vers (inputs), in terms of both direct (first-order) and interaction
(higher-order) effects. This quantifies the relative importance (sensitiv-
ity) of the system’s inputs without any a priori assumption on the nature
of the system’s internal processes [such as additivity, linearity, or thresh-
old effects (21, 22)]. Among GSA techniques, the elementary effects
(EE) method (23) relies on a small number of samples and provides
easy-to-interpret statistics that describe the direct effects of input factors
(m and m*) and their interactions (s) (21, 22). Here, GSA is used to pro-
duce cost-effective (parsimonious) experimental templates that reason-
ably match present QHTS capacities used in ecotoxicology. As a
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representative freshwater biological system, we used a high-throughput
configuration of a bioluminescent whole-cell biosensor that detects
metabolic toxicity based on a freshwater cyanobacterium (Anabaena
sp. PCC7120 CPB4337; hereinafter A. CPB4337) (24). Cyanobacteria
are focal primary producers in aquatic systems that take part in carbon
and nitrogen cycling (25). The EEmethod was applied to generate a set
of realistic low-dose mixtures of commonly found PPCPs in freshwater
and characterize their relative importance and interactions (if any).
Light intensity was also included in the analysis to illustrate the ability
of GSA-QHTS to account for not only chemical factors but also com-
bined effects with other environmental stressors. Finally, novel results of
factor importance and interactions obtained with the GSA-QHTS
framework were critically compared with those from classical additive
effect mixture models and validated on upscaled experimental
freshwater benthic microbial communities.
RESULTS

Generating a low-dose PPCP mixture experimental design
based on the EE method
For a total of 17 input factors (16 PPCPs and light intensity), the EE
sampling produced an array of 180 unique mixtures. The selected set
of PPCPs included most families of pharmaceutical pollutants occur-
ring broadly in freshwaters, such as antibiotics, lipid regulators, stimu-
lants, analgesics, hypertension regulators, and psychiatric drugs (26, 27).
Individual PPCP doses in the mixtures ranged from 25.5 to 40,780.0 ng
liter−1, differing by nearly three orders of magnitude along their three
selected environmentally realistic discrete dose levels (median of means,
mean of maxima, and maximum of maxima; Fig. 2A). The frequency
of input factor levels in the mixtures was near uniform (Fig. 2B),
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honoring the discrete uniform (DU) sampling probability distribution
used in GSA sampling (see Materials and Methods). In addition, mean
dose distribution of the 16 PPCPs along the 180 mixtures occurred in
the nanogram per liter to microgram per liter range, defining a robust
exposure-oriented array of environmentally realistic dose combinations
(Fig. 2C). The total PPCP doses of the mixtures presented a bimodal fre-
quency distribution (Fig. 2D) with a minimum total dose of 25,490 ng liter−1

and a maximum dose of 123,500 ng liter−1, indicating a slight bias
toward the maximum values of environmental occurrence (26, 27). This
is a drawback of the interlevel uniformity of dose distance required to
optimize GSA screening computation. However, it was considered
appropriate based on the short-term exposure duration (24 hours)
of the QHTS experiment involving A. CPB4337.

Exposure to low doses of PPCPs produced significant
sublethal effects
The QHTS results showed statistically significant alterations of bio-
luminescence [surrogate end point of metabolic toxicity (24, 28)] of
A. CPB4337 [Fig. 3A; one-way analysis of variance (ANOVA), P <
0.001]. The response of the organism to both PPCPs alone and in mix-
tures was significantly different [one-way ANOVAwith Tukey’s honest
significant difference (HSD), P < 0.001] (Fig. 3B). The median response
of A. CPB4337 after exposure to individual PPCPs shifted to an in-
creased bioluminescence [hormesis (15)], whereas exposure to PPCP
mixtures produced a median response toward a reduction of the bio-
luminescence signal (metabolic toxicity). The median effect of a sub-
stantial number of mixtures (67 of 180) was significantly different
from the control median response as shown by the non-overlapping
of the bootstrapped 95% confidence intervals (CIs) (Fig. 3C) (29).
Overall, the observed sublethal mixture exposure to PPCPs was in
the gray zone of the dose-response curves (median and maximum
Fig. 1. GSA-QHTS experimental framework. The novel approach couples GSA with QHTS (GSA-QHTS) to understand the main effects and interactions of
combinations of diverse input factors, such as chemicals, biotic or abiotic factors, etc. Here, GSA-QHTS was applied to study the effects on A. CPB4337 of
mixtures of 16 PPCPs (C1 to C16) at environmentally realistic low doses (D1 to D3) and the influence of light intensity, an abiotic factor. The steps of the
framework are highlighted: parsimonious GSA sampling (to generate an experimental design template), QHTS (with randomized biological replication), and
GSA screening of the importance and interactions of input factors controlling biological response.
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bioluminescence inhibition of 6.25 and 21.5%, respectively) (13). The
magnitude of the observed mixture sublethal effects (lower than 30%
effect; Fig. 3B) is in agreement with a growing body of literature re-
porting significant individual or mixture sublethal effects of PPCPs
at low realistic doses (nanograms per liter to micrograms per liter) in
a variety of organisms (5, 6, 10, 18, 19, 30–33). The nonchemical
factor light intensity did not affect individual exposure to PPCPs
(one-way ANOVA, P = 0.132) (Fig. 3C) but did so in mixture ex-
posures (P = 0.000198) (Fig. 3D), indicating that light intensity may
be a factor that plays a significant role in mixture effects of PPCPs to
A. CPB4337. Light intensity is a critical factor not only for the meta-
bolic activity of primary producers but also for the environmental
fate, transformation, and bioactivity of many chemicals including
PPCPs (34–36). However, the interaction of light, similar to that
of other environmental factors, on the ecological effects of PPCPs
and other chemical pollutants remains an unresolved issue in terms
of global significance (11, 37).

The classical additive mixture approach does not predict the
sublethal effects of low-dose PPCP mixtures
According to Loewe additivity (38), the foundation of the mixture
CA null model (13), each mixture component contributes to the
total mixture effect with fractions of doses that can be summed up
if the shapes of each mixture component’s individual dose-response
curve are known (39). A key theoretical assumption of CA is that in-
finitely low doses result in infinitely decreasing effects. Therefore, mix-
ture components below a statistical threshold of effect (no observed
effect concentration) can still contribute to mixture effects but in a
linear and additive way (13). An important practical limitation of
CA is that only chemicals individually displaying dose-response curves
can be considered in the model (40, 41). A first-tier, high-dose (10 mg
liter−1) benchmarking of the toxicity of the 16 PPCPs was performed
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to identify candidate PPCPs for dose-response curve derivation (Fig.
4A). From the 16 PPCPs, only two antibiotics, C10 (erythromycin)
and C11 (ofloxacin), resulted in strong (near 90%) bioluminescence
inhibition of A. CPB4337. C14 (venlafaxine) and C8 (ketoprofen) re-
sulted in weak (less than 20%) inhibition and hormesis, respectively
(one-way ANOVA with Dunnett’s test, P < 0.05). Dose-response
curves were derived for PPCPs exhibiting inhibition (C10, C11, and
C14; Fig. 4B), and the rest of the PPCPs were ignored for further mix-
ture effect modeling based on CA (14). On the basis of the unique
C10/C11/C14 ratio in each of the 180 low-dose mixtures, predicted
mixture dose-response curves were modeled (Fig. 4C), and additive
mixture effects were predicted and compared to the observed experi-
mental mixture effects (Fig. 4D). CA predicted nearly no effect (from
0 to 0.026% inhibition) for all the 180 mixtures in contrast with the
observed range of experimental effects (inset in Fig. 4D). The depar-
ture of data from the 1:1 reference line (Fig. 4D) confirms the inability
of the additive null models to predict the observed effects (NSE,
−1.766), where an NSE of 1 represents perfect agreement (42).

GSA-QHTS identified hidden drivers of low-dose mixture
sublethal effects
The graphical representation of GSA statistics (m, s) or (m*, s) in a
Cartesian plane provides a ranking of input factor importance or
direct effects (that is, separation from origin along the m axis) and in-
teraction effects (that is, separation from origin along the s axis).
According to the general distribution pattern of the input factors
on the m*-s and m-s Cartesian planes, systems can be generally
classified as linear/additive, mixed, and nonlinear/nonadditive (Fig.
5A) (23). The transition to a nonlinear/nonadditive system is de-
noted by all the input factors systematically scoring above the 45°
line in the m*-s plot (43) and in between the m ± 2s/

ffiffiffi

n
p

reference lines
in the m-s plot (right panels in Fig. 5A) (23). Thus, it is clear from
Fig. 2. Low-dose PPCP mixture experimental design template. (A) Discrete dose levels (in nanograms per liter) of each of the 16 PPCPs (C1 to C16)
included in the low-dose mixtures. The three discrete levels were the median of means, the mean of maxima, and the maximum of maxima of each PPCP
in freshwater. (B) Sampling frequency of the three discrete levels for the 16 PPCPs (C1 to C16) across the 180mixtures. (C) Mean dose of each PPCP along the
180 low-dose mixtures. (D) Frequency distribution of sum of PPCP doses (in nanograms per liter) within each of the 180 low-dose mixtures.
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Fig. 5 (B and C) that the response to low-dose mixtures of PPCPs was
nonlinear/nonadditive in our experiments. The comparison between
direct EEs calculated as average of absolute values (m*; Fig. 5B) and
those with their individual signs (m; Fig. 5C) indicates that the effects
of some of the PPCPs were also nonmonotonic (that is, could increase
or decrease bioluminescence consecutively at increasing doses). For
example, C6 in Fig. 5B is shown among the group of the most impor-
tant factors (rightmost in x axis) based on absolute value effects (m*),
whereas in Fig. 5C, it is shown close to 0 (no direct effects) based on
the arithmetic mean of effects (m), that is, ± effects cancel out in the
mean. According to their ranked m* direct effects (Fig. 5D), only half
of the chemicals were most important in controlling low-dose sublethal
effects of the PPCP mixtures, and one of them (C13) was negligible.
Half of the chemicals exhibited an overall effect of bioluminescence
inhibition (m < 0), and the other half exhibited an overall effect of
bioluminescence induction or hormesis (m > 0).

As a complementary line of evidence, two-way ANOVA was per-
formed for each group of input factors (most important, C16, C3,
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C10, C5, C4, C14, C1, and C6; less important, C11, C7, L, C12, C9,
C8, C15, and C13). In the most important factors group, seven of the
eight factors were found to participate in first- or second-order signif-
icant terms (ANOVA, P < 0.05), whereas no significant term was
found to participate in any first- or second-order term for the less im-
portant factors group (section 2.2.4 in S1). Although ANOVA only
explored first- and second-order terms, the results corroborate the
ranking of factor importance and interactions identified by EEs,
where the latter also simultaneously consider higher-order interac-
tions (22).

Both the EE method and two-way ANOVA confirm that there
was structured information in the sublethal effects observed with the
180 low-dose PPCP mixtures and not just stochastic noise as assumed
by the gray zone hypothesis (13). In addition, the EE method revealed
(and ANOVA confirmed) that the nature of sublethal effects from
low-dose PPCP mixtures was nonlinear/nonadditive, which explains
why additive null models for chemical mixtures failed in their predictions
(Fig. 4D). According to Fig. 4A, only 2 of the 16 PPCPs [erythromycin
Fig. 3. Exposure to low doses of PPCPs produced significant sublethal
effects. (A) Notched box plot for relative bioluminescence of A. CPB4337
control observations (n = 880), individual PPCP exposure (Ind) (n = 768),
and exposure to mixtures (Mix) (n = 1080). (B) Median relative bio-
luminescence level of A. CPB4337 exposed to the 180 mixtures with respect
to control levels (relative bioluminescence, 1). Mixtures are ranked in
decreasing order based onmedian relative bioluminescence values. Vertical
lines are bootstrapped (n = 999) 95% CIs for the median. Horizontal red
dashed lines are bootstrapped 95% CIs for control median relative bio-
luminescence level (n=999). Themost potentmixture,Mix 16, is highlighted.
(C and D) Notched box plots sorted by light intensity (L1 and L2) for relative
bioluminescence of A. CPB4337 exposed to individual PPCPs (n = 768) and
mixtures of PPCPs (n = 1080), respectively. The notches extend to ±1.58 IQR
(interquartile range)/n1/2, where no overlapping of notches among boxes
offers evidence of statistically significant differences among their medians
(71). Statistically significant differences were tested by one-way ANOVA:
***P < 0.001.
Fig. 4. The null additive mixture models do not predict the sublethal
effects of low-dose PPCP mixtures. (A) Individual effects of PPCPs (C1 to
C16) on A. CPB4337 relative bioluminescence at 10 mg liter−1. Horizontal
lines represent the control’s median, Q25 and Q75 relative bioluminescence.
Significance values: *P < 0.05 and ***P < 0.001. (B) Dose-response curves
for factors C10 (erythromycin), C11 (ofloxacin), and C14 (venlafaxine). Lines
and symbols represent fitted nonlinear models (five-parameter log-logistic
models) and experimental data, respectively. Shaded areas represent 95%
CIs of model predictions. (C) Modeled mixture dose-response curves for
21 unique C10/C11/C14 ratios present in the sampled 180 PPCP mixtures.
The box plot shows the 180 low-dose mixtures’ dose range. (D) Observed
versus predicted 1:1 plot (42) for the 180 low-dose mixture effects as pre-
dicted by the CA additivity model. Note that only the contributions of C10
(erythromycin), C11 (ofloxacin), and C14 (venlafaxine) are considered by
the models. NSE, Nash-Sutcliffe efficiency coefficient with 95% CI in brackets.
The inset shows the distribution of observed and predicted luminescence
values for the 180 mixtures.
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(C10) and ofloxacin (C11)] and, to a lesser extent, venlafaxine (C14)
were potential candidates to drive any low-dose mixture effect. How-
ever, despite being important factors (especially erythromycin, which
ranked third in global importance according to GSA-QHTS; Fig. 5C),
seven other PPCPs were found to be as (if not more) important in
low-dose mixtures (Fig. 5D). These mixture drivers remained hidden
to the high-dose benchmarking (Fig. 4A) and therefore hinder the
predictions of the null additive models (Fig. 4D). These results in-
dicate that a simple linear/additive chemical risk assessment ap-
proach may overlook a substantial number of chemicals that may
be critical under real low-dose environmental conditions. GSA-QHTS
advances preliminary observations, suggesting nonlinear/nonadditive
effects resulting from low-dose mixtures of PPCPs (5, 10, 33). The
new framework adds substantial value by allowing a robust, global,
and comparative understanding of chemical drivers and their effects
that remained defective until now (1, 5, 10, 44). Finally, the EE method
was effective when discriminating the importance of chemical factors
and other nonchemical stressors. For example, despite the apparent sig-
nificant contribution of light to low-dose PPCP mixture effects (Fig.
3D), its global importance was negligible (Fig. 5D). This provides a di-
rect comparison of diverse factors in a common scale metric, addres-
sing an unresolved, yet urgent, demand in ecotoxicology (11, 45, 46).

Important drivers of mixture bioactivity identified by
GSA-QHTS are also relevant at higher ecological
complexity scales
We performed an ecological scaling-up mesocosm experiment to
assess the generalizability of the factors identified as important
by the GSA-QHTS (Fig. 6). The most potent mixture found in
the low-dose mixture experiment (mixture number 16, hereafter Mix
16; Fig. 3B) was selected with two variations (Mix 16-4 and Mix 16/10;
see Materials and Methods). Mix 16-4 lacked the four most important
PPCPs identified by the EE method (C16, C3, C10, and C5; see Fig.
5D), whereas Mix 16/10 was a 10-fold dilution of Mix 16. The effect of
these three low-dose mixtures was evaluated in a series of community-
level metabolic end points (see Materials and Methods) (47). Multi-
variate generalized linear models (GLMMV) (48) revealed a statistically
significant interaction between the factors treatment (control, Mix 16,
Mix 16-4, andMix 16/10) and time (model 1 in Table 1; ANODEV,Wald
P = 0.03) but no effects from treatment or time separately. Changes
in model communities were expressed mainly on Yeff and b-Glu ac-
tivity (section 4 in S1), indicating relevant effects on both the auto-
trophic and heterotrophic components of the microbial community.
Mixture effects were unraveled by fitting individual GLMMV (models
2 to 5 in Table 1) with time as an explanatory factor. We found that
time was significant in control and Mix 16-4 treatments (ANODEV,
Wald P = 0.01 and 0.04, respectively) but not in Mix 16 and Mix 16/10
(P = 0.54 and P = 0.61, respectively), indicating that the four most
important PPCPs in the full Mix 16 blocked the temporal evolution
of the metabolic processes of the freshwater benthic communities.
The insensitivity to time reflects reduced dynamic behavior and
increased temporal autocorrelation, common symptoms of microbial
community stress, lethality, and ecological shifts (49–51). The re-
moval of the four important PPCPs was more effective in preventing
effects than a 10-fold dilution (Mix 16/10), although they accounted
for less than 3% of the total PPCP dose of the mixture (Fig. 6). These
results confirm that sublethal effects at the population level can drive
disruptive effects at the community level (8, 10).
Fig. 5. GSA-QHTS is able to characterize global drivers of low-dosemix-
ture sublethal effects. (A) GSA schematic representation of input factor dis-
tributions along m*-s and m-s Cartesian planes for linear/additive,mixed, and
nonlinear/nonadditive systems. (B and C) GSA results in the m*-s and m-s
Cartesian plots, respectively, for the 17 input factors [16 PPCPs (C1 to C16)
and light intensity (L)] analyzed in the present study. Red lines indicate the
limits for linear additive systems. For clarity, only important and nonimportant
input factors are identified in the figure. Hollow symbols indicate important
factors (larger separation from the m*-s or m-s plane origin). (D) Ranked input
factors by importance (m*) showing the proposed limits (red dashed lines) for
important, moderately important, and nonimportant factors.
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DISCUSSION

Main findings
Contrary to current scientific practice (12–14), typical high-dose
benchmarking failed to identify the complete set of low-dose mixture
effect drivers, and the bioactivity of the mixtures was not predicted by
the null additive mixture models. The novel GSA-QHTS framework
was effective at screening the importance of PPCP pollutants at envi-
ronmentally realistic low-dose mixtures and at identifying the main
drivers of PPCP sublethal effects. GSA-QHTS revealed that the ob-
served mixture effects were not random but driven by a specific subset
of PPCPs via nonlinear and/or nonadditive effects. This confirms previ-
ous evidence of unexpected low-dose effects of PPCPs (5, 10, 18, 19, 52)
and offers an alternative explanation to the source of the mixture effects
typically unaccounted for by additivity assumptions in environmental
samples (53). The ecological scaling-up experiment illustrated how these
hidden PPCPs (identified by GSA-QHTS at the population level) were
also responsible for disruptive effects at the community level. Because
real-world exposure to chemical pollution of natural systems is often
dominated by low-dose complex mixtures combined with other biotic
and abiotic stressors, we may underestimate the actual risk of chem-
ical pollution with current methods.

Limitations and further research
The results of this work are limited to the specific biological system
used as a model and provide a first-tier phenomenological screen-
ing for the effect of low-dose PPCPs in freshwater systems. Further
Rodea-Palomares et al. Sci. Adv. 2016; 2 : e1601272 7 September 2016
research should include other biological systems to get a wider pic-
ture of the generalizability of our findings. An identification of the
mechanisms behind the effects of the focal pharmaceuticals re-
quires extension of the GSA-QHTS to receptor-mediated biological
tests designed to unravel mechanistic pathways of stressor effects
(54). GSA results are sensitive to a meaningful a priori and realistic
selection of both input factors and ranges, or GSA may result in
misleading conclusions (21, 22). A limitation of the present appli-
cation of the GSA-QHTS is that the EE method, because of its reduced
sampling intensity, provides a qualitative ranking of the relative im-
portance of the drivers studied. As life sciences’ high-throughput ca-
pacity improves, alternative quantitative GSA variance decomposition
methods (55–57) that require a larger number of samples can be im-
plemented. This will allow quantitative apportioning of the total var-
iance of the effects onto the individual or combined input factors
studied (21, 22). Armed with the identification of main drivers
provided by the GSA-QHTS approach and mechanistic understand-
ing based on receptor-mediated analysis, further research should in-
clude the development of new conceptual and modeling approaches to
predict and integrate nonlinear/nonadditive effects of chemical pollu-
tion within the “big picture” of large-scale ecological systems (11, 46).

Broader impacts
As a reliable and robust approach, GSA-QHTS could be of interest
to scientists designing experiments that test the effects of combined
stressors, not only chemical but also physical and biological, there-
fore crossing the border of different disciplines. The present work
Fig. 6. Ecological scaling-up experiment. (A) River benthic microbial community inocula were obtained from a nearby unpolluted stream in the
Llémena River (Girona, Spain). Schematic benthic microbial community modified from the study of Egan et al. (72). (B) A set of cobbles was scraped
for their microbial communities, which were used to colonize rough glass substrata under laboratory conditions. (C) Experimental microbial com-
munities were exposed to three low-dose PPCP mixtures (Mix 16, Mix 16-4, and Mix 16/10; see Materials and Methods). (D) Selected community-
level end points (F0, F, Ymax, Yeff, b-Glu, and Phos; see Materials and Methods) covered both autotrophic and heterotrophic global fitness indicators
and were monitored as a function of time.
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has foundational implications not only for ecotoxicology but also for
biological and medical sciences because it provides a new experimen-
tal framework to approach complexity under realistic conditions.
MATERIALS AND METHODS

Chemicals
PPCPs and dose levels were selected on the basis of a meta-analysis
of PPCP occurrence in Spanish freshwaters (details are in S2). The
16 PPCPs included in the present study encompassed (i) antibiotics:
erythromycin (ERY, C10; >95%; Fluka) and ofloxacin (OFLO, C11;
99.9%; Sigma Aldrich); (ii) b-blockers: atenolol (ATE, C1; 91%; Sigma
Aldrich), bezafibrate (BEZA, C2; ≥98%; Sigma Aldrich), and gemfi-
Rodea-Palomares et al. Sci. Adv. 2016; 2 : e1601272 7 September 2016
brozil (GEM, C4; >99%; Sigma Aldrich); (iii) stimulants: nicotine
(NICO, C12; 99%; Sigma Aldrich) and caffeine (CAFE, C13; >99%;
Sigma Aldrich); (iv) analgesics: ketoprofen (KETO, C8; >98%; TCI),
ibuprofen (IBU, C7; ≥98%; Sigma Aldrich), paracetamol (PARA, C9;
99%; Sigma Aldrich), and diclofenac [DICLO, C6; ≥98% (sodium
salt); Sigma Aldrich]; (v) diuretics: furosemide (FURO, C3; ≥98%;
Sigma Aldrich) and hydrochlorothiazide (HYDRO, C5; ≥99%;
Sigma Aldrich); (vi) an antidepressant: venlafaxine (VENLA, C14;
>98%; TCI); and (vii) anticonvulsants: carbamazepine (CARBA, C16;
≥98%; Sigma Aldrich) and primidone (PRIMI, C15; ≥98%; Sigma Al-
drich). The Chemical Abstracts Service number and pharmacological
family are summarized in S3. Additional information on preparation,
handling of stock solutions, and chemical stability can be found in S2.

Global sensitivity analysis coupled with quantitative
high-throughput screening
The GSA technique known as the EE method, or the “Morris method”
(21–23), was used as the GSA framework (Fig. 1) to (i) guide the ex-
perimental plan in establishing a parsimonious set of k = 17 input
factors (mixtures and experimental light condition) to perform QHTS
(GSA sampling) and (ii) compute EE sensitivity screening measures
m (or m*) and s (GSA screening). The EE method (23) scores the rel-
ative importance and interactions of k input factors according to the
marginal changes (EEs) that they produce in the output variable (rel-
ative bioluminescence) when they are changed one at a time at dis-
crete levels with all the other factors present (21, 22). The EE method
is qualitative in nature and can be applied to assess the relative im-
portance of each of the k input factors in the context of all other
factors varying at the same time. Additional information on the
EE method is summarized in previous studies (21, 22, 58).

GSA sampling
To compute EEs, Morris (23) proposed to sample t random trajec-
tories across the k-dimensional space of the input factors, varying one
factor at a time at r discrete levels within the input factor probability dis-
tributions. Typically, t = 10 produces satisfactory results (59). The number
of experimental units (N) to perform the EE analysis is given by

N ¼ tðkþ 1Þ ð1Þ

In our case, GSA sampling was performed for a total of 17 input
factors (16 pharmaceutical pollutants and 1 abiotic factor, light intensity),
resulting in N = 10 (17 + 1) = 180 experimental units. As discrete levels
for the input factors, three doses (“D” in Fig. 1) of each PPCP were
selected on the basis of statistical descriptors (median of means, mean
of maxima, and maximum of maxima) of their environmental concen-
trations. Light intensity (L) was fixed at two physiological levels (see
QHTS below). DU probability distribution functions were used to repre-
sent input factor level probabilities. An enhanced sampling for uniformity
[eSU (58)] method with an oversampling size of 1000 was used to op-
timize the sampling quality (uniformity, spread, and time). The exper-
imental design template of the 180 experimental units used in the
QHTS experiment can be found in S4.

QHTS: Bioactivity determinations based on A. CPB4337
Once the experimental template is defined by GSA sampling, a
biological receptor is tested for each of the 180 mixtures with the
Table 1. ANODEV table summary of GLMMVmodels. GLMMV models were
fitted to the response of experimental freshwater benthic communities ex-
posed to selected PPCP low-dose mixtures and sequential analysis of deviance
(ANODEV) was performed. MV data used to build each GLMMV include the six
community-level metabolic end points measured: F0, the dark-adapted basal
fluorescence; F, the light-adapted steady state fluorescence; Ymax, the maxi-
mum photosynthetic efficiency of photosystem II (PSII); Yeff, the effective quan-
tum yield of PSII; b-Glu, b-glucosidase; and Phos, alkaline phosphatase. The
experiment included two factors: treatment (four levels) and time of exposure
(three levels). Treatment levels were as follows: control (n = 5); Mix 16 (n = 3),
PPCPmixture 16; Mix 16-4 (n = 3), mixture 16 without the four most important
PPCPs from GSA results; and Mix 16/10 (n = 3), mixture 16 diluted 10
times. Time levels were as follows: 24, 36, and 120 hours of exposure for each
treatment (n = 4). Therefore, the total number of samples was n = 42. The null
hypothesis (H0) for the Wald test is that the reduction in model residual de-
viance is 0. Res. df, residual degrees of freedom; df diff., degrees of freedom
difference added by the sequential inclusion of each term of the model.
GLMMV model
 Res. df
 df diff.
 Wald
 P (>Wald)
Model 1 (full model): treatment × time
Intercept
 41
Treatment
 38
 3
 6.59
 0.45
Time
 36
 2
 13.05
 0.86
Treatment × time
 30
 6
 17.16
 0.01**
Model 2 (control only): time
Intercept
 14
Time
 12
 2
 10.03
 0.01**
Model 3 (Mix 16 only): time
Intercept
 8
Time
 6
 2
 15.75
 0.54
Model 4 (Mix 16-4 only): time
Intercept
 8
Time
 6
 2
 162.2
 0.04*
Model 5 (Mix 16/10 only): time
Intercept
 8
Time
 6
 2
 18.18
 0.61
Significance values: *P < 0.05 and **P < 0.01.
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corresponding light intensity (Fig. 1). A. CPB4337 was used as a
biological receptor (24, 60). A. CPB4337 is a genetically engineered
whole-cell cyanobacterial biosensor that constitutively produces
bioluminescence (24). Changes in the bioluminescence signal were
used as a surrogate end point of metabolic toxicity (24, 28). Standard
growth and maintenance conditions were followed (24, 60). Exposure
experiments were performed in continuously shaken, 24-well, transpar-
ent plastic microtiter plates (60). The treatments assigned to each plate
and well were totally randomized for each independent experiment,
ensuring that each plate contained 6 control wells and 18 treatment
wells. A total of six independent experiments were performed, withM =
11 plates per experiment. This resulted in treatments with interexperi-
mental and intraexperimental replications of 6 and 1, respectively, and
controls with interexperimental and intraexperimental replications of 6
and at least 6M, respectively. Plates were incubated for 24 hours in
physiological light conditions: L1 (~35 mmol [photons] m−2 s−1) and
L2 (~65 mmol [photons] m−2 s−1). After 24 hours, 100 ml of each bio-
logical sample was transferred to 96-well, white microtiter plates for bio-
luminescence measurements (60). Bioluminescence was normalized to
the mean control response of each individual plate (n = 6) and ex-
pressed as relative bioluminescence.

GSA screening
For each factor (xi, i = 1…k) and level (j = 1…r), QHTS generated
an experimental output value Y. A factor’s EE (uj,i) is computed as

ui ¼ Yðx1;…; xi þ Dxi;…; xkÞ � Yðx1;…; xkÞ
Dxi

ð2Þ

The mean and SD of the EEs ui over the r levels for each factor
produce three sensitivity measurements: m, the mean of the EEs; m*,
the mean of the absolute value of the EEs; and s, the SD of the EEs.
m* and m estimate the overall direct (first-order) effect of a factor.
Both statistics are calculated because m accounts for the directionality
of the effects (positive or negative) but can suffer from compensation
of opposing sign effects, leading to apparent low importance, whereas
the absolute values in m* compensate for this artifact but do not pro-
vide directionality. s estimates the higher-order characteristics of the
parameter. Although EEs (ui) are local sensitivity measurements, their
moments m, m*, and s are considered global measurements because
they are computed across the variation space of all input factors,
defined by their probability distributions (21, 22).

Individual effect of PPCPs and mixture effect prediction
based on the additive CA model
The bioactivity of each of the 16 PPCPs at the two different light
conditions was evaluated individually at each of the three dose
levels defined by their statistical descriptors (median of means,
mean of maxima, and maximum of maxima) (see QHTS: Bioactivity
determinations based on A. CPB4337 section). In addition, their bio-
activity was also evaluated at 10 mg liter−1 at the two different light
conditions as a first-tier toxicity screening. Complete dose-response
curves were assessed for erythromycin (C10), ofloxacin (C11), and
venlafaxine (C14). Six independent experiments were performed with
randomized experimental designs, interexperimental and intraexperi-
mental replication schemes, experimental conditions, and bio-
luminescence measurements identical to those explained for QHTS
Rodea-Palomares et al. Sci. Adv. 2016; 2 : e1601272 7 September 2016
before. Mixture effect predictions were computed on the basis of
the well-known predictive arrangement of the CA equation as de-
scribed by Faust et al. (39) (see details in section 3.3 of S1).

Effects of selected mixtures on experimental benthic
microbial communities
An overview of the ecological scaling-up experiment involving ex-
perimental benthic microbial communities can be found in Fig. 6. Riv-
er benthic microbial community inocula were obtained from a nearby
unpolluted stream (Llémena River, Girona, Spain). A set of 10 to 12
cobbles was collected from a riffle area and scraped for their biofilm
microbial communities. The inocula were used to colonize rough glass
substrata under laboratory conditions for 15 days. Nutrients, light, and
temperature were controlled (see S2 for details). Microbial commu-
nities were exposed for 7 days to three low-dose PPCP mixtures
(Mix 16, Mix 16-4, and Mix 16/10). Mix 16 was the most potent of
the 180 mixtures (see section 2.2.1 of S1). Mix 16-4 was identical to
Mix 16 in components and doses except without the PPCPs C16,
C3, C10 and C5, whereas Mix 16/10 was a 10-fold dilution of Mix
16. The effect of the mixtures was evaluated on a series of community-
level metabolic end points (the photosynthetic parameters F0, the
dark-adapted basal fluorescence; F, the light-adapted steady-state
fluorescence; Ymax, the maximum photosynthetic efficiency of PSII;
and Yeff, the effective quantum yield of PSII; as well as the extra-
cellular enzymatic activities b-Glu and Phos) that covered both au-
totrophic and heterotrophic global fitness indicators suited to study
the effects of chemical pollution on freshwater benthic microbial
communities (47, 61). See S2 for further details on experimental
methods.

Experimental design and statistical analysis
Basic quality control of data and data analysis were performed in R
version 3.1.2 and RStudio version 0.98.1091 (see section 1.2.1 of S1
for details). For the QHTS experiments, sample sizes for treatments
were fixed to n = 6. ANOVA was used to study difference of means.
A two-sided test was used with a minimum testing level for statistical
significance (a) set to 0.05, with exact P values reported in the text and
figures. When multiple testing was performed, Tukey’s HSD method
with a correction for unbalance experimental design (62) was used.
When multiple testing was limited to the comparison of treatments
with a single reference, the correction of Dunnett’s test was used (63).
Power (1 − b) in all ANOVAs was >0.8 for relevant effect sizes (see S1
for details). Bootstrapped 95% CIs were calculated by the bias-corrected
and accelerated interval method (see section 2.2.1 of S1 for details) (64).
EE method computation was performed using the eSU approach (58)
with a publicly available MATLAB toolbox (see section 2.2.3 of S1 for
details) (65). Dose-response curves and derived parameters were com-
puted using the drc package for R (66). The mixture effect predictions
according to the CA model were computed using a freely available R
script developed by the authors (see section 3.4 of S1 for details) (67).
Analysis of CA model fitness with observed data was performed using
the publicly available FITEVAL software implemented in MATLAB
(42, 68). For the model benthic microbial community experiments,
sample sizes for treatments were fixed to n = 3. Time-dependent MV
responses of the freshwater benthic experimental communities were
analyzed using GLMMV (48) with the “mvabund” package for R, version
3.10.4 (69). Statistical significance of individual or nested GLMMV model
fits was evaluated by ANODEV (70), and MV test statistics were
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constructed using a Wald statistic (69), where P values were approxi-
mated by resampling rows using residual permutation as described by
Szöcs et al. (48) (see section 4 of S1 for details). Power was, in general,
>0.76 for relevant effect sizes. Extended information on the analysis
performed as well as a nonexhaustive list of R packages used in the
study can be found in S1.
SUPPLEMENTARY MATERIALS
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