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Abstract

Suppose that you are looking for visual targets in a set of images, each containing an unknown 

number of targets. How do you perform that search and how do you decide when to move from the 

current image to the next? Optimal foraging theory predicts that foragers should leave the current 

image when the expected value from staying falls below the expected value from leaving. Here, 

we describe how to apply these models to more complex tasks like search for objects in natural 

scenes where people have prior beliefs about the number and locations of targets in each image, 

and search is guided by target features and scene context. We model these factors in a guided 

search task and predict the optimal time to quit search. The data come from a satellite image 

search task. Participants searched for small gas stations in large satellite images. We model 

quitting times with a Bayesian model that incorporates prior beliefs about the number of targets in 

each map, average search efficiency (guidance), and actual search history in the image. Clicks 

deploying local magnification were used as surrogates for deployments of attention and, thus, for 

time. Leaving times (measured in mouse clicks) were well-predicted by the model. People 

terminated search when their expected rate of target collection fell to the average rate for the task. 

Apparently, people follow a rate-optimizing strategy in this task and use both their prior 

knowledge and search history in the image to decide when to quit searching.
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In a classic visual search task in the laboratory, an observer looks for a target item among 

some number of distractor items. The single target is present or absent and a search ends 

when the target is found or the observer abandons the search, declaring the target to be 

absent. This all occurs over the course of a few hundred to a few thousand milliseconds. A 

great deal is known about such searches (for some recent reviews, see Wolfe, 2014; Chan & 

Hayward, 2013; Eckstein, 2011; Wolfe, Horowitz, & Palmer, 2010). For instance, we know 

that the efficiency of these searches falls on a continuum, as indexed by the slope of the 

function relating RT to set size (the number of items on screen) (Wolfe, 1998). The 

relationship of target to distractor items is a powerful determinant of search efficiency 

(Duncan & Humphreys, 1989). If the target differs from a homogeneous set of distractors on 

*Corresponding author, k.a.ehinger@gmail.com. 

HHS Public Access
Author manuscript
Atten Percept Psychophys. Author manuscript; available in PMC 2017 October 01.

Published in final edited form as:
Atten Percept Psychophys. 2016 October ; 78(7): 2135–2151. doi:10.3758/s13414-016-1128-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the basis of a basic attribute like color or motion, search will be extremely efficient. Indeed, 

the target will “pop-out” independent of the number of distractors (Egeth, Jonides, & Wall, 

1972). If the target and distractors share all their features, differing only in their 

arrangement, search will be quite inefficient, even if the items are clearly resolvable in 

peripheral vision (Bergen & Julesz, 1983) perhaps reflecting serial deployment of attention 

from item to item (Kwak, Dagenbach, & Egeth, 1991). If a basic feature of the target can 

give partial information, attention will be guided by that information. If the target, when 

present, is green and only half the distractors are green, then attention will be guided to 

green items (Egeth, Virzi, & Garbart, 1984) and the efficiency will be double what it would 

have been without the color information. Hence the idea of “Guided Search” (Wolfe, 1989; 

Wolfe, 1994; Wolfe, 2007) with a limited set of attributes available to guide (Wolfe, 2004).

This body of research will tell you something about searching for your car in the parking lot 

(If it is a red Prius, don't waste time attending to blue cars) or the bottle opener in the kitchen 

drawer (this will be inefficient due to a lack of a salient defining feature, not to mention 

“crowding” effects (Balas, Nakano, & Rosenholtz, 2009).) But let us consider a different 

search task. Suppose you are tasked with searching for military vehicles in satellite images 

of the tense border between two countries. This search differs in a variety of important ways 

from classic, laboratory search.

1) In a continuous scene, it is going to prove essentially impossible to measure 

the set size (Neider & Zelinsky, 2008; Wolfe, et al., 2011) rendering the idea of 

search efficiency problematic.

2) Even if we could count the items, we do not know how many items are 

processed in a single fixation. The eyes move 3-5 times per second and it is 

tempting to assume that each fixation catalogs a target/non-target decision 

about a single item. However, in simple searches at least, items are processed 

at much higher rate. Multiple items might be processed in parallel during each 

fixation. Serial attention might visit multiple items on each fixation. Indeed, 

both parallel processing and serial selection probably characterize search 

(Wolfe, 2003).

3) The number of targets is unknown meaning that, even if you find a target, you 

still do not know, for certain, that it is time to end the search of this image.

4) The search is guided, but not merely by basic attributes of the target. The 

structure of the scene tells the searcher where targets are more or less likely 

(very few vehicles in trackless wilderness or in the middle of lakes). (Torralba, 

Oliva, Castelhano, & Henderson, 2006; Ehinger, Hidalgo-Sotelo, Torralba, & 

Oliva, 2009; Võ & Wolfe, 2015).

5) The tasks have a more striking learning component. People are trained to do 

these complex tasks and one manifestation of that learning is that experts learn 

where not to look (Kundel & La Follette, 1972; Wooding, Roberts, & Phillips-

Hughes, 1999).

6) Finally, each stimulus here will be searched for minutes rather than for a 

fraction of a second.
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The purpose of this paper is to ask how people perform tasks like the one described here; 

tasks that can be called “extended search” tasks. These tasks include search in overhead 

imagery as well as other prolonged search tasks such as search for signs of disease in 

radiology or search for cracks in the examination of an airplane. A major difference between 

these tasks and more classic, fast visual search tasks is the role of higher-level knowledge 

and decision-making processes. Extended search tasks are slow and can involve rich, 

complex natural images, so the observer's top-down knowledge and expectations about the 

images and task are an important component of their search in these images.

With difficult, multiple target search in a complex scene, the decision to end search of the 

current image becomes one of the most interesting problems. After all, since it is hard to find 

everything, one could keep looking for a long time, but there are many more images to 

search. When have the diminishing returns diminished to the point where it is time to move 

on?

The topic of search termination has been studied in human visual searches having zero or 

one target (Chun & Wolfe, 1996; Cousineau & Shiffrin, 2004; Wolfe, 2012; Moran, et al., 

2013). Quitting times in searches with multiple targets have been studied extensively in the 

animal foraging literature, where it is described as the “patch-leaving” problem (Stephens & 

Krebs, 1986; Stephens, Brown, & Ydenberg, 2007). If you are grazing in this spot or sipping 

nectar from flowers on this plant, when should you leave for the next patch of grass or the 

next flowering plant? More recently these rules have been applied to human searches for 

visual stimuli (Wolfe, 2013), information (Pirolli & Card, 1999), or even the contents of 

one's own memory (Hills, Todd, & Jones, 2015). One of the earliest and most influential 

quitting time models in the animal literature is the Marginal Value Theorem (MVT) 

proposed by Charnov (1976). This theorem considers the problem of an animal foraging for 

food in an environment where food is randomly distributed in many separate patches, and 

assumes that the animal's goal is to maximize its rate of food intake. While feeding in a 

patch, the animal gradually exhausts the food supply, and the intake rate in that patch drops. 

However, traveling to a new patch imposes a cost: it takes time, and no food can be collected 

while traveling between patches. The optimal strategy is to leave the patch when the 

expected rate from traveling to a new patch exceeds the expected rate from staying in the 

current one. According to MVT, this occurs when the rate of food intake in the current patch 

falls to the average rate for the environment (see Figure 1).

This theory is appealing because it claims that the optimal patch-leaving time can be 

computed from a single easily-observed variable: the current rate of food intake in the patch. 

There are some models of search for which it makes sense to assume a continuous rate. For 

example, limited capacity and decision integration models of search propose that the whole 

visual field is processed in parallel and target detection is actually a signal detection problem 

across various locations in the visual field (Townsend, 1971; Palmer, 1995; Palmer, 

Verghese, & Pavel, 2000). The gradual accumulation of information across the visual field 

could be represented as a smooth, continuous “intake rate” curve. However, computing this 

rate is not so straightforward for tasks that involve slow, serial search for discrete targets. 

When a forager is collecting individual items (pieces of fruit, prey animals, tumors, military 

vehicles, etc.), the intake curve looks more like the step function in Figure 1 (dotted line): 
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the intake rate is zero while the observer is searching, then jumps sharply when the searcher 

finds a target. It wouldn't make sense for the searcher to leave the patch shortly after the 

instantaneous rate falls below the average – the instantaneous rate in a patch can be zero for 

a significant time between target detections. As a proxy, the searcher might compute the 

time since it last found a target and use that as a measure of the current rate; it would leave 

the patch whenever the time since last target exceeded a threshold determined by the average 

rate in the environment. This “giving up time” (GUT) rule does seem to explain foraging 

behavior in certain situations (Krebs, Ryan, & Charnov 1974).

However, there are serious problems with the giving up time rule and other similar 

implementations of the Marginal Value Theorem. In most searches, the time between targets 

is somewhat noisy: it's randomly distributed around an expected value. An ideal forager 

should make decisions based on the expected rate, not the experienced rate. Also, a forager 

might be expected to learn about current patch quality from the success or failure of their 

ongoing search in the current patch: a patch where many targets are found quickly is 

probably a rich patch and might be worth spending more time in. To some extent this is 

captured by MVT (the rich patch should have a higher instantaneous rate, so a forager 

should stay there longer), but it's not clear that the giving up time is actually an optimal 

leaving strategy. In fact, simulations show that it is not: in environments where patch quality 

varies and the experienced rate of target collection is noisy, the giving up time strategy 

proposed by MVT is not optimal and can be made to perform arbitrarily badly depending on 

the amount of variation in the environment (Oaten, 1977; Green, 1980; McNamara, 1982; 

Green, 1984).

As Oaten (1977) points out, MVT is flawed because it assumes that stochastic aspects of the 

foraging task balance out and the forager can make good decisions based on averages. In 

fact, an optimal forager should reason about the foraging task probabilistically. Various 

frameworks for this have been proposed, including the original stochastic foraging model of 

Oaten (1977), but Bayesian optimal foraging models (Green, 1980; McNamara & Houston, 

1985; McNamara, Green, & Olsson, 2006) are probably the easiest to generalize. According 

to these approaches, leaving decisions are made based on the potential value of the patch: 

the optimal leaving time is when the expected rate, not the observed rate, drops below the 

average for the environment (McNamara, 1982). By “expected rate”, we mean an estimate 

based on the forager's belief about how many targets are in the patch and how easy they 

should be to find. These beliefs are updated in a Bayesian fashion as the forager searches for 

targets. For example, suppose that you come across a “garage sale” or “moving sale” where 

someone has an assortment of household items displayed. On first glance, it looks quite 

uninteresting so you decide to forage briefly as your expected rate of return is low. However, 

if you find a surprising treasure, the expected value goes up and you should search longer.

The difference between the MVT and potential value approaches can be illustrated using 

Figure 1. In this graph, time in a patch is shown on the x-axis and targets collected on the y-

axis, and the dotted line shows an individual forager collecting six targets in the patch. Since 

targets are discrete objects, they appear as steps: the width of the step indicates the time 

elapsed between collecting one target and the next. The solid straight line represents this 

forager's average rate of target collection, and according to MVT, the forager should quit 
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searching the patch when their instantaneous rate falls below this average rate. The 

instantaneous rate is one over the time elapsed since collecting the last target, or the slope 

drawn from the corner of the current step to the last one. An MVT forager would use this 

slope to decide when to leave the patch. On the other hand, a potential value forager would 

try to model the average expected rate of target collection, shown by the solid curved line. 

The potential value forager would use the same leaving time threshold – they would quit 

when their current rate fell below the average for the task – but they would use the slope of 

their expected rate (solid curve) instead of their experienced rate (dotted line) to decide if 

their current rate was below that threshold.

Target-present/target-absent search is another example that can illustrate the difference 

between the MVT and potential value approaches (discussed in more detail in McNamara & 

Houston, 1985). In this kind of task, there can only be one target per patch, but not all 

patches have a target, so the forager must either find the target or give up the patch as empty 

and move on (for simplicity, we'll assume that search is random with replacement: the 

forager can't prioritize the locations most likely to have a target or search the entire patch 

exhaustively). A Bayesian forager would start with some initial beliefs about how likely the 

patch was to have a target and update that belief while searching. After every unsuccessful 

search attempt, they would be slightly more inclined to think the patch was empty. The 

optimal forager would leave the patch immediately after finding a target (because at that 

point the patch is guaranteed to be empty and its potential value has become 0), or when the 

likelihood that the patch was empty was so high that the expected rate from staying was 

lower than the expected rate from leaving (exactly where this threshold occurs depends on 

the travel time cost of leaving a patch and traveling to the next one). A forager using a 

simple Marginal Value Theorem approach, on the other hand, would quit the patch when the 

time since last finding a target exceeded the mean rate in the environment. Since the simple 

Marginal Value account would not include the understanding that a present/absent search is 

over when the observer finds the target, this would lead to the clearly incorrect prediction 

that the average target-present trial will actually be slower than the average target-absent 

trial, since even after finding the target, the forager must continue searching the empty patch 

for a length of time equal to the mean time between targets in the environment in order to 

convince themselves that the patch is empty.

In the potential value framework, determining the optimal leaving time in a foraging task 

requires modeling the forager's mental representation of the task. Leaving time is going to 

depend on the potential value of a patch, but potential value can't be measured directly. It is 

based on the forager's current expectations. In turn, those expectations are based on the 

forager's prior beliefs about patch quality, the history of search in the patch, and the actual 

probability of finding or not finding a target on each search attempt. This is easy enough to 

compute for simple cases (e.g., if the patch contains a known number of “items” and these 

are searched in a random-with-replacement fashion), and most of the foraging literature has 

focused on these types of cases (eg, Oaten, 1977; Green, 1984). Cain, Vul, Clark, & Mitroff 

(2012) extended this analysis to the case where there could be a small number of targets 

present in any display. The specific number in a display was drawn from a distribution of 

possible, small numbers of targets and observers changed their behavior in response to the 

manipulation of that distribution. However, as noted above real-world search tasks such as 
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search for objects in scenes are more complex. We can't count the number of items in the 

scene nor do we know how many items are processed in a single fixation. We can be 

reasonably sure that people start the search with some prior on how likely the target is to be 

in the scene. Their search will be guided strategically to probable locations and/or to things 

that share basic features with the target (Wolfe, 2007; Ehinger, et al., 2009).

In this paper, we use data from a novel, satellite imagery search task to motivate a general 

search termination model that can be applied to both guided and random search tasks. We 

assume that people quit searching when their expected rate of target collection drops below a 

threshold. That expected rate is derived from prior beliefs about how many targets are likely 

to be in an image and the observer's sense of how difficult, on average, the search task 

should be. We also assume that people update their expectations during search in a Bayesian 

fashion, decreasing their expectations if the rate of target collection is slower than expected, 

or increasing their expectations if they find targets more quickly than expected.

The Task

In our satellite imagery search task, the targets are gas stations. Gas stations were chosen 

because they are recognizable from above with a little training, most people have some sense 

of where gas stations are most likely to appear in images (e.g., near major roads), and 

ground truth labels to denote which buildings are or are not gas stations are reasonably easy 

to obtain. At the scale at which we are presenting images, the gas stations are very small, so 

participants search each image using a magnifier interface, shown in Figure 2. Since a gas 

station cannot be positively identified without the magnifier, we can use the magnifier as a 

rather literal “spotlight of attention” (Posner, Snyder, & Davidson, 1980); most conveniently, 

a spotlight that we can track. The magnifier allows us to record the locations searched in 

each map and makes it easier to fit the task into a Bayesian optimal foraging framework 

because we know what proportion of the map is captured in each magnified view. Search for 

gas stations in these images is a complex, guided search task similar to search in real-world 

scenes: participants have prior beliefs about the quality of each map or “patch” (e.g., urban 

views should have more gas stations than rural ones) and they can search strategically, using 

their knowledge of what gas stations look like and where they are most likely to occur (e.g. 

more likely at intersections, unlikely in open fields).

In addition to investigating leaving times, we investigated whether different magnification 

interfaces have any effect on search. We compared an interface in which the magnified view 

was shown to the side of the overview map (“side-by-side”) to interfaces in which the 

magnified view appeared in the map, either overlapping the zoom location (“magnifying 

glass”) or just beside it (“offset”). There has been some previous work looking at how 

different magnification interfaces affect visual search. Zhao, et al. (2009) found that people 

were able to complete a word search task more quickly when the magnified view appeared at 

the magnified location in the word search display (equivalent to our “magnifying glass” 

condition) than when it appeared off to the side of the display (as in our “side-by-side” 

condition). However, it is not clear whether these results extend to other types of visual 

search tasks. To anticipate our results, in this experiment, the type of magnifier did not have 

a significant effect on the results.
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Experiment 1

Methods

Participants—Sixty-two people participated in a web-based experiment on Amazon 

Mechanical Turk. Participants were based in the U.S. and had a good track record on the 

Mechanical Turk site (at least 100 HITs completed and an acceptance rate of at least 95%). 

Participants gave informed consent before starting the task. Payment was performance-

based: participants received a base payment of $1 if they found at least 10 gas stations and a 

bonus of $0.10 per gas station for every gas station after the first 10.

Stimuli—The stimuli were fifty satellite view images from Google Maps. The overview 

image was 1000 pixels square with a zoom level of 16, which corresponds to a real-world 

area of about 1.15 square kilometers. Views were chosen from ten US cities (five views per 

city). The magnified view was 200 pixels on each side; within this window the zoom level 

could be increased from level 16 to 19 (8x magnification).

The full overview images contained 0–10 gas station targets. Gas stations were identified by 

searching for “gas station” on each map, and then using Google Maps’ Streetview imagery 

to verify each result. We also manually searched each image to identify gas stations which 

appeared in the map but weren't included in the Google search results.

Design and procedure—Participants were randomly assigned to one of the three 

magnifier conditions: side-by-side, magnifying glass, and offset magnifying glass. At the 

start of the experiment, participants were asked to fill out a short demographic survey and 

were given instructions on the magnifier interface and shown examples of gas station targets. 

Participants were told the maximum number of trials (50) but were not given information 

about the number of targets per trial. The 50 overview images were shown in random order.

On each trial, participants were shown one overview image and asked to find the gas 

stations. The interface for a single trial in each condition is shown in Figure 2. Participants 

could zoom into a part of the image by left-clicking on it. The + and – keys on the keyboard 

were used to increase and decrease the zoom level within the zoom through four possible 

zoom levels: 1x, 2x, 4x, and 8x magnification. The magnifier views could be closed by right-

clicking within the zoom-window. To mark a gas station, participants would center it in the 

zoom window and press the X key on their keyboard. They were then asked to rate their 

confidence that the building was a gas station on a scale from 1–9. The location was then 

marked and participants were given feedback on their choice – a green marker meant that the 

location was a gas station; a red marker meant that it was not. Whenever the participant 

correctly marked a gas station, 10 points were added to a score total shown beside the map; 

this was included so the participant could keep track of how many stations they had found so 

far and how much they would be paid. The map images were served from Google Maps and 

operations such as zooming, recentering, and marking were handled by Google Maps API.

Participants pressed a button to end each trial. At this point, participants were shown any gas 

stations they had missed in the current view. The feedback was intended to help participants 

learn what the targets look like, and to give them an accurate count of the number of gas 
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stations in each previously-seen map so they could learn how many targets to expect in an 

average map in this task. After each trial, the participant had the option to proceed to the 

next trial, or quit the task for now, which would pause the experiment clock. The participant 

could resume the task at a later time, or, if they had found the minimum required number of 

targets, the participant could quit the task entirely, submit their work, and receive their 

bonus. Participants were not required to complete all 50 maps before quitting. There were no 

time limits in the trials, but participants were required to finish the task within 72 hours of 

starting it.

“How many gas stations in this satellite image?” task—To estimate observers’ 

initial expectations for the number of gas stations in each satellite view, we ran a second 

Mechanical Turk task in which we showed each image at the lowest zoom level and asked 

ten workers to guess the number of gas stations in the view without actually searching with 

the magnifier. Workers were told that it was possible for an image to have no gas stations but 

were not given any other range information. Workers were paid $0.01 per image and a $0.02 

bonus for correct guess; they did not receive any feedback about their guesses during the 

task. The worker requirements and consent process for this task were the same as for 

Experiment 1. The averages of the guesses were moderately well correlated with the true 

numbers of targets in these images (by-images correlation: r = 0.55), which confirms that 

untrained participants have reasonable intuitions about the distribution of gas stations in 

these satellite images.

Results and discussion

We dropped 15 trials over 60 minutes in length (one supposes the observers went elsewhere, 

leaving the program running), 86 trials with no clicks recorded, and four trials which had 

recorded click locations incorrectly, leaving 1541 trials. The percentage of trials dropped 

was slightly higher in the side-by-side condition (8% versus 5% in the other two magnifier 

conditions). Some of this difference is due to a single participant in the side-by-side 

condition who had 23 out of 50 trials dropped, and was dropped entirely from the remaining 

analyses. The 61 Mechanical Turk participants contributed 5–50 trials each (mean 24, 

median 22).

We compared search speed and accuracy across the three magnifier conditions in a by-

subjects analysis, shown in Figure 3. Due to the random assignment of conditions and the 

fact that participants were not required to complete all the trials, there were an unequal 

number of participants and trials across the three magnifying conditions: 23 participants 

(535 trials) in the side-by-side condition, 17 participants (487 trials) in the magnifying glass 

condition, and 21 participants (492 trials) in the offset magnifying glass condition. Our 

measures of accuracy across conditions were precision (the proportion of targets found in 

each trial), recall (the proportion of participants “target” marks which were correct), and F-

score (an overall measure of accuracy equal to (2*precision*recall)/(precision+recall)). 

Measures were computed within a trial then averaged across trials for each participant. 

There was no significant difference in the total time per map (F(2,58) = 1.5, p = 0.23), 

number of search clicks per map (F(2,58) = 0.32, p = 0.72), rate of clicks (F(2,58) = 0.13, p 

= 0.88), average recall (F(2,58) = 2.28, p = 0.11), average precision (F(2,58) = 0.27, p = 
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0.76), or F-score (F(2,58) = 0.09, p = 0.92). The significance values did not change when 

only the participants who did more trials (at least 10 or at least 20) were included in the 

analysis. Since the three magnifier conditions did not seem to have any significant effect on 

search in these maps, we collapsed across magnifier conditions for all of the following 

analyses.

Leaving time analysis—First, we looked at whether participants used a giving up time 

(GUT) strategy to decide when to quit searching a map. The time since last finding a target 

serves as a measure of the instantaneous rate of target collection; according to Marginal 

Value Theorem, participants should quit when their rate falls below the average for the 

whole task, or when their time since last target exceeds the average in the task. The average 

for the task is computed as the final total of all targets found divided by the total time 

participants spent in the task. Importantly, this includes the “travel time,” the dead time 

between the final click on one map and the appearance of the next. A plot of the giving up 

times (time between finding the last target and leaving the map) in our study is shown in 

Figure 4. If participants used a giving up time strategy, we would expect these times to be 

clustered around the average time/target in this task, but this is not the case – giving up times 

are quite variable, but generally they are shorter than the average time/target. This means 

that people in this task are not using a simple giving up time strategy: they do not wait until 

their time since last target exceeds the average time/target.

Next, we looked at whether participants used a potential value strategy to decide when to 

leave each map. According to this theory, the optimal time to quit a patch is when the 

expected rate from staying (E1) falls below the expected rate from leaving (E0):

(1)

The expected rate from leaving a patch is the average rate of target collection (targets/time) 

in the task environment. The expected rate from staying in a patch varies with the time spent 

in the patch (t): it's E[X(t)], the expected targets collected at time t, over the total time 

expended, which is the time in the patch (t) plus the travel time to get to that patch (τ).

(2)

The expected targets at time t depends on the initial number of targets and the nature of the 

search task. We use the number of clicks on the map as our unit of “time” (t and τ) rather 

than using a standard measure of time like seconds because it allows us to fit the search task 

more easily into a probabilistic model. This requires converting the travel time between 

maps (τ) from seconds to clicks. Since the average loading time between maps was 5 

seconds and the average inter-click interval during search (averaged over all clicks made in 

the experiment) was 2.5 seconds, we consider travel time τ equivalent to 2 clicks.

In visual search tasks where the target doesn't immediately pop out, it is likely that people 

process only part of the image at a time. This is often described as a series of deployments of 
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attention over the image. Each deployment selects some subset of items to process and to 

compare to some target template (Wolfe, 2007). Extending this kind of model to search in 

natural scenes is difficult, since for purposes of search, it's not clear exactly what constitutes 

an “item” in a scene. It is possible that some groups of objects are processed together as 

single items and it is possible that an item (e.g. a face) might be composed of other items 

(eyes, nose, etc, Wolfe, et al., 2011). Alternatively, one could consider some window around 

the point of fixation as a surrogate for the item. Thus, as people move their attention around 

the scene, they would sample a series of windows rather than items per se. However, 

modeling these from fixations is a difficult problem, since it's not clear how large the 

window should be; it may depend on the specific search task and how difficult the target is 

to see against its background.

In the present task, the magnifier provides a useful surrogate for the item or the window 

around fixation. For the purposes of modeling search in our images, we can use the portion 

of the scene shown in the magnified view as the equivalent of an item. On each search click, 

the participant can see a fixed proportion of the map (1/ω) in the zoomed-in view. Thus, we 

treat that sample as one item from a pool of ω items. (We should note that, in order to 

simplify the model and reduce the number of free parameters, we have assumed that search 

windows have a fixed size and do not overlap. This was not entirely true in our experiment – 

people could change the zoom window size during a trial and sometimes did select 

overlapping regions – but it is much simpler and not dramatically incorrect to assume a 

constant window size throughout.) We can compute what cumulative proportion of the map 

has been searched after each click and how many targets the participant should have found 

assuming various search strategies. For example, if participants were searching the map 

exhaustively from left to right and top to bottom, we could model that as random-without-

replacement selection from a set of ω items and determine E[X(t)] for some initial number 

of targets (N) in the display: E[X(t)] = Nt/ω. If a participant had clicked on half the locations 

(2t = ω), then they would be expected to have found half of the N targets, on average.

However, in our task, people do not search randomly: they prioritize the parts of the image 

that are most likely to be targets. Returning to Figure 2, you would not spend clicks on the 

golf course and you would be unlikely to spend many on the areas that appear to contain 

only residential housing. Since participants guide their attention and their clicks to areas 

deemed most likely to contain gas stations and search those areas first, their expected rate of 

target collection starts out higher and falls off much faster than it would if search were 

simply random.

The exact shape of that function depends on how efficient the search task is. For example, in 

a very efficient “pop-out” search task such as collecting red targets among green distractors, 

people could collect all of the targets immediately: their expected rate would be one target 

per click until the targets were exhausted, at which point their expected rate would fall to 

zero. The gas station search task falls somewhere in between this very efficient, perfectly-

guided search and a random search.

It would be difficult to say, in theory, how efficient gas station search should be, but we can 

estimate it directly from our search data. We assume that people in our task have a way of 
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deciding which sections of the image are most likely to contain targets, and that they 

generally search regions in order from most to least likely, with some noise. We can estimate 

search efficiency by looking at how the number of targets found relates empirically to the 

proportion of the image searched. We divide each image into a 25×25 grid (approximately 

the size of the average zoom window), giving us a surrogate set size of 625 items/regions. 

Next, we make a histogram of all participants’ search clicks on that image, shown 

graphically in Figure 5b, with hotter colors indicating more clicks in that element of the 25 × 

25 grid. It can be seen that, in these images, search clicks cluster along main roads, lined 

with buildings. There is very little search for gas stations in empty fields or near stretches of 

limited-access highway. Now we can take the top N% of grid elements and ask how many 

targets fall in this area. If we sweep from 0% to 100% of the grid, the resulting curve is 

shown in Figure 5c. Figure 5c is the average of these curves across all images. The Y-axis of 

this curve runs from 0 to about 4 gas stations because the average number of gas stations in 

our set of images was about 4. Naturally, there is some variation in search speed across maps 

– gas stations can be found quickly in some, while others require much greater scrutiny – but 

this curve gives the average rate of target collection for this task. From this curve, we can see 

that, even though this is a difficult, slow task, participants were very efficient in terms of the 

proportion of the image scrutinized. Once they had examined about 9% of the map area, on 

average, they would have found 90% of the available gas station targets. This illustrates the 

very ‘guided’ nature of this search task. Participants were able to use their understanding of 

scene context and their knowledge of the rough visual features of the targets to guide their 

search to the buildings most likely to be gas stations.

Knowing the expected rate of target collection allows a forager to choose the optimal time to 

quit a guided search task. It also allows a forager to refine their expectations about the 

number of targets in a patch, since the expected rate also depends on the number of targets in 

the patch. By comparing the actual number of targets collected to the expected collection 

rates for different numbers of targets initially in the patch, a forager can determine what 

target count is most probable.

How the expected rate of target collection varies with the number of targets depends on how 

strongly guided the search is. If search is completely random, the odds of finding a target on 

each click is directly proportional to the number of targets available: if the odds of finding a 

target on the first search click is p in an image with one target, the odds of finding a target on 

the first click in an image with ten targets is 10p. However, this is not quite correct for 

guided search: if the odds of finding a target on the first search click is 95% in an image with 

one target, the odds of finding a target on the first click in an image with 10 targets is higher, 

but it's not 950%. Understanding how the search expectations vary with the number of 

targets in the image requires representing guided search as a signal detection problem.

Let us assume that, when deciding where to click next on each map, participants must make 

a 2-alternative, forced choice decision about whether a region will contain a target or not. 

This decision is based on a “targetness” signal that is computed from local visual features 

that resemble the target and spatial location information that suggests where a target is most 

likely to be present. For example, if the search task is to find blue cars in a parking lot scene, 

then image locations that have blue colors and are in the bottom half of the image (not the 
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sky) are the most likely target locations. This “targetness” signal probably wouldn't be 

perfect for most search tasks. If the signal is thresholded, then search actions (fixations or 

clicks) guided by this “targetness” signal can be classified into hits or false alarms according 

to whether or not they land on a target. For example, in the car search task, the viewer's first 

two fixations might fall on a blue mailbox and a blue car: the former could be considered a 

false alarm and the latter a hit. In fact, we can think of search efficiency as reflecting how 

well target regions and distractor regions (meaning, regions which do not contain a target) 

are separated by the “targetness” signal (Wolfe, 2007). Again, for simplicity, we assume that 

regions do not overlap and either are or are not targets.

We assume that the target regions and distractor regions come from two overlapping normal 

distributions on this “targetness” scale. In an easy guided search task, such as finding a red 

dot among green, these distributions would be very well separated. In a very difficult search 

task, such as identifying cancer in a mammogram, the target and distractor distributions may 

overlap quite a bit – this reflects the difficulty in determining at a glance whether a given 

region in the image contains a target and guiding attention to the most likely regions. Using 

the curve in Figure 5c, we can determine the amount of overlap between targets and 

distractors in our task, and how efficiently people were able to search these scenes. We scale 

this average curve so that the maximum number of targets is 1 so we can treat it as an ROC 

curve. An ROC curve plots the percentage of hits in a two-alternative forced choice task 

against the percentage of false alarms. In this case, we treat every search click that does not 

reveal a target as a false alarm, since we assume that people search these images selectively 

and only click on regions which have a reasonably high probability of containing a target. 

(This broader definition of “false alarm” includes the traditional false alarms – patches that 

the observer clicked and then incorrectly marked as targets – but these are only a small 

percentage of the unsuccessful search clicks. In most cases, the observer could identify a 

distractor patch as a distractor without marking it.) We then fit a binormal function 

(Tourassi, 2012), which generates a theoretical ROC curve for a two-alternative forced 

choice between two normal distibutions. In other words, we treat Figure 5c as the ROC 

curve for human participants who classify regions of satellite images as “target” (contains 

gas station) vs. “distractor” (contains no gas stations). We use a standard ROC fitting 

technique to derive the parameters of the target and distractor distributions used for this task. 

The binormal fit gives parameters α = 3.41 and β = 1.57, which relate to the means and 

standard deviations of the target and distractor distributions as follows:

(3)

The parameter α is equivalent to d’ when the standard deviations of the two groups are the 

same, and the parameter β is the ratio of standard deviations for the two groups. By setting 

the mean of one group to zero and the standard deviation of the other group to 1, α and β 
give the mean and standard deviation of the other group. In this case, we set the target 

distribution to have μ = 0 and σ = β and the distractor distribution to have μ = α and σ = 1. 

Note that this means the target distribution has the lower mean (this is simpler for later 

computations), so the signal used to distinguish targets from distractors can be thought of as 
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a “distractor-ness” signal: image regions with lower values are more likely to be targets, and 

a guided search for targets would proceed from the lowest-ranked regions to the highest (left 

to right in Figure 6).

Given these parameters, we can predict the search curve for a display with any number of 

targets. We scale the target and distractor distributions according to the number of targets N: 

the target distribution has area N, and the distractor distribution has area (ω-N). We define 

the number of “items” or samples in the display (ω) by the size of the average zoom 

window. In our experiment, the average zoom level was 5.29x, which was about 1/606 the 

area of the map (note that since 606 is not a square number, we rounded to the nearest 

square number, 625, when building the grid in the previous step). We can model the guided 

search process as sampling image regions from these overlapping distributions, in order, 

from most target-like to least target-like (left-to-right in Figure 6). The expected targets at a 

given sample t is the cumulative area under the target distribution function at the point where 

the total cumulative area under both distributions is t. We denote this point as γt. This 

cumulative area represents the likelihood of collecting targets rather than distractors: the 

more well-separated the two distributions, the more targets should be collected in the earliest 

stages of the search. The formula for this is as follows (Φ represents the cumulative 

distribution function of the standard normal distribution):

(4)

The value γt can be calculated numerically from:

(5)

The expected targets, and therefore the expected rate, depends on the initial number of 

targets in the patch (N): regardless of search efficiency, if there are more targets available, 

more of them should be found at each point in the search. In our task, searchers don't know 

how many targets there will be in each patch, so we treat N as a probability distribution over 

possible numbers of targets:

(6)

We use the responses from the “How many gas stations” guessing task as the prior p(N). We 

make a histogram of the responses, smooth it with a Gaussian with std. dev. 1.5, truncate it 

at nmax and normalize it so it sums to 1. We arbitrarily chose a value of 20 for nmax (17 was 

the highest target count guess for any map).

Equation 6 could be used to compute the expected rate in the patch at any sample t, 

assuming that the prior p(N) doesn't change as the forager searches the patch. This might be 
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true for certain tasks where the forager knows or can accurately guess the number of targets 

in a patch before searching it, but it probably isn't true in this task because participants start 

with only a rough idea of the number of gas stations in each map. A smart searcher should 

update that estimate on the basis of their experience searching the map. Therefore, we use a 

Bayesian updating step to determine the probability on the number of targets at sample t, 

p(N(t)=n), based on the observed search result obs, a binary variable that represents whether 

or not the searched location is a target. The posterior probability on N (meaning: the updated 

beliefs about the true initial number of targets) comes from Bayes’ Rule: it's the probability 

on N from the previous sample times the likelihood of the search result for a given number 

of targets:

(7)

The likelihood of the search result can be determined from the target and distractor 

distributions described previously. Suppose the summed distribution is divided into ω 
samples, each with area equal to 1. To determine the odds of finding a target on a given 

sample t, we look at the area under the distribution between γt-1 and γt (the cumulative 

distribution between sample t and sample t-1, computed from Eq. 5). The probability of 

finding a target on sample t is the area under the target distribution within this window, and 

the probability of not finding a target is 1 minus this value.

(8)

(9)

Finally, the threshold leaving time E0 is estimated from our data: it's the total targets over 

total clicks, average for each participant. Since we measure time in the map by search clicks, 

we also need to specify the travel time between maps in clicks. As noted above, we use a 

travel time of 2 clicks.

To summarize, the potential value model assumes that people make their decision to quit 

based on how many targets they believe are in an image and how quickly they should be able 

to find them. While searching, they update these beliefs in a Bayesian fashion, so for 

example, if targets are harder to find than expected, people may conclude that the image 

contains fewer targets than they initially thought. People use their beliefs about the number 

of targets available and the expected search efficiency to determine their expected rate of 

target collection in that image, and when that expected rate falls below the average rate for 

the task, they quit searching and move on to the next image.

In our model, the prior on the number of targets in each image and the expected search 

efficiency are set for each image. On each trial, we use the image priors and an individual 
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participant's search history – how many targets were found and the time taken to find them – 

to estimate the participant's expected rate when quitting that trial. That search history is the 

only individual participant data used in the model; all other parameters are constants, or 

constant for a particular image (e.g., the prior on the number of targets in that image). We 

compare the predictions of this full model to the predictions of MVT, which says that 

participants quit when their instantaneous rate, based on the time since collecting the last 

target, falls below the average rate. For each participant on each trial, we find the 

instantaneous rate upon quitting the trial by taking one over the time elapsed since finding 

the last target (1/GUT). Like the potential value model, MVT uses the individual 

participant's search history in a single trial to compute leaving times, but unlike the potential 

value model, it only considers the last target collected. Finally, we compare the full potential 

value model to a “prior-only” version which uses the prior on the number of targets in each 

image and the expected search efficiency, but does not update these beliefs based on the 

participant's search history. On each trial, this model estimates the participant's expected rate 

based on image priors alone without using any information about the participant's search 

history on that trial.

The comparison of the three models is shown in Figure 7. Each panel in Figure 7 plots the 

median instantaneous or expected rate when leaving a map against the average target 

collection rate for each participant in Experiment 1. The instantaneous rate, measured as 

1/GUT in Figure 7a, is not a bad predictor of leaving time in the sense that that the median 

rate when leaving the map is correlated with the average rate (r = 0.67, p < 0.01). However, 

the prediction, while correlated, is not accurate. The values are quite variable and 

instantaneous rates are virtually always higher than the average rates. Thus, this model fails 

because people are leaving before the instantaneous rate drops to the average rate, against 

the prediction of a standard Marginal Value account.

Figures 7b and 7c show results for two models based on the potential value theorem. 

According to the potential value theorem, people should leave a map when their expected 
rate of target collection falls to the average rate. Figure 7b shows a “prior-only” model that 

only uses the prior on the number of targets (from the guessing task) to predict the expected 

rate in the map (Eq. 6). Figure 7c shows the “full model” which uses participants’ search 

results to update beliefs about the number of targets after each click on the map (Eq. 7–9). 

The expected rate, as computed by the “prior only” model is less well correlated with the 

average rate than the marginal value model (r = 0.56, p < 0.01), which suggests this model is 

a poorer predictor of when participants will leave an image. The full model, however, seems 

to predict leaving times rather well: the median rate is well correlated with the participant's 

average rate (r = 0.82, p < 0.01). This means that, in general, participants leave a map when 

their expected rate (based on their prior beliefs about the map and their search experience) 

falls to their average rate, as predicted by potential value theorem.

Comparisons of the median leaving rate versus average rate from the three models are shown 

in Table 1. Mean difference is computed by taking the difference between the model's 

leaving rate and average rate (predicted – observed) for each participant. The mean and 

highest density intervals for this distribution are computed using Bayesian estimation 

(BEST) with the methods and default parameters described by Kruschke (2013). All of the 
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models have mean differences significantly above zero (the 95% highest density interval of 

the mean does not include zero), but the full model has the lowest mean difference. Planned 

comparisons using 1-group BEST show that the mean difference for GUT is significantly 

higher than the mean difference for the full model (estimated mean difference = 0.0233, 

95% highest density interval (HDI) = [0.0158, 0.0315]) and the mean difference for the 

prior-only model is significantly higher than the mean difference for the full model 

(estimated mean difference = 0.0332, 95% HDI = [0.0239, 0.0404]). The mean difference 

for the prior-only model is higher than the mean difference for GUT (estimated mean 

difference = 0.0047, 95% HDI = [0.000523 0.00884]).

We also used linear regression to predict the average leaving times from the median 

instantaneous or expected rates. This analysis does not assume that leaving rates should 

exactly match average rates, but it does assume they should be consistently, linearly related 

(for example, participants might leave when their rate is half the average). Akaike 

information criterion (AIC) for each model is given in Table 1. This is a measure of model 

fit; lower values indicate a more probable model. The relative likelihood can be used to 

determine the significance of a difference between two models’ AIC: relative likelihood 

indicates the probability that the model with lower AIC is actually better than a model with 

higher AIC. Relative likelihood is computed as exp((AIC2 – AIC1)/2), where AIC1 is the 

lower AIC value. The GUT model is a significantly better fit to the data than the prior-only 

model: the relative likelihood of GUT compared to the prior-only model is 4,722. However, 

the full model is a significantly better fit than either of these models: the relative likelihood 

of the full model compared to GUT is 2.1E+8 and the relative likelihood of the full model 

compared to the prior-only model is 1.0E+12.

Experiment 2

In Experiment 1, participants were not required to complete all of the maps and could quit 

the task whenever they wanted. We wished to determine if this freedom would produce 

different behavior from a version of the experiment where one was required to complete a 

fixed number of maps. Thus, Experiment 2 was a replication of Experiment 1 in which we 

equalized the number of trials per subject and number of subjects per condition. Each 

participant viewed exactly 24 maps and all participants viewed the same 24 maps. In order 

to test the generality of our model, the parameters, derived in Experiment 1, were used to 

model performance in Experiment 2.

Method

Participants—36 people participated in Experiment 2 on Amazon Mechanical Turk; none 

had participated in Experiment 1. The participant requirements and consent procedure were 

identical to Experiment 1. In Experiment 2, subjects received a base payment of $6.00 for 

finding at least 30 gas stations and a bonus of $0.20 for each gas station after the first 30.

Stimuli—24 of the 50 maps from Experiment 1 were used in Experiment 2. The maps were 

selected to give a more uniform distribution of target counts: 1, 2, 3, 4, 5, 6, 7, or 9 targets 

(three maps of each type).
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Design and procedure—The viewing conditions, map interface, and search task 

procedure were identical to Experiment 1, except that we did not ask participants to give 

confidence ratings after marking potential targets. Participants were randomly assigned to 

one of the three viewing conditions (8 participants per condition), and all participants were 

required to search all 24 maps.

Results and discussion

We dropped 13 trials over 60 minutes in length and 34 trials with no clicks recorded, leaving 

817 trials. Most (83%) of these dropped trials were from participants in the magnifying glass 

condition, but there were no outlier participants with an unusually high number of dropped 

trials. As in Experiment 1, we compared the three magnifier conditions in a by-subjects 

analysis, shown in Figure 8. There was no significant difference in the total time per map 

(F(2,33) = 1.79, p = 0.18), number of search clicks per map (F(2,33) = 0.53, p = 0.59), rate 

of clicks (F(2,33) = 1.44, p = 0.25), average recall (F(2,33) = 1.65, p = 0.21), average 

precision (F(2,33) = 1.50, p = 0.23), or F-score (F(2,33) = 1.26, p = 0.30). This replicates 

our non-significant findings from Experiment 1: the different magnifying interfaces do not 

seem to affect search in this task.

To investigate leaving times in this task, we used the model described in Experiment 1. We 

kept all of the model parameter values (ω, α, β, τ) that we had computed from the 

Experiment 1 data, but used them to predict the search behavior observed in Experiment 2. 

As in Figure 7, Figure 9 shows the three different calculations of the median rate when 

quitting a map plotted against the average rate for each participant in Experiment 2. As in 

Experiment 1, instantaneous rate (1/GUT) was least well-correlated with average rate (r = 

0.81, p < 0.01). Expected rate from Priors Only was better correlated (r = 0.85, p < 0.01), 

but, like the 1/GUT measure, the Priors Only measure predicts that observers will leave a 

map sooner than is the case. The expected rate based on priors and search experience was 

very well correlated with the average rate (r = 0.93, p < 0.01). Mean difference and AIC for 

each model are given in Table 2. Planned comparisons using 1-group BEST show that the 

mean difference for GUT is significantly higher than the mean difference for the prior-only 

model (estimated mean difference = 0.057, 95% HDI = [0.0287, 0.0845]) and the mean 

difference for the prior-only model is significantly higher than the mean difference for the 

full model (estimated mean difference = 0.021, 95% HDI = [0.0152, 0.0274]). Comparing 

AIC values shows that the relative likelihood of the prior-only model compared to GUT is 

8.4, so these models may not be significantly different (Burnham, Anderson, & Huyvaert, 

2011). The relative likelihood of the full model compared to GUT is 6.6E+10 and the 

relative likelihood of the full model compared to the prior-only model is 7.9E+9, so the full 

model does seem be a significantly better fit than the other two models.

As in Experiment 1, if we assume that people compute expected rate using both prior beliefs 

about the map and their experience when searching the map, then their decision on when to 

quit each trial in this task appears to follow an optimal foraging strategy: They quit when 

their expected rate of target collection on a map falls to the average rate.
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General discussion

We investigated foraging behavior in a task where people used a magnifier interface to 

search for gas stations in large satellite images and found that quitting times were well 

predicted by a potential value version of the optimal foraging model. This model predicts 

that a rate-maximizing forager should leave a patch when the expected rate of target 

collection in the patch falls below the average rate of target collection for the environment. 

The expected rate of target collection can't be directly observed by the forager. Foragers 

must estimate this rate based on their beliefs about the likely number of targets in the patch 

and the rate at which they should be able to find them. Modeling these beliefs in simple, 

random search tasks is straightforward, so most previous work has focused on this type of 

search. Here we show that the same models can be extended to a highly guided search task 

where people do not search randomly but prioritize regions or objects most likely to be 

targets.

We describe two methods for estimating the expected rate in a patch. In both cases, we 

assume that people have some prior expectations about how many targets will be present in 

an image. In the “Prior Only” model, we assume that people only use this prior and average 

search curve, which gives them an estimate of how quickly they should be able to find 

targets in the image. Across our experiments, this approach performs about as well as the 

Marginal Value approach, which assumes that leaving times are based on the time since last 

finding a target. Like the Marginal Value account, the leaving times estimated according to 

the Prior Only account are quite variable and generally come earlier than would be predicted 

by optimal foraging. Our full model assumes that people also update their beliefs about the 

number of targets in a display as they search. Finding targets convinces them that a display 

is more target-rich than expected, and not finding targets convinces them that the display is 

poor. This model predicts people's leaving times quite well, which suggests that people are 

combining all three sources of information (prior expectations, average search efficiency, 

and their own current search results) to decide when to quit searching the images in this task.

One concern with this task, and many other foraging experiments, is that we can't be certain 

what the participants were trying to maximize, so it's not clear what the “optimal” strategy 

would be. A participant who is trying to find all of the targets, for example, would have a 

different threshold for quitting a map than one who is trying to maximize the rate of target 

collection. These experiments were run on Amazon's Mechanical Turk, a site where people 

do short computer-based tasks for money. It seems likely that the average worker on the site 

is trying to maximize his or her hourly wage, which in our task would mean maximizing the 

rate of target collection. That said, there are many reasons why a worker might do something 

non-optimal in this kind of task. Participants may have their own subjective cost functions 

which includes factors other than hourly wage: for example, they might keep searching a 

map longer than “optimal” because they really dislike missing targets, or because they enjoy 

doing the task for its own sake. (About 40% of our participants left us feedback about the 

task and, perhaps surprisingly, the majority described it as “fun” or “enjoyable.”) It's also 

important to note that, since the number of maps in our task was limited, workers weren't 

only making a choice between continuing to search the current map or moving on to the next 

map. To some extent, they were trading off time on the current map for time they could 
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spend on another Mechanical Turk task. So the true threshold for a wage-optimizing worker 

is actually the average rate of pay on the Mechanical Turk site as a whole (which is difficult 

to determine, but probably similar to the average rate of pay in our task).

Although this study focuses on a task with multiple targets, the potential value approach is 

also applicable to standard search tasks where there is only one target that is either present or 

absent. In the standard case where targets are randomly present on half of trials and there are 

no image priors to guide search, the potential value model prediction is similar to other 

models of quitting time in search: people should give up the search once their belief that a 

target is present (and the expected rate is greater than zero) falls below a threshold. This 

giving up time would depend on the expected search efficiency, so it would be longer for 

more difficult searches. In cases where there are different priors on target presence for 

different images (for example, search for real objects in natural scenes), the potential value 

model would generally predict longer search in images with higher priors.

One place where the potential value model may be useful is in modeling prevalence effects 

in search. Previous work has show that when search targets are uncommon, they are more 

likely to be missed (Wolfe & Horowitz, 2007). In a potential value model, that means that 

the prior on target presence is low, and people may be able to decide that an image is target-

absent with less search evidence than they would need to make the same decision when 

targets are more common. However, the current study did not include any extreme 

manipulations of target prevalence, so further research would be needed to determine 

whether this is the case.

In addition to looking at foraging behavior in this task, we also examined the effect of 

different magnification interfaces. We found that the task interface had no significant effect 

on search performance, contrary to a previous study (Zhao, et al., 2009) which showed that 

an embedded magnifier is easier to use than one which shows a zoomed-in view off to the 

side. However, the search task in their study was very different: they used a word search 

while we looked at search in natural images. Our scenes had a coherent structure with many 

landmark features such as roads and rivers which probably helped searchers navigate 

through the images and keep track of what areas they had already searched. We also used a 

large, salient footprint in the overview map to help users keep track of the zoom window's 

location in the side-by-side condition, a feature which the Zhao, et al. (2009) interface didn't 

include. This may have made the side-by-side magnifier easier to use so that it was not 

significantly worse than the embedded magnifiers.

The requirement to use the magnifier to confirm the presence of a target provides a novel 

way to look at guidance in a complex, extended search task. The method works because 

there is enough information in the scene to guide attention but not enough to identify the 

target. This method could be used studies of other complex search stimuli, giving us new 

insight into the way that our knowledge interacts with a stimulus in order to make search 

reasonably efficient.

Acknowledgements

This work was funded by a National Geospatial Agency grant to J. M. W.

Ehinger and Wolfe Page 19

Atten Percept Psychophys. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Balas B, Nakano L, Rosenholtz R. A summary-statistic representation in peripheral vision explains 
visual crowding. Journal of Vision. 2009; 9(12):1–18.

Bergen JR, Julesz B. Rapid discrimination of visual patterns. IEEE Transactions on Systems, Man and 
Cybernetics. 1983; 13:857–863.

Burnham KP, Anderson DR, Huyvaert KP. AIC model selection and multimodel inference in 
behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and 
Sociobiology. 2011; 65:23–35.

Cain MS, Vul E, Clark K, Mitroff SR. A Bayesian optimal foraging model of human visual search. 
Psychological Science. 2012; 23(9):1047–1054. [PubMed: 22868494] 

Chan LKH, Hayward WG. Visual search. Wiley Interdisciplinary Reviews: Cognitive Science. 2013; 
4(4):415–429. [PubMed: 26304227] 

Charnov E. Optimal foraging, the marginal value theorem. Theoretical Population Biology. 1976; 9(2):
129–136. [PubMed: 1273796] 

Chun MM, Wolfe JM. Just say no: How are visual searches terminated when there is no target present? 
Cognitive Psychology. 1996; 30(1):39–78. [PubMed: 8635311] 

Cousineau D, Shiffrin RM. Termination of a visual search with large display size effects. Spatial 
Vision. 2004; 17(4):327–352. [PubMed: 15559108] 

Duncan J, Humphreys GW. Visual search and stimulus similarity. Psychological Review. 1989; 96(3):
433–458. [PubMed: 2756067] 

Egeth HE, Jonides J, Wall S. Parallel processing of multielement displays. Cognitive Psychology. 
1972; 3:674–698.

Egeth HE, Virzi RA, Garbart H. Searching for conjuctively defined targets. Journal of Experimental 
Psychology: Human Perception & Performance. 1984; 10(1):32–39. [PubMed: 6242762] 

Ehinger KA, Hidalgo-Sotelo B, Torralba A, Oliva A. Modeling search for people in 900 scenes: A 
combined source model of eye guidance. Visual Cognition. 2009; 17:945–978. [PubMed: 
20011676] 

Green RF. Bayesian birds: A simple example of Oaten's stochastic model of optimal foraging. 
Theoretical Population Biology. 1980; 18:244–256.

Green RF. Stopping rules for optimal foragers. The American Naturalist. 1984; 123(1):30–43.

Hills TT, Todd PM, Jones MN. Foraging in semantic fields: How we search through memory. Topics in 
Cognitive Science. 2015; 7(3):513–534. [PubMed: 26097107] 

Krebs JR, Ryan JC, Charnov EL. Hunting by expectation or optimal foraging? A study of patch use by 
chickadees. Animal Behaviour. 1974; 22:953–964.

Kundel HL, La Follette PS Jr. Visual search patterns and experience with radiological images. 
Radiology. 1972; 103(3):523–528. [PubMed: 5022947] 

Kwak HW, Dagenbach D, Egeth H. Further evidence for a time-independent shift of the focus of 
attention. Perception & Psychophysics. 1991; 49:473–480. [PubMed: 2057313] 

McNamara J. Optimal patch use in a stochastic environment. Theoretical Population Biology. 1982; 
21:269–288.

McNamara J, Green RF, Olsson O. Bayes' theorem and its applications in animal behaviour. Oikos. 
2006; 112:243–251.

McNamara J, Houston A. A simple model of information use in the exploitation of patchily distributed 
food. Animal Behaviour. 1985; 33:553–560.

Moran R, Zehetleitner MH, Müller H, Usher M. Competitive guided search: Meeting the challenge of 
benchmark RT distributions. Journal of Vision. 2013; 13(8):1–31.

Neider MB, Zelinsky GJ. Exploring set-size effects in scenes: Identifying the objects of search. Visual 
Cognition. 2008; 16(1):1–10.

Oaten A. Optimal foraging in patches: A case for stochasticity. Theoretical Population Biology. 1977; 
12:263–285. [PubMed: 564087] 

Pirolli P, Card SK. Information foraging. Psychological Review. 1999; 106(4):643–675.

Ehinger and Wolfe Page 20

Atten Percept Psychophys. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Posner MI, Snyder CRR, Davidson BJ. Attention and the detection of signals. Journal of Experimental 
Psychology: General. 1980; 109(20):160–174.

Stephens DW, Krebs JR. Foraging Theory. Princeton: Princeton University Press. 1986

Stephens, DW.; Brown, JS.; Ydenberg, RC. Foraging: Behavior and Ecology. University of Chicago 
Press; Chicago: 2007. 

Torralba A, Oliva A, Castelhano MS, Henderson JM. Contextual guidance of eye movements and 
attention in real-world scenes: the role of global features in object search. Psychological Review. 
2006; 113(4):766. [PubMed: 17014302] 

Tourassi, G. ROC analysis: basic concepts and practical applications.. In: Ehsan, S.; Krupinski, E., 
editors. The Handbook of Medical Image Perception and Techniques. Cambridge University Press; 
New York: 2012. p. 187-203.

Wolfe JM. Guided Search 2.0: A Revised Model of Visual Search. Psychonomic Bulletin & Review. 
1994; 1(2):202–238. [PubMed: 24203471] 

Wolfe JM. Moving towards solutions to some enduring controversies in visual search. Trends in 
Cognitive Sciences. 2003; 7(2):70–76. [PubMed: 12584025] 

Wolfe, JM. Guided search 4.0: Current progress with a model of visual search.. In: Gray, W., editor. 
Integrated Models of Cognitive Systems. Oxford; New York: 2007. p. 99-119.

Wolfe JM. When do I quit? The search termination problem in visual search. Nebraska Symposium on 
Motivation. 2012; 59:183–208. [PubMed: 23437634] 

Wolfe JM. When is it time to move to the next raspberry bush? Foraging rules in human visual search. 
Journal of Vision. 2013; 13(3):1–17.

Wolfe JM, Alvarez GA, Rosenholtz RE, Kuzmova YI. Visual search for arbitrary objects in real 
scenes. Attention, Perception, & Psychophysics. 2011; 73:1650–1671.

Wolfe JM, Cave KR, Franzel SL. Guided Search: An Alternative to the Feature Integration Model for 
Visual Search. Journal of Experimental Psychology: Human Perception and Performance. 1989; 
15(3):419–433. [PubMed: 2527952] 

Wolfe JM, Horowitz TS. What attributes guide the deployment of visual attention and how do they do 
it? Nature Reviews Neuroscience. 2004; 5:1–7.

Wolfe JM, Horowitz TS. Low target prevalence is a stubborn source of errors in visual search tasks. 
The Journal of Experimental Psychology: General. 2007; 136(4):623–638. [PubMed: 17999575] 

Wolfe JM, Horowitz TS, Palmer EM. Reaction time distributions constrain models of visual search. 
Vision Research. 2010; 50(14):1304–1311. [PubMed: 19895828] 

Wooding DS, Roberts GM, Phillips-Hughes J. Development of the eye-movement response in the 
trainee radiologist. Image perception and performance. Proc. SPIE Medical Imaging. 1999; 
3663:136–145.

Zhao Z, Rau P-LP, Zhang T, Salvendy G. Visual search-based design and evaluation of screen 
magnifiers for older and visually impaired users. International Journal of Human-Computer 
Studies. 2009; 67:663–675.

Ehinger and Wolfe Page 21

Atten Percept Psychophys. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Illustration of optimal foraging theory. The solid line represents an idealized forager's intake 

over time. During the “travel time” period, the forager is moving to the patch, and intake is 

zero. Once arriving in the patch (“foraging time”), intake increases rapidly at first, then 

gradually declines as the patch is exhausted. If the goal is to maximize rate of target 

collection, the optimal time to leave the patch is when the intake rate falls to the average in 

the environment (bold diagonal line); this is the point where the intake curve is tangent to 

the average rate. But a forager doesn't actually experience this solid-line curve while 

foraging in a single patch: instead, they collect discrete targets at random intervals, as 

represented by the dotted line. An optimal forager must infer the expected rate (solid line) 

and optimal leaving time from their experienced rate (dotted line) and expectations about the 

patch.
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Figure 2. 
Interface and stimuli for the search task. (a), (b), and (c) show the three magnification 

interfaces used for the task. (d) shows a section of the overview map, slightly zoomed in for 

illustration purposes. There are two gas stations in this section of the map. Map imagery © 

Google, Digital Globe.
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Figure 3. 
Comparison of search performance in the three magnification conditions in Experiment 1. 

Differences are not significant. Error bars show standard error of the mean.
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Figure 4. 
Boxplots of time between finding the last target and quitting a trial (“Giving Up Time”) for 

each participant in Experiment 1. According to MVT, people should quit when this time 

reaches their average time between targets, indicated by the solid line. The median leaving 

times (black dots) for most participants are below the average, which means participants 

generally quit trials earlier than they should according to MVT.
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Figure 5. 
Estimating the rate of target collection in the map search task. (a) Two example maps, red 

markers indicate gas stations. (b) Heatmaps showing the distribution of search clicks in these 

maps, averaged over all subjects. Pixels colored red are areas that were searched most 

frequently; dark blue areas were search least frequently. (c) Cumulative targets per area of 

the map searched, assuming search from most-frequent to least-frequent locations, averaged 

over maps with at least one target. The solid line is the empirical curve from the heatmaps in 

(b); the dotted line is the fitted curve used in modeling. Map imagery © Google, Digital 

Globe and Orbis, Inc.
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Figure 6. 
Signal detection model for guided search. We assume that people have a priority map of the 

image in which regions are ranked from most likely to contain targets to least likely to 

contain targets (x-axis). Search involves sampling these regions in order from most to least 

likely. The distributions represent the likelihood that a region is actually a target or 

distractor. The area under the target curve is the number of image patches which contain 

targets, and the area under the distractor curve is the number of patches in the image without 

targets. The expected number of targets after searching a given number of patches (t) can be 

determined by finding the point on the x-axis where the sum of the cumulative distributions 

(shaded area) equals t (we call this point γt) and taking the cumulative distribution of the 

target curve up to that point (green shaded area).
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Figure 7. 
Plots of participants’ median rate when quitting trials vs. their average rates in Experiment 1, 

for various models. Each diamond represents a participant, with color coding the number of 

maps that participant completed (out of 50). The dotted line indicates the identity (1:1) line: 

if participants left the patch when their expected rate was exactly the average rate, then all 

points would lie along this line. Dashed lines are the best linear fit to the data; R2 for each fit 

is given on the graph.
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Figure 8. 
Comparison of the three magnification conditions in Experiment 2. Differences are not 

significant. (Although the side-by-side condition seems to have a much slower click rate 

than the other conditions, this is due to a single outlier participant.) Error bars show standard 

error of the mean.
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Figure 9. 
Plots of participants’ median rate when quitting trials vs. their average rates in Experiment 2, 

for various models. The dotted line indicates the identity (1:1) line: if participants left the 

patch when their expected rate was exactly the average rate, then all dots would lie along 

this line. Dashed lines are the best linear fit to the data; R2 for each fit is given on the graph.
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Table 1

Model comparison

Model Mean difference (95% HDI) AIC

Instantaneous rate (1/GUT) 0.0242 (0.0163, 0.033) −358.84

Expected rate from prior only 0.0313 (0.0233, 0.0392) −341.92

Expected rate from full model 0.00091 (0.0001, 0.0019) −397.21
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Table 2

Model comparison

Model Mean difference (95% HDI) AIC

Instantaneous rate (1/GUT) 0.0861 (0.0563, 0.117) −222.42

Expected rate from prior only 0.0300 (0.0221, 0.0377) −226.67

Expected rate from full model 0.00826 (0.00566, 0.0107) −272.26
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