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Abstract

High–throughput technologies used to interrogate transcriptomes have been generating a great 

amount of publicly available gene expression data. For raw diseases that lack of clinical samples 

and research funding, there is a practical benefit to jointly analyze existing datasets commonly 

related to a specific rare disease. In this study, we collected a number of independently generated 

transcriptome data sets from four species: Human, Fly, Mouse and Worm. All data sets included 

samples with both normal and abnormal mitochondrial functions. We reprocessed each data set to 

standardize format, scale and gene annotation and used HomoloGene database to map genes 

between species. Standard procedure was also applied to compare gene expression profiles of 

normal and abnormal mitochondrial functions to identify differentially expressed genes. We 

further used meta–analysis and other integrative analyses to recognize patterns across data sets and 

species. Novel insights related to mitochondrial dysfunctions was revealed via these analyses, such 

as a group of genes consistently dysregulated by impaired mitochondrial function in multiple 

species. This study created a template for the study of rare diseases using genomic technologies 

and advanced statistical methods. All data and results generated by this study are freely available 

and stored at http://goo.gl/nOGWC2, to support further data mining.

Keywords

transcriptome data; mitochondrial dysfunction; integrative analysis

1. Introduction

The study of rare disease is limited by the availability of samples and other resources 

although it often helps researchers answer extremely important biomedical questions [1, 2, 

3]. Some rare diseases can serve as models for more common one due to their close 
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association. For example, primary mitochondrial diseases have a combined occurrence of 

about 1/5000 [4], but the investigation of these diseases have revealed extensive knowledge 

about mitochondrial dysfunction [5, 6], which has been commonly observed in diabetes [7], 

cancer [8] and neurodegenerative diseases [9, 10].

A deeper understanding of rare diseases can be achieved through utilization of innovative 

technologies, model animals, and integrative analysis of independently generated data sets. 

Paring modern genomic technologies with advanced statistical analysis has become an 

extremely valuable approach for investigating rare diseases [11, 12, 13]. This approach 

characterizes the overall state of one or more cellular systems, such as transcriptome, 

epigenome, and metabalome, and uses bioinformatic analysis to explore their interactions. It 

is then able to compensate for the small sample size of individual experiments with high 

dimension of data.

Integration of genomic data is practical challenging. Independently generated genomic data 

sets could be different from each other in many ways, such as technology, cell type, 

annotation, and data quality, which makes it critical to properly document metadata related 

to each experiment. Gene Expression Omnibus (GEO) [14], a public repository of 

transcriptome data sets, archives the metadata, raw data, and processed data of over 46, 000 

data series. GEO provides an ideal platform for researchers to identify and access existing 

gene expression data sets related to a specific disease.

In this study, we present a semi–automated workflow to archive transcriptome data sets 

related to a specific rare disease, primary mitochondrial dysfunction. We have used this 

workflow to create Transcriptome of Mitochondrial Dysfunctions (ToMD), which currently 

includes 30 independent data sets and about 500 biological samples. Each of these data sets 

compared samples with primary mitochondrial dysfunction to those with normal or rescued 

mitochondrial function. Statistical methods were designed to evaluate data quality, 

standardize gene annotation, and perform integrative analysis. Preliminary analysis of these 

data sets has revealed new insights about primary mitochondrial diseases. All data sets and 

analysis results within archive are freely available http://goo.gl/nOGWC2.

2. Material and Methods

Below is a step-by-step description of the generation of ToMD. It is a semi-automated 

workflow that includes reproducible data processing and analysis steps, but also requires 

human decisions about data quality, sample grouping, analysis parameters, and so on.

2.1. Structure of the data archive

ToMD was structured in three tiers as described below:

1. Tier 1 is a collection of transcriptome data sets related to mitochondrial 

dysfunctions. It includes published data sets stored in GEO or other 

resources. All data sets were re-processed with a common procedure so 

they are properly normalized and annotated with unique ENTREZ gene 

IDs.
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2. Tier 2 is a collection of results from pairwise comparisons. Each 

comparison was performed on two groups of samples within the same data 

set. Samples of one group usually have impaired mitochondrial functions 

induced by genetic or environmental factors while samples of the other 

group are controls with normal or rescued mitochondrial functions.

3. Tier 3 includes results of integrative analysis of data or results from 

multiple data sets. Given the high diversity of the data sets, each 

integrative analysis was customarily designed and documented in a 

separate subfolder. While it is unlikely to automate such analysis, we 

noticed that the availability of Tier 1 and 2 makes the integrative analysis 

much more efficient.

2.2. Identification of data sets

We worked closely with clinical researchers who treat mitochondrial diseases to search 

public repositories for transcriptome data sets related to primary mitochondrial diseases. 

These data sets were generated from human tissues and cell lines, as well as three model 

animals: C. elegans (worm), D. melanogaster (fruit fly), and M. musculus (mouse). No data 

generated from Sus scrofa (domestic pig) was selected due to the incompleteness of its gene 

annotation. Each data set includes two or more sample groups corresponding to abnormal 

and normal/rescued mitochondrial function. The mitochondrial dysfunction could be caused 

by pathogenic gene mutations in patients, knockdown/knockout of key mitochondrial genes 

in cultured cells or model animals, or exposure to chemicals such as Rotenone and 

Rapamycin.

Table 1 describes the four living species datasets. The table shows each dataset species, the 

dataset id that is used in this study, the dataset reference, the GEO id, the tissue, number of 

samples and genes, and the number of sample groups. The fly dataset compiles two different 

dataset sources with 12, 521 overlapped genes. The worm dataset compiles three different 

datasets with 16, 688 overlapped genes. The Human dataset compiles 13 different datasets 

with 895 overlapped genes then we excluded one of the human datasets because of too many 

missing values. The Mouse dataset compiles 12 different datasets with 10, 279 overlapped 

genes then we excluded one of the datasets because of too many missing values. Table 2 

shows the four compiled species datasets, it shows the number of genes and samples for 

each species, in the single part of the table.

We used HomoloGene [45], a tool to build putative homology groups from the full genome 

of a different eukaryotic species, to construct putative orthologs for the four species. We 

used the putative orthologs to identified the species genes overlap in the constructed datasets 

as shown in table 2. Table 2 shows four groups of dataset information. The first part of the 

table shows the compiled datasets for each species under the heading single. The second 

part, pairwise; we constructed this group of datasets by identifying the overlapped genes in 

each pair of the species datasets. This group contains six subgroups of datasets. The third 

group of datasets comes from finding the overlap of three different species in one group. 

This group constructed from four different triplet combinations of the four species datasets. 
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The last group is identified as the overlap between the four species datasets where we find 

235 overlapped genes under 445 different samples from the dataset.

2.3. Data processing

The processing of original data sets was done independently, so they often have different 

scale and gene annotation. It is then necessary to re-process all data sets to make them more 

consistent with each other. We applied two procedures to different types of data sets. For 

data sets generated on Affymetrix microarrays with their raw data files available, we directly 

processed the raw data using RMA method [46] and the custom library files provided by 

BRAINARRAY [47]. The output was a data matrix annotated with non-redundant Entrez 

gene IDs. For data sets not generated on Affymatrix microarrays or with no raw data 

available, we mapped the existing annotation to Entrez gene ID and collapsed redundant IDs 

by taking averages. Additionally, we made sure that all data sets were properly normalized 

and in log-2 scale. All samples were also re-labeled to replace original sample IDs with 

identifiers indicative of their mitochondrial function.

Data quality was evaluated based on criteria such as number of samples, percentage of 

missing values, sample-sample correlation. Data sets and samples with questionable quality 

would be excluded from statistical analysis.

2.4. Pairwise comparison of sample groups

We repetitively performed pairwise comparisons of two groups of samples with abnormal 

and normal/rescued mitochondrial functions. There could be more than one comparison per 

data set. For example, GEO series GEO1462 includes three subtypes of mitochondrial 

diseases and control samples, so the pairwise comparison was performed between the 

controls and each subtype. Another example is series GSE42986 that includes samples 

collected from both muscle biopsies and fibroblast cell lines, so the comparison was 

performed separately for two cell types.

The SAM (Significance Analysis of Microarrays) method was used for all pairwise 

comparisons to report the folder change, p value, and false discovery rate (FDR) to indicate 

the differential expression of each gene between two groups. We applied our in-house 

workflow to generate standard outputs for each pair-wise comparison. Within the outputs, 

there was a PDF report that summarizes the comparison with a set of statistics, tables and 

plots, such as the number of differentially expressed genes under given FDR cutoffs and a 

plot of principal components analysis (Figure 1). Another part of the outputs is an 

automatically generated Excel files with the complete results of SAM analysis and the 

functional annotation of differentially expressed genes by DAVID.

2.5. Integrative analysis

A major benefit of data sets archived in ToMD is the support to efficient integrative analysis. 

Not only integrative analysis increases the overall statistical power by combining samples 

from multiple studies, but also it systematically investigates multiple biological systems and 

will possibly reveal knowledge that cannot be discovered from a single study. We are 
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performing a series of such analyses based on this platform, and the results of three finished 

analyses are now available as part of the tier 3 in ToMD.

The first two sets of results were generated by meta–analysis. One of them used the results 

of 60 normal vs. abnormal pairwise comparisons and the other was performed on the results 

of 12 patients vs. controls comparisons generated from 8 human data sets of different cell 

types and disease subtypes. Fisher’s meta–analysis method [48] was used to calculate 

combined p values from p values from individual comparisons, and the goal was to identify 

genes consistently changing their expression level across comparisons.

The other analysis is an unsupervised biclustering of both samples and genes across data 

sets. The following sections will describe this analysis in detail.

2.6. Biclustering method

Clustering methods are used to group set of objects that shares specific features. Each group 

is called cluster. In the context of gene expression data under set of conditions (e.g., patients, 

time points), the cluster of genes is defined as a group of genes that falls in the same 

functional unit across the entire set of conditions in the dataset.

The process of clustering groups set of shared feature objects into groups based on only one 

dimension and cannot use any other dimensions simultaneously. Clustering methods aim to 

find groups of objects with high similarity among the same cluster members and increase the 

dissimilarity between different clusters.

Identifying a cluster of genes across all conditions assume similarity for all conditions which 

is not true in real world dataset for most cases because set of genes should be grouped based 

on subset of the conditions instead of all conditions.

Biclustering methods is first proposed by Cheng et al. [49] to find the biclusters in gene 

expression data. Biclustering methods goal is to identify biclusters that include subset of 

both dataset dimensions simultaneously. For example, in gene expression data where one 

dimension is genes list while the other is the set of samples. Biclustering methods aim to 

identify the subset of genes that are expressed under subset of samples simultaneously. As a 

result each bicluster includes a subset of genes and a subset of the samples.

In this section, we describe step-by-step procedure that we used to process and identify 

biclusters in each dataset.

2.6.1. Missing value recovery—The number of missing values is different across 

datasets. We used the R package KNN impute to identify and recover the missing values in 

each dataset. Two of the datasets have a large number of missing values that made it hared to 

recover, in one hand and in the other recovering this large amount of data will make a major 

change of the dataset that might not reflect the actual complexity of the dataset and affect the 

final results. The datasets are GSE24945 and GSE18677 with 9, 000 and 68, 000 of missing 

values; respectively. So we exclude them from this study.
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In some datasets, some gene names were missing and hard to identify, in such cases we 

excluded these genes from the study. In some other cases, we have gene names duplication 

where the same gene occur more than once in the same dataset, we exclude the genes in such 

cases to eliminate any possible ambiguity in the dataset.

2.6.2. Re-normalization of data across datasets—Since the datasets come form 

different sources, we normalized them to the standard z – score in column-wise where the 

column represent samples. The z score for each value in the column is calculating using the 

equation:

where: x is the gene values in specific sample; μ is the column mean; and σ is the column 

standard deviation.

2.6.3. Mapping of gene annotation among the same species—For each species, 

we mapped the gene annotation of the species datasets, and then we merged them into one 

new dataset. The new dataset compiles the shared genes in the species datasets under all 

samples. This step identified four new datasets; a dataset for each species.

Table 2 shows that Worm dataset has the largest number of genes with 16, 688 across 42 

samples. Human dataset has the largest number of samples compiles 233 with the smallest 

number of genes 895. Fly species has the smallest number of samples 33 with 12, 521 genes. 

Mouse dataset compiles 10, 279 genes across 147 samples.

2.6.4. Mapping of gene annotation among different species—We mapped the four 

species datasets that were constructed in the former step across each other to find the shared 

genes. The mapping included comparing the datasets in pairs, which result in identifying six 

new datasets, a new dataset for each pair of species. The new datasets are described in table 

2. The number of shared genes across pairs of species are varies from 2, 944 shared genes 

between fly and mouse species datasets to 377 shared genes between human and worm 

species datasets.

We mapped the species dataset gene annotations in triplets. This process identified four 

different triplets datasets with 1, 637 genes across fly, worm and mouse to 286 across 

human, worm and mouse.

Mapping all of the species gene annotations results in 235 mapped genes across the four 

species with 445 different samples. Table 2 shows the mapping of gene annotation details.

We then processed the new datasets across the species to find the overlapped genes for each 

pair of species.

2.6.5. Biclustering method—Many biclustering methods are proposed in the literature 

for biclustering biological data. Ben-Dor et al. [50] proposed Order-Preserving Sub-Matrixes 

(OPSM) bicluster method for gene expression data. We used OPSM method for identifying 
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the biclusters in the datasets. We chose OPSM for several reasons. One reason is that OPSM 

method proved promising results in the literature. Other reason is the availability of the 

method implementation.

The OPSM algorithm works as described in the following steps:

• T is a set of samples and g is a gene.

• The samples in T can be ordered so that the expression values are sorted in 

ascending order (suppose the values are all unique).

• Suppose a submatrix A contains genes G and samples T .

• A is a bicluster if there is an ordering (permutation) of T such that the 

expression values of all genes in G are sorted in ascending order.

2.6.6. Bicluster quality – Mean Squared Residue—Cheng et al. [49] proposed 

bicluster quality measure. The proposed measure finds the error in the bicluster expression 

values by calculating the difference between each expression value and both column and row 

means, with the bicluster mean. The proposed method is given by the following formula:

Where:

• X is bicluster with |I| rows and |J| columns;

• MSR(X) is the error in the bicluster;

• Xij is the value in row i and column j;

•

 is the row mean ;

•
 is the column mean;

•
 the overall mean;

The smaller the value of MSR(X) the better quality of the bicluster.

We modified the formula to find the coherence among the bicluster components to make it 

more readable by calculating it by the following formula:

In the coherence, the closer the value of MSRx to 1 is the better bicluster.
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2.6.7. Software—OPSM has been implemented in Biclustering Analysis Toolbox (BicAT) 

[51] tool that we used to identify the biclusters from different datasets. BicAT is a JAVA-

based tool that implements set of biclustering algorithms and tools for processing gene 

expression data. In addition to that we used R language to process, compile, analyze and plot 

the dataset and results.

2.6.8. Enrichment analysis—The bicluster of genes and samples assumes that the genes 

in the same bicluster shares common features and functionality for specific set of samples. 

We calculated the computational quality of the bicluster by calculating the MSR of its 

expression values. The computational quality measure is not enough to prove the relevance 

of the bicluster genes for the same group. We applied a enrichment analysis to find the 

biological significant of the bicluster genes and samples. The analysis test shows the related 

genes information.

Enrichment analysis is a computational process that decide whether an a priori defined set of 

genes shows statistically significant. We used for this purpose the Functional Annotation 

Tool from DAVID Bioinformatics Resources [52]. It is a web based tool that is used to 

identify the biological pathways and the enriched Gene-Ontology (GO) terms of the genes 

cluster. We will show the enrichment analysis result for the best biclusters MSR score, for 

each dataset, in section 3.

2.6.9. Statistical significant—We used Fisher’s exact test to measures the statistical 

significant of the bicluster of genes. It finds how likely that the enrichment of a cluster, with 

genes from a particular category, is to some extent greater than what is expected by chance.

We used the Benjamini correction method to correct the enrichment p–values in order to 

control family-wide false discovery rate under certain rate (e.g. ≤ 0.05). Benjamini 

correction method is one of the multiple testing correction methods that is provided by 

DAVID tools.

The cluster p-value range from zero to one, the closer p-value to zero the more biological 

significant Since the p-value is for multiple test so we used the False Discovery Rate (FDR) 

adjusted p–value .

For each bicluster of genes, we applied the functional annotation tool to find the Gene 

Ontology (GO) terms, each subset genes from the bicluster has a GO term with a p–value 

that shows how significant is the list of genes. The GO term describes the set of genes and 

what they have in common.

3. Result

3.1. Meta-analysis of pairwise comparisons

We performed 60 pairwise comparisons to identify genes differentially expressed between 

sample groups of data sets. These comparisons included 12, 030 to 28, 360 unique genes 

(mean = 17, 410) and 4 to 22 biological samples (mean = 8.4). The outputs of each 

comparison were standardized, including a PDF report (Figure 1), statistical results of 
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differential gene expression, and functional analysis of differentially expressed genes via 

DAVID. The statistical results of each gene include both fold change (magnitude) and 

statistical significance (p value and FDR) of group difference. Respectively 49 and 55 

comparisons identified differentially expressed genes and enriched DAVID terms with FDR 
= 0.05. Therefore, sample groups of most comparisons do have different gene expression 

profiles. Table 3 listed some of the DAVID terms identified by 10 or more comparisons.

We then performed a meta–analysis of the comparison results. To compare genes of different 

species (worm, fly, mouse and human), gene IDs were mapped to homolog gene clusters 

based on HomoloGene database. Of totally 20, 441 homolog clusters, only 1, 241 were 

included in all 60 comparisons while respectively 18, 459 or 15, 333 clusters were included 

in at least 10 or 30 comparisons. The meta-analysis identified 12 gene clusters that were 

ranked top 2% of differential expression by at least 8 comparisons from at least 5 data sets 

and 3 species (Table 4). At least 9 of these genes encode proteins located in mitochondrion. 

For example, ETHE1 encodes a sulfur dioxygenase within mitochondrial matrix and its 

mutation causes ethylmalonic encephalopathy, a metabolic disorder.

Its differential expression was ranked top 2% by 12 comparisons of 7 data sets from all 

species. The conditions that caused differential expression of ETHE1 include: PGC-1a 

knockout in mouse muscle (decrease), knockdown of a cytochrome oxidase subunit in fly S2 

cells (increase), treatment of worms with Rotenone (increase), muscle biopsy of MELAS 

patients (decrease), and so on.

Another analysis was performed on the results of pairwise comparisons to identify 

association between different conditions or treatments. It calculated the correlation 

coefficient between any two sets of fold changes of individual comparisons. Comparisons 

using the samples from the same data sets generally have stronger correlation to each other 

while significant correlation also exists between comparison results from different data sets 

and species (Table 5). For example, the overall transcriptomic changes in patient muscle 

biopsies were negatively correlated to the changes caused by treating human SK-N-MC cells 

with 50nM Rotenone for 4 weeks, but positively correlated to the changes caused by 5nM 

Rotenone for 1 week as well as Sirt3 knock out in mouse livers. Another example is the 

positive correlation between the changes caused by PGC-1alpha overexpression in mouse 

and Rotenone treatment in worm, two distantly related conditions.

3.2. Biclustering of genes and samples across datasets

In the genes and samples biclustering part of the study, after we prepared the datasets, we 

applied OPSM to extracted the biclusters from each dataset. After that we ranked them 

based on the bicluster MSRx.

Some of the extracted biclusters includes hundreds of genes under small number of samples. 

In some other cases, some biclusters are including small number of genes with most of the 

samples. We filtered and excluded these two cases since they do not reflect a good quality 

clusters since one of the bicluster dimensions is very high and the other is very small.
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Some cases, the number of genes or samples is less that 5. We excluded such cases from our 

results. Finally we included biclusters with gene counts and sample counts ≥ 5.

Table 2 summaries biclustering results for all species datasets and for all overlapped cases. 

In the sequel of this section we describe the biclustering results after filtering and measuring 

their quality.

3.2.1. Human dataset result—We identified and extracted biclusters from the human 

dataset and after filtering them we have 6 biclusters numbered from 3 to 8. Table 6 shows 

the extracted bicluster details. The highest MSRx bicluster is bicluster 3 that includes 5 

genes and 13 samples.

The enrichment analysis of human biclusters shows 100% genes enriched. Figure 2b shows 

bicluster 3 genes, samples and the bicluster plot that shows the relation between the genes 

and samples. Table 7 shows the enrichment analysis results for bicluster 3 using DAVID 

tool.

3.2.2. Mouse dataset result—We identified and extracted five biclusters from the mouse 

dataset after filtering. Table 8 shows the extracted bicluster details. Bicluster 3 has the 

highest MSRx score. It includes 5 genes and 15 samples. Figure 3b shows bicluster 3 genes, 

samples and the bicluster plot that shows the genes, samples and the relation between them.

The enrichment analysis of bicluster 3 of mouse dataset shows that 40% of the genes are 

enriched. Bicluster 7 has the highest enrichment genes percent. The following genes are part 

of the extracted biclusters form the mouse dataset and none of them is enriched:

• Fgr, Wdr4, Allc, Icos, Pigu, Polr2a, Tat, Rab25, Cecr5, Dntt, Gtse1, 

Gstm3, Llgl2, Srrm1, Pih1d1, Tspo2, Rdh7

Table 8 describes mouse dataset biclusters details with enrichment analysis result.

3.2.3. Worm dataset result—We applied OPSM to the worm dataset. The method 

identified 6 different biclusters, after filtering, with different MSRx scores. Bicluser 3 shows 

the highest MSRx score; however, none of its genes were enriched. Bicluster 6 shows the 

highest enrichment gene percent. Table 9 shows the extracted bicluster details. Figure 4b 

shows bicluster 3 genes, samples and the bicluster plot that shows the correlation between 

the bicluster genes for the specified set of samples.

The following genes are part of the extracted biclusters form the worm dataset and none of 

them is enriched:

• C01G5.6, F54D10.5, B0464.9, sas-5, C13F10.7, C15H11.8, C18E3.9, 

K03H1.7, syn-16, C02F5.13, C48B4.11, Y57A10A.16, cpn-1, F18A1.8, 

ZK1248.11, cids-1, C39E9.12, D1007.8, T02C12.3, C04G6.4, C28A5.1, 

fbxa-210, F40F8.11, F49C12.9, F55A11.7, K06H6.2, lgg-3, T06D8.9, 

ZK1248.15, ztf-9, B0261.7, B0491.1, clec-127, C01G10.7, C01G8.1, 

C08F8.3, C14B1.2, C24D10.4, C42C1.12, C43E11.12, C43H8.2, 
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F17A9.2, dhs-22, egg-2, fsn-1, F21D5.6, F41G3.6, F54A3.6, inx-22, 

K05C4.7, mvb-12, W01D2.5, pak-2, C35D10.10, Y54G11A.9, ZK1067.3

Table 9 shows worm dataset biclusters details with enrichment analysis results.

3.2.4. Fly dataset result—OPSM was able to extract, after filtering, 5 biclusters from fly 

dataset. The highest bicluster MSRx score is bicluster 3. It involves 7 genes and 16 samples. 

Table 10 shows the extracted biclusters details.

Figure 5b shows bicluster 3 genes, samples and the bicluster plot that shows the bicluster 

genes, samples and the relation between them. Bicluster 3 shows the best enrichment 

percent.

The following genes are part of the extracted bicluster form fly dataset and none of them is 

enriched:

• CG2972, CG14270, CG11788, CG1749, sec13, CG10424, CG11875, 

CG13016, CG17249, CG18004, CG31223, mRpS23, CG32554, 

CG33213, CG3353, CG6617, CG7484, CG8090, Rae1, CG9947, 

CG12975, CG14286, CG6073

3.2.5. Different species mapping result—We mapped the four species gene 

annotations among the four species to find the overlapped genes among them. The 

overlapped datasets are falls in one of the following three categories based on the number of 

overlapped datasets:

1. Species pairs: In this category, we mapped the species datasets in pairs. 

Table 2 shows 6 overlapped pairs of datasets. The overlapped dataset of fly 

with worm result in 2, 724 genes across 75 samples produced highest 

number of biclusters 9 in this category. The biclusters extracted from this 

dataset shows the best average MSRx results that means these bicluster are 

with high quality 0.96, that means the set of genes and samples in each 

bicluster share common features. The next best average biclusters quality 

is fly and mouse dataset with average MSRx of 0.95. This show that fly 

dataset has common features with both worm and mouse datasets whereas 

the result biclusters of the fly and human overlap shows relatively small 

number of overlapped genes with average quality of biclusters. The 

overlapped dataset of human and worm shows smallest number of shared 

genes and the smallest average MSRx. We extracted one bicluster form the 

mouse and human overlapped dataset, this bicluster was with MSRx = 

0.99; however, all of this bicluster samples are from mouse samples and 

the human samples are not included.

2. Species triplets: In this category, we mapped the species datasets three 

species at a time to find the overlapped genes. The result is four different 

datasets with 1, 637 overlapped genes between fly, mouse and worm. We 

extracted 7 biclusters from this dataset with average MSRx of 0.92, three 

biclusters of them included samples from the three species and the other 
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four biclusters included samples from only two species. The other three 

overlapped datasets have an average of 300 overlapped genes among the 

species. The biclusters that extracted from these three datasets are of either 

number of genes less than 5 or number of samples less than 5 and they 

excluded from the list of biclusters.

3. All four species: The overlap among the four species produced a dataset of 

235 genes and 445 samples, 7 biclusters extracted from this dataset with 

average MRSx = 0.85. However, none of the extracted biclusters involved 

samples from all species. Three biclusters involved samples from human, 

fly and worm datasets. Two biclusters involved human and mouse dataset 

samples. One bicluster involoved human, fly and mouse and the last 

bicluster involved human fly and mouse samples.

4. Discussion

We developed a solution to overcome some of the difficulties in studying rare diseases. 

Genomic data sets seemingly divergent from each other, but commonly related to 

mitochondrial dysfunctions, were collected to generate a centralized platform of data 

mining, ToMD. Although many of the data processing and data analysis steps can be 

automated, we noticed that the key to the success of such a platform is the close control of 

data quality, sample grouping, and result interpretation by investigators with different 

domain knowledge.

Biclustering methods identify biclusters by involving both dimensions of dataset 

simultaneously, genes and samples in this study. Each bicluster includes a group of genes 

that falls in the same functional group under a subset of samples. We applied a robust 

biclustering method, OPSM, to identify co–regulated genes and samples across the different 

datasets. The method construct a bicluster if there is a permutation of the bicluster samples 

such that the expression values of the bicluster genes are sorted in ascending order.

Integrative analysis ToMD data sets have revealed new insights about mitochondrial 

diseases. For example, meta-analysis identified genes consistently having differential 

expression when mitochondrial functions were impaired across a variety of cell types and 

species. Follow-up study of the roles played by these genes in mitochondrial diseases will 

improve our understanding about these diseases and mitochondrial function in general.

The currents contents of ToMD are mostly static files. One of our future plans is to create a 

web interface that allows users to query, filter and analyze the data, as well as generate 

dynamic results and plots, which will further facilitate the process of knowledge discovery. 

Once the value of ToMD is further confirmed, we will apply the same principal to generate 

similar resources for other types of rare diseases, such as childhood cancers and congenital 

heart diseases.
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5. Conclusion

In conclusion, we developed a practical strategy to reuse public data for the study of rare 

diseases whose low occurrence makes it difficult to collect large sample cohorts and obtain 

sufficient research funding. We proved that it is possible to integrate transcriptome data sets 

sharing a common link to a rare disease, but generated from different platforms, cell types, 

and even species.
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Figure 1. 
Synopsis of a pairwise comparison. The standardized outputs of a pairwise comparison of 

transcriptomes of two sample groups included a report file and a set of figures and tables. A) 

A report in PDF format that summarized data quality and comparison results. B) 

Unsupervised clustering of compared samples via principal components analysis. C) 

Visualization of comparison results. M-A plot evaluates dependence of group difference on 

baseline levels of gene expression. Volcano plot illustrates both magnitude (x-axis) and 

statistical significance (y-axis) of differential expression. P value distribution should be 

skewed to the left side when the comparison identifies a difference of expression profiles 

between two groups, and the FDR plot shows the number of genes with FDR lower than a 

given value. D) Full table of comparison results and DAVID functional analysis based on 

these results (not shown) were written to an Excel file.
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Figure 2. 
Human dataset bicluster 3.
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Figure 3. 
Mouse dataset bicluster 3.
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Figure 4. 
Worm dataset bicluster 3.
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Figure 5. 
Fly dataset bicluster 3.
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Table 1

The four living species datasets description.

Species
a

DS Id
b

GEO_ID
c

Ref.
d

Tissue
e

#Samples
f

#Genes
g

#Groups

(classes)
h

Fly
F_dataset1 GSE10169 [15] Whole body 12 12,522 4

F_dataset2 GSE32912 [16] S2 cell 21 12,522 11

Worm

W_dataset1 GSE9896 [17] Whole body 10 16,812 2

W_dataset2 GSE9897 [18] Whole body 10 16,812 6

W_dataset3 GSE46051 [19] Whole body 22 28,355 8

Human

H_dataset1 GSE1462 [20] Skeletal muscle 15 12,027 4

H_dataset2 GSE8648 [21] Fibroblast 22 1,190 2

H_dataset3 GSE10956 [22] Fibroblast 22 13,031 2

H_dataset4 GSE14882 [23] Peripheral blood 16 12,027 2

H_dataset5 GSE24945
i [24] Fibroblast 12 19,617 4

H_dataset6 GSE26322 [25] Fibroblast 12 19,063 2

H_dataset7 GSE27041 [26] Fibroblast 20 18,895 4

H_dataset8 GSE27545 [27] Cybrid 17 19,600 6

H_dataset9 GSE28206 [28] Skeletal muscle 7 19,600 2

H_dataset10 GSE33769 [29] Fibroblast 15 18,895 2

H_dataset11 GSE33940 [30] Fibroblast 20 19,714 3

H_dataset12 GSE35642 [31] SK-N-MC cell 18 12,027 6

H_dataset13 GSE42986 [32] Muscle/FCL 40 20,708 4

Mouse

M_dataset1 GSE4330 [33] Myoblast (C2C12) 21 14,706 7

M_dataset2 GSE4866 [34] Cochlea 10 17,480 2

M_dataset3 GSE5332 [35] MEF 13 17,480 4

M_dataset4 GSE5786 [36] Striata 6 20,628 2

M_dataset5 GSE6210 [37] Liver/Muscle 12 17,480 4

M_dataset6 GSE10904 [38] Liver 6 17,480 2

M_dataset7 GSE13034 [39] MEF 14 12,279 4

M_dataset8 GSE18677
i [40] Liver 11 17,480 8

M_dataset9 GSE27309 [41] Brown adipose 20 20,299 2

M_dataset10 GSE27954 [42] Liver 12 21,154 4

M_dataset11 GSE30552 [43] Liver 26 17,480 4

M_dataset12 GSE34773 [44] Skeletal muscle 26 17,480 4

a
The dataset species.

b
DS Id is the dataset id number that is used in this study.

c
The GEO_ID in the NCBI database.

d
The dataset reference.

e
The tissue that the sample comes from.
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f
The number of samples in the dataset.

g
The number of genes in the dataset.

h
The number of sample groups in the dataset.

i
Too many missing values in this dataset.
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Table 2

Species datasets overlap and the extracted bicluster results summary.

Overlap Species
a

#Genes
b

#Samples
c

#Biclusters
d Avg MSRx

e

Single 
f

F 12,521 33 5 0.87

M 10,279 147 5 0.92

H 895 233 6 0.93

W 16,688 42 6 0.98

Pairwise 
g

F,H 443 256 8 0.87

H,W 377 265 6 0.80

M,H 675 370 1 0.99

F,W 2,724 75 9 0.96 
j

F,M 2,944 180 7 0.95 
j

W,M 2,240 189 8 0.88

Triplet 
h

F,W,M 1,637 222 7 0.92 
j

H,F,M 341 403 0
k –

H,W,F 307 298 0
k –

H,W,M 286 412 0
k –

All 
i H,F,M,W 235 445 7 0.85

a
F: Fly; W: Worm; M: Mouse; H: Human.

b
The number of genes in the dataset.

c
The number of samples in the dataset.

d
Number of biclusters with gene counts and sample counts more than or equal5.

e
The average mean squared residue of for the chosen biclusters with gene counts and sample counts more than or equal 5.

f
The overlap of the datasets in each living species.

g
The overlap of the species datasets in pairs.

h
The overlap of the species datasets in triplets.

i
The overlap across all species.

j
The best MSR results in the overlapped datasets.

k
All of the extracted biclusters gene counts or sample counts less than 5.
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Table 3

The DAVID terms identified by multiple pairwise comparisons. DAVID analysis was performed on 

differentially expressed genes identified by each pairwise comparison. Terms enriched within these genes with 

FDR less than 0.05 were summarized across all 60 comparisons. This table listed some of terms most 

commonly identified by multiple comparisons.

Term ID

Num

Comparisons
a

Num

Dataset
b

Num

Species
c

Mitochondrion GO:0005739 21 14 3

Oxidation reduction GO:0055114 20 12 3

Generation of precursor
metabolites and energy GO:0006091 13 9 3

Electron transport chain GO:0022900 12 9 3

Biological adhesion GO:0022610 12 10 3

Ribonucleoprotein complex GO:0030529 10 9 3

Skeletal system development GO:0001501 10 6 3

a
The number of comparisons (total = 60);

b
Data sets (total = 28);

c
Species (total = 4) within which the term was identified with FDR < 0.05.
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Table 4

The homolog gene clusters identified by multiple pairwise comparisons. Genes of different species were 

mapped to homolog cluster for summarization across comparisons. Top 2% genes with the most significant p 

values were selected from each comparison. Poisson test (λ = 0.02) was performed on each gene cluster to 

identify those gene clusters more likely to be included in the top 2% lists. This table listed the most significant 

clusters identified by at least 5 independent data sets generated from at least 3 species.

Homolog
ID

Human
Gene

Human
Symbol

Num

Total
a

Num

Comparison
b

Num

Dataset
b

Num

Species
b

p
Poisson

FDR
Poisson

8622 23474 ETHE1 60 12 7 4 6.17E-09 6.31E-05

55759 8140 SLC7A5 52 11 5 3 1.49E-08 9.21E-05

3343 4716 NDUFB10 52 9 6 3 1.55E-06 4.51E-03

1547 2617 GARS 60 9 5 3 4.86E-06 6.72E-03

2255 6390 SDHB 60 9 7 3 4.86E-06 6.72E-03

37514 513 ATP5D 60 9 7 4 4.86E-06 6.72E-03

4788 10667 FARS2 55 8 5 3 2.01E-05 1.21E-02

68163 290 ANPEP 55 8 5 3 2.01E-05 1.21E-02

3 34 ACADM 60 8 6 3 3.70E-05 1.68E-02

3356 5106 PCK2 60 8 6 3 3.70E-05 1.68E-02

457 6609 SMPD1 60 8 5 3 3.70E-05 1.68E-02

55662 4967 OGDH 60 8 7 3 3.70E-05 1.68E-02

10884 4729 NDUFV2 45 7 5 3 4.34E-05 1.93E-02

a
The total number of comparisons that included this gene cluster;

b
Num_Comparison, Num_Dataset, and Num_Species: the number of comparisons, data sets, and species that identified this cluster within the top 

2% lists
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Table 5

The pairwise comparisons correlated to each other. Fold changes of two pairwise comparisons were used to 

calculate a correlation coefficient. This table listed pairs of the comparisons from different data sets or species 

having the strongest correlation to each other.

Comparison1 Dataset1 Species1 Comparison2 Dataset2 Species2 N
a

Corr
b

50nM Rotenone, 1 week GSE35642 human Mito patients muscle GSE42986 human 11472 −0.42

5nM Rotenone, 4 weeks GSE35642 human Mito patients muscle GSE42986 human 11472 0.39

Patients with CoQ10 def. GSE33940 human Mito patients muscle GSE42986 human 17453 0.37

Sirt3 KO, standard diet GSE30552 mouse Mito patients muscle GSE42986 human 16139 −0.37

Sirt3 KO, standard diet GSE30552 mouse Probucol treatment GSE18677 mouse 16692 −0.35

Patients of 4977bp del GSE1462 human Mito patients muscle GSE42986 human 11472 0.34

PGC1b KO in liver GSE6210 mouse Rotenone, 1 day old GSE46051 worm 3153 0.32

PGC1a overexpression GSE4330 mouse PGC1a KO, standard diet GSE34773 mouse 12941 −0.30

a
Number of homolog gene clusters included by both comparisons;

b
Pearson’s correlation coefficient between 2 sets of fold changes.
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Table 6

Filtered human biclusters details.

Bicluster#
a

#Genes
b

#Samples
c MSRx 

d
Enriched%

e

3 5 13 0.9678 
f 100

4 7 11 0.9576 100

5 11 10 0.9388 100

6 17 9 0.9294 100

7 26 8 0.8975 100

8 49 7 0.8791 100

a
The bicluster serial number in this study.

b
The number of genes involved in the bicluster.

c
The number of samples involved in the bicluster.

d
The bicluster coherence that explained in section 2.6.6.

e
The percent of enriched genes from the bicluster (# enriched genes / total number of genes.)

f
The best MSRx score is 0.9678.
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Table 7

Sample of the enrichment analysis results. Enrichment analysis results for the highest human dataset MSRx 

bicluster, bicluster 3, using DAVID tools.

Category
a

Term
b

Genes
c

%
d P–Value Fisher Exact

SP_PIR_KEYWORDS respiratory chain NDUFA9,   COX8A,
UQCRQ, COX5B 80 1.90E-07 8.50E-10

GOTERM_CC_FAT mitochondrial inner membrane
NDUFA9,  SUCLG1,
COX8A,   UQCRQ,
COX5B

100 3.20E-07 7.60E-09

GOTERM_CC_FAT organelle inner membrane
NDUFA9,  SUCLG1,
COX8A,   UQCRQ,
COX5B

100 4.30E-07 1.10E-08

GOTERM_CC_FAT mitochondrial membrane
NDUFA9,  SUCLG1,
COX8A,   UQCRQ,
COX5B

100 8.90E-07 2.70E-08

GOTERM_CC_FAT mitochondrial envelope
NDUFA9,  SUCLG1,
COX8A,   UQCRQ,
COX5B

100 1.10E-06 3.70E-08

SP_PIR_KEYWORDS mitochondrion
NDUFA9,  SUCLG1,
COX8A,   UQCRQ,
COX5B

100 3.50E-06 1.50E-07

GOTERM_CC_FAT mitochondrial part
NDUFA9,  SUCLG1,
COX8A,   UQCRQ,
COX5B

100 4.70E-06 2.20E-07

GOTERM_CC_FAT organelle envelope
NDUFA9,  SUCLG1,
COX8A,   UQCRQ,
COX5B

100 5.50E-06 2.60E-07

GOTERM_CC_FAT envelope
NDUFA9,  SUCLG1,
COX8A,   UQCRQ,
COX5B

100 5.60E-06 2.70E-07

GOTERM_BP_FAT generation of precursor metabo-
lites and energy

NDUFA9,  SUCLG1,
COX8A, UQCRQ 80 4.80E-05 1.40E-06

GOTERM_CC_FAT mitochondrion
NDUFA9,  SUCLG1,
COX8A,   UQCRQ,
COX5B

100 5.20E-05 4.40E-06

GOTERM_CC_FAT organelle membrane
NDUFA9,  SUCLG1,
COX8A,   UQCRQ,
COX5B

100 5.40E-05 4.60E-06

UP_SEQ_FEATURE transit peptide:Mitochondrion NDUFA9,  SUCLG1,
COX8A, COX5B 80 5.70E-05 1.70E-06

SP_PIR_KEYWORDS transit peptide NDUFA9,  SUCLG1,
COX8A, COX5B 80 5.90E-05 1.80E-06

KEGG_PATHWAY Parkinson’s disease NDUFA9,   COX8A,
UQCRQ, COX5B 80 6.10E-05 1.90E-06

KEGG_PATHWAY Oxidative phosphorylation NDUFA9,   COX8A,
UQCRQ, COX5B 80 6.40E-05 2.00E-06

KEGG_PATHWAY Alzheimer’s disease NDUFA9,   COX8A,
UQCRQ, COX5B 80 1.30E-04 5.00E-06

KEGG_PATHWAY Huntington’s disease NDUFA9,   COX8A,
UQCRQ, COX5B 80 1.70E-04 7.40E-06

GOTERM_MF_FAT hydrogen ion transmembrane
transporter activity

COX8A,   UQCRQ,
COX5B 60 2.80E-04 3.20E-06

GOTERM_MF_FAT monovalent inorganic cation trans-
membrane transporter activity

COX8A,   UQCRQ,
COX5B 60 3.80E-04 4.90E-06
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Category
a

Term
b

Genes
c

%
d P–Value Fisher Exact

SP_PIR_KEYWORDS mitochondrion inner membrane COX8A,   UQCRQ,
COX5B 60 5.90E-04 9.80E-06

GOTERM_MF_FAT inorganic cation transmembrane
transporter activity

COX8A,   UQCRQ,
COX5B 60 7.90E-04 1.50E-05

KEGG_PATHWAY Cardiac muscle contraction COX8A,   UQCRQ,
COX5B 60 1.40E-03 3.40E-05

SP_PIR_KEYWORDS mitochondrial inner membrane COX8A, COX5B 40 3.90E-03 9.20E-06

SP_PIR_KEYWORDS oxidoreductase NDUFA9,   COX8A,
COX5B 60 4.90E-03 2.40E-04

SP_PIR_KEYWORDS membrane-associated complex COX8A, COX5B 40 6.60E-03 2.70E-05

SP_PIR_KEYWORDS oxidative phosphorylation COX8A, COX5B 40 7.30E-03 3.20E-05

GOTERM_MF_FAT oxidoreductase activity, acting on
heme group of donors

COX8A, COX5B 40 8.60E-03 4.50E-05

GOTERM_MF_FAT cytochrome-c oxidase activity COX8A, COX5B 40 8.60E-03 4.50E-05

GOTERM_MF_FAT heme-copper terminal oxidase activity COX8A, COX5B 40 8.60E-03 4.50E-05

GOTERM_MF_FAT
oxidoreductase activity, acting on
heme group of donors, oxygen as
acceptor

COX8A, COX5B 40 8.60E-03 4.50E-05

SP_PIR_KEYWORDS electron transfer COX8A, COX5B 40 1.00E-02 6.60E-05

SP_PIR_KEYWORDS electron transport NDUFA9, UQCRQ 40 2.10E-02 2.60E-04

GOTERM_CC_FAT respiratory chain NDUFA9, UQCRQ 40 2.30E-02 3.40E-04

GOTERM_BP_FAT cellular respiration NDUFA9, SUCLG1 40 2.80E-02 5.00E-04

GOTERM_BP_FAT electron transport chain NDUFA9, UQCRQ 40 3.30E-02 6.90E-04

INTERPRO NAD(P)-binding domain NDUFA9, SUCLG1 40 3.60E-02 7.90E-04

UP_SEQ_FEATURE
cross-link:Glycyl lysine isopeptide
(Lys-Gly) (interchain with G-Cter
in ubiquitin)

SUCLG1, UQCRQ 40 4.10E-02 1.10E-03

GOTERM_BP_FAT energy derivation by oxidation of
organic compounds NDUFA9, SUCLG1 40 4.20E-02 1.10E-03

SP_PIR_KEYWORDS isopeptide bond SUCLG1, UQCRQ 40 6.50E-02 2.70E-03

GOTERM_CC_FAT mitochondrial lumen NDUFA9, SUCLG1 40 6.90E-02 3.00E-03

GOTERM_CC_FAT mitochondrial matrix NDUFA9, SUCLG1 40 6.90E-02 3.00E-03

SP_PIR_KEYWORDS acetylation NDUFA9, SUCLG1,
COX5B 60 9.30E-02 2.10E-02

a
The original source (i.e., database) of the term.

b
The enrichment terms associated with the gene list.

c
The list of genes from the bicluster that is involved in the term.

d
The percentage of the bicluster genes that involved in this term (Involved genes/total genes).
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Table 8

Filtered mouse biclusters details.

Bicluster#
a

#Genes
b

#Samples
c MSRx 

d
Enriched%

e

3 5 15 0.9471 
f 40

4 6 13 0.9228 33.3

5 10 12 0.9362 70

6 19 11 0.8810 63.2

7 43 10 0.9070 86

a
The bicluster serial number in this study.

b
The number of genes involved in the bicluster.

c
The number of samples involved in the bicluster.

d
The bicluster coherence that explained in section 2.6.6.

e
The percent of enriched genes from the bicluster (# enriched genes / total number of genes.)

f
The best MSRx score is 0.9471.
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Table 9

Filtered worm biclusters details.

Bicluster#
a

#Genes
b

#Samples
c MSRx 

d
Enriched%

e

3
a 5 17 0.9969 

f 0

4
a 9 16 0.9820 0

5 15 15 0.9804 46.7

6 37 14 0.9767 64.9

7 43 13 0.9693 58.1

8 112 12 0.9736 64.3

a
The bicluster serial number in this study.

b
The number of genes involved in the bicluster.

c
The number of samples involved in the bicluster.

d
The bicluster coherence that explained in section 2.6.6.

e
The percent of enriched genes from the bicluster (# enriched genes / total number of genes.)

f
The best MSRx score is 0.9969.
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Table 10

Filtered fly biclusters details.

Bicluster#
a

#Genes
b

#Samples
c MSRx 

d
Enriched%

e

3 7 16 0.8875 
f 85

4 9 15 0.8634 77.8

5 20 14 0.8619 75

6 33 13 0.8801 78.8

7 70 12 0.8691 72.9

a
The bicluster serial number in this study.

b
The number of genes involved in the bicluster.

c
The number of samples involved in the bicluster.

d
The bicluster coherence that explained in section 2.6.6.

e
The percent of enriched genes from the bicluster (# enriched genes / total number of genes.)

f
The best MSRx score is 0.8875.
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