Table 2.
Summary of the simulation results for conditional bivariate cumulative incidence functions. Bias and MCSD are the empirical bias (×1000) and the empirical standard deviation (×1000) of the 1000 estimated conditional bivariate cumulative incidence functions.
Scenario | n | η | v | w |
ε = 1
|
ε = 2
|
||||
---|---|---|---|---|---|---|---|---|---|---|
H1(v, w) | Bias | MCSD | H2(v, w) | Bias | MCSD | |||||
I | 200 | 3.0 | 0.4 | 0.4 | 0.28 | 5 | 47 | 0.28 | 3 | 58 |
0.4 | 0.8 | 0.44 | 7 | 52 | 0.44 | 3 | 64 | |||
0.8 | 0.4 | 0.35 | 4 | 51 | 0.35 | 4 | 60 | |||
0.8 | 0.8 | 0.58 | 5 | 53 | 0.58 | 5 | 63 | |||
5.0 | 0.4 | 0.4 | 0.26 | 8 | 44 | 0.26 | 6 | 55 | ||
0.4 | 0.8 | 0.40 | 12 | 50 | 0.40 | 8 | 61 | |||
0.8 | 0.4 | 0.32 | 9 | 48 | 0.32 | 8 | 56 | |||
0.8 | 0.8 | 0.53 | 12 | 51 | 0.53 | 12 | 61 | |||
500 | 3.0 | 0.4 | 0.4 | 0.28 | 2 | 29 | 0.28 | 3 | 38 | |
0.4 | 0.8 | 0.44 | 2 | 33 | 0.44 | 4 | 42 | |||
0.8 | 0.4 | 0.35 | 2 | 31 | 0.35 | 3 | 40 | |||
0.8 | 0.8 | 0.58 | 2 | 33 | 0.58 | 5 | 41 | |||
5.0 | 0.4 | 0.4 | 0.26 | 3 | 26 | 0.26 | 4 | 35 | ||
0.4 | 0.8 | 0.40 | 3 | 31 | 0.40 | 5 | 39 | |||
0.8 | 0.4 | 0.32 | 3 | 28 | 0.32 | 5 | 38 | |||
0.8 | 0.8 | 0.53 | 4 | 32 | 0.53 | 7 | 40 | |||
II | 200 | 3.0 | 0.4 | 0.4 | 0.28 | 3 | 48 | 0.38 | 3 | 62 |
0.4 | 0.8 | 0.44 | 3 | 53 | 0.59 | 7 | 63 | |||
0.8 | 0.4 | 0.35 | 4 | 52 | 0.38 | 3 | 62 | |||
0.8 | 0.8 | 0.58 | 4 | 52 | 0.64 | 8 | 62 | |||
5.0 | 0.4 | 0.4 | 0.26 | 6 | 44 | 0.34 | 8 | 59 | ||
0.4 | 0.8 | 0.40 | 8 | 50 | 0.53 | 15 | 61 | |||
0.8 | 0.4 | 0.32 | 7 | 49 | 0.34 | 8 | 59 | |||
0.8 | 0.8 | 0.53 | 10 | 50 | 0.57 | 16 | 61 | |||
500 | 3.0 | 0.4 | 0.4 | 0.28 | 1 | 30 | 0.38 | 2 | 39 | |
0.4 | 0.8 | 0.44 | 1 | 32 | 0.59 | 2 | 42 | |||
0.8 | 0.4 | 0.35 | 1 | 33 | 0.38 | 2 | 39 | |||
0.8 | 0.8 | 0.58 | 1 | 33 | 0.64 | 1 | 42 | |||
5.0 | 0.4 | 0.4 | 0.26 | 2 | 28 | 0.34 | 4 | 36 | ||
0.4 | 0.8 | 0.40 | 3 | 31 | 0.53 | 6 | 41 | |||
0.8 | 0.4 | 0.32 | 2 | 31 | 0.34 | 4 | 36 | |||
0.8 | 0.8 | 0.53 | 4 | 33 | 0.57 | 5 | 41 | |||
III | 200 | 3.0 | 0.4 | 0.4 | 0.28 | 6 | 47 | 0.56 | 3 | 61 |
0.4 | 0.8 | 0.44 | 10 | 54 | 0.80 | 2 | 52 | |||
0.8 | 0.4 | 0.35 | 6 | 51 | 0.56 | 3 | 61 | |||
0.8 | 0.8 | 0.58 | 10 | 53 | 0.81 | 2 | 51 | |||
5.0 | 0.4 | 0.4 | 0.26 | 11 | 44 | 0.55 | 5 | 61 | ||
0.4 | 0.8 | 0.40 | 18 | 52 | 0.78 | 5 | 53 | |||
0.8 | 0.4 | 0.32 | 13 | 48 | 0.55 | 5 | 61 | |||
0.8 | 0.8 | 0.53 | 21 | 53 | 0.80 | 4 | 52 | |||
500 | 3.0 | 0.4 | 0.4 | 0.28 | 1 | 28 | 0.56 | 4 | 37 | |
0.4 | 0.8 | 0.44 | 2 | 33 | 0.80 | 2 | 32 | |||
0.8 | 0.4 | 0.35 | 1 | 31 | 0.56 | 4 | 37 | |||
0.8 | 0.8 | 0.58 | 1 | 33 | 0.81 | 2 | 31 | |||
5.0 | 0.4 | 0.4 | 0.26 | 3 | 26 | 0.55 | 4 | 37 | ||
0.4 | 0.8 | 0.40 | 5 | 32 | 0.78 | 2 | 32 | |||
0.8 | 0.4 | 0.32 | 4 | 29 | 0.55 | 4 | 37 | |||
0.8 | 0.8 | 0.53 | 6 | 32 | 0.80 | 2 | 31 |