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Abstract

Background and Objectives—Obesity is a global epidemic which increases the risk of the 

metabolic syndrome. Cathelicidin (LL-37 and mCRAMP) is an antimicrobial peptide with an 

unknown role in obesity. We hypothesize that cathelicidin expression correlates with obesity and 

modulates fat mass and hepatic steatosis.

Materials and Methods—Male C57BL/6J mice were fed a high-fat diet. Streptozotocin was 

injected into mice to induce diabetes. Experimental groups were injected with cathelicidin and 

CD36 overexpressing lentiviruses. Human mesenteric fat adipocytes, mouse 3T3-L1 differentiated 
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adipocytes, and human HepG2 hepatocytes were used in the in vitro experiments. Cathelicidin 

levels in non-diabetic, prediabetic, and Type II diabetic patients were measured by ELISA.

Results—Lentiviral cathelicidin overexpression reduced hepatic steatosis and decreased the fat 

mass of high-fat diet-treated diabetic mice. Cathelicidin overexpression reduced mesenteric fat and 

hepatic fatty acid translocase (CD36) expression that was reversed by lentiviral CD36 

overexpression. Exposure of adipocytes and hepatocytes to cathelicidin significantly inhibited 

CD36 expression and reduced lipid accumulation. Serum cathelicidin protein levels were 

significantly increased in non-diabetic and prediabetic patients with obesity, compared to non-

diabetic patients with normal body mass index (BMI) values. Prediabetic patients had lower serum 

cathelicidin protein levels than non-diabetic subjects.

Conclusions—Cathelicidin inhibits the CD36 fat receptor and lipid accumulation in adipocytes 

and hepatocytes, leading to a reduction of fat mass and hepatic steatosis in vivo. Circulating 

cathelicidin levels are associated with increased BMI. Our results demonstrate that cathelicidin 

modulates the development of obesity.

Introduction

Obesity is a national health epidemic in the United States. The Centers for Disease Control 

and Prevention (CDC) reported that more than one-third of US adults and 17% of US 

children and adolescents are obese1. Obesity is associated with heart disease, stroke, Type II 

diabetes, and cancer 2. In the presence of obesity, many organs such as adipose tissues and 

liver produce inflammatory mediators 3. These inflammatory mediators are implicated in the 

development of type II diabetes and other diseases 4, 5.

Cathelicidin belongs to a family of endogenous peptides (LL-37 in humans and mCRAMP 

in mice) with potent antimicrobial and anti-inflammatory effects6. However, the involvement 

of cathelicidin in obesity has not been studied extensively. Previous studies reported that 

peripheral blood cathelicidin mRNA is reduced in patients with Type II diabetes, and 

biopsies of diabetic foot ulcers in patients show either very low or no LL-37 expression 

relative to healthy skin78. Similarly, in animal studies Otsuka Long-Evan Tokushima Fatty 

rats develop long-term hyperglycemia when cathelicidin gene expression is impaired9. Also, 

LL-37 expressing adenoviruses improved re-epithelialization of excisional wounds in ob/ob 
mice10.

Non-alcoholic fatty liver disease (NAFLD), also known as hepatic steatosis, is becoming a 

significant problem in the United States, affecting about 20% of the population11. In the 

early stages, hepatic steatosis is mostly asymptomatic. However, without treatment, hepatic 

steatosis can progress to nonalcoholic steatohepatitis (NASH), which is characterized by 

inflammation and liver damage12. In severe cases, untreated NASH can eventually lead to 

cirrhosis and permanent liver damage 13. Most end-stage severe fatty liver disease patients 

will require liver transplantation14. Since none of the subjects in our study had a diagnosis of 

NAFLD stated in their medical records, we are currently not able to determine whether 

serum LL-37 levels are associated with the fatty liver disease.

Tran et al. Page 2

Int J Obes (Lond). Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Based on these findings, we hypothesize that a link between cathelicidin expression and 

obesity may exist. We have determined the role of systemic cathelicidin expression in the 

modulation of fat mass in obese and streptozotocin-induced diabetic mice using lentiviral 

vectors. We also have identified a molecular target that appears to mediate the effect of 

cathelicidin in obesity. Also, we have found a correlation between serum LL-37 levels and 

the BMI of non-diabetic and prediabetic patients.

Materials and Methods

Cell culture of mouse 3T3-L1 preadipocytes and differentiation to adipocytes

Mouse 3T3-L1 preadipocytes (#CL-173) were puchased from American Type Culture 

Collection (ATCC, Manassas, VA) and immediately cultured in Dulbecco's modified Eagle's 

medium (DMEM) #11965-084 (Life Technologies, Grand Island, NY) with 10% fetal 

bovine serum (FBS) #10437-028 (Life Technologies) and 1% penicillin/streptomycin/

glutamine (P/S/G) #10378-016 (Life Technologies) mixture upon arrival. To differentiate the 

preadipocytes, 3T3-L1 cells were grown to 60% confluence and changed to DMEM (with 

1% P/S/G) media with 10% calf serum #16170-078 (Life Technologies) for 48 hours. 

Differentiation was initiated by incubation with induction media containing DMEM with 

FBS, P/S/G, bovine insulin (I-5500; 1 μg/mL, Sigma, St. Louis, MO), dexamethasone 

(Sigma D-4902; 1 μM) and isobutylmethylxanthine (IBMX; Sigma I-5500; 115 μg/mL) for 

48 hours. The cells were then further incubated with insulin media containing DMEM with 

FBS, P/S/G and insulin (1 microg/mL) for another 48-72 hours. When the cell confluence 

reached 90%, 3T3-L1 cells were serum-starved overnight followed by treatment with 

cathelicidin and/or other reagents to study the role of cathelicidin in lipid accumulation.

Human mesenteric fat acquisition, isolation of human mesenteric fat preadipocytes and 
differentiation to adipocytes

Human mesenteric fat tissues were resected during gastrointestinal surgery for the 

management of gastrointestinal diseases from subjects who had given informed consent. The 

tissues were obtained from Cedars-Sinai Inflammatory Bowel and Immunobiology Research 

Institute ‘MIRIAD' Tissue Repository under Cedars-Sinai IRB #3358 and #23705 and 

UCLA IRB #11-001527. Subjects with malignancies were excluded to avoid contamination 

of the cultures by the malignant cells. Subjects ranged from 42–53 years old, and their mean 

body mass index was 49 ± 8.7 kg/m2. Preadipocyte isolation and culture was performed as 

previously described15. The tissue was homogenized, the homogenates were centrifuged (10 

minutes at 1200 rpm), and the pellets were resuspended in erythrocyte lysis buffer and 

placed in a 37°C shaking water bath before re-centrifugation as above. Pellets were 

resuspended in plating medium and vortexed, and cells were then plated. After 24 h, the 

cells were trypsinized and centrifuged, the supernatants were aspirated, and the cells were 

resuspended in plating medium and counted before plating. The cells were incubated at 

37°C until they reached confluence16. At full confluence, differentiation medium was added 

to the cells and replaced every 48 hours. After four weeks, the level of differentiation was 

determined as previously described17. The authenticity of adipocytes was verified by lipid 

deposition. Our laboratory's incubators were tested negative of mycoplasma contamination.
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High fat diet treatment and streptozotocin-induced diabetes

Eight-week-old male C57BL/6J mice (stock #000664) were purchased from Jackson 

Laboratories and maintained at the University of California at Los Angeles animal facility 

under standard environmental conditions with a 12-hour light period and a 12-hour dark 

period per day; 25°C room temperature. Camp-/- mice in C57BL/6J strain were obtained 

from Dr. Richard Gallo at the University of California, San Diego and were bred and 

maintained at the University of California, Los Angeles (UCLA) animal facility under 

standard environmental conditions. They were housed in disposable plastic cages with 

HEPA filtered air circulation, autoclaved bedding, animal chow, and sterile water ad libitum. 
Genotypes of mice were identified by Transnetyx genotyping service. Mice were fed with 

either regular chow provided by UCLA animal facility (6% fat, #7013 Harlan Laboratories) 

or high-fat diet (45% Kcal from fat; #D12451) purchased from, Research Diets, Inc., New 

Brunswick, NJ ad libitum. After eight weeks, some mice were injected with streptozotocin 

in citrate buffer (200 mg/kg) intraperitoneally to induce diabetes. The control group received 

intraperitoneal citrate buffer (200 microliters) alone. After three weeks (11 weeks after 

experiment initiation), blood samples were collected via tail veins while mesenteric fat and 

liver tissues of mice were collected after carbon dioxide euthanasia. The Institutional 

Animal Care and Use Committee of the David Geffen School of Medicine at the University 

of California at Los Angeles approved all procedures (#2007-116). n=6 mice per group. 

Additional experimental details are described in Figure 1A and 3D.

Power analysis

We performed power analysis once we began the experiments. For animal studies, we 

included 6 mice per group to achieve statistically significant difference of fat mass between 

high-fat diet-treated diabetic mice and regular diet-treated normal mice (29% vs. 14%) with 

SD = 8%, alpha = 0.05, and power = 0.8. For human serum experiments, we included 11 

patients per group to achieve statistically significant difference of circulating LL-37 between 

non-diabetic normal BMI group and non-diabetic obese BMI group (28 vs. 39 ng/ml) with 

SD = 9%, alpha = 0.05, and power = 0.8. We did not perform power analysis for cell culture 

experiments, but it is common practice to perform in vitro experiments for 2-3 times 

independently. Quantitative ELISA and real-time RT-PCR experiments were performed in 

triplicate. Details of n-number per group are shown in respective tables and figure legends.

Statistical analysis

All mice were randomized and allocated to each cage (3-4 mice per cage) by animal facility 

personnel before experiments started. Investigators, except Hon Wai Koon, were blinded to 

the group allocation. For cell culture experiments, such as Western blot and Oil Red O 

staining, we did not make adjustments for multiple experiments. Instead, we present the data 

from a representative experiment.

Results were expressed as mean±standard error of the mean and analyzed by using the Prism 

professional statistics software program (GraphPad, San Diego, CA). Unpaired Student's t-
tests were used for intergroup comparisons. The data follow a normal distribution, and the 

variances of the two compared groups are similar. Error bars represent standard error of 

mean. P values of statistical significance are shown in each figure.
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Results

Exogenous cathelicidin modulates fat mass of high-fat diet-treated and streptozotocin-
induced diabetic mice

To understand whether relative increases of cathelicidin can reduce obesity, we 

overexpressed cathelicidin in diabetic and non-diabetic mice systemically using lentiviral 

vectors (Figure 1A). A group of high-fat diet-treated mice was injected with streptozotocin 

to induce diabetes (Figure 1A). Consequentially, the mesenteric fat of the high-fat diet-

treated diabetic mice showed a significant reduction in cathelicidin mRNA expression when 

compared to the regular diet-treated normal group (Figure 1B). The cathelicidin 

overexpressing diabetic and non-diabetic groups also had significantly higher cathelicidin 

mRNA expression in mesenteric fat than their respective groups without cathelicidin 

overexpression (Figure 1B).

The lentiviral cathelicidin overexpression did not significantly alter the overall body weight 

of the high-fat diet-treated diabetic and non-diabetic mice (Figure 1C), but significantly 

reduced the percentage of fat mass and significantly increased the percentage of lean mass in 

high-fat diet-treated diabetic mice (Figure 1D and 1E). Also, lentiviral cathelicidin 

overexpression had no effect on the fat and lean mass of high-fat diet-treated non-diabetic 

mice (Figure 1D and 1E).

Lentiviral cathelicidin overexpression did not affect blood glucose levels in fasting and oral 

glucose tolerance test settings (Figure 1F and Supplementary Figure 2A). It also did not 

affect the hydration ratio, total blood cholesterol levels, serum free fatty acid levels, and food 

consumption (Supplementary Figure 2B, 2C, 2D, and 2E). Thus, cathelicidin reduced fat 

mass without affecting glucose metabolism in high-fat diet-treated diabetic mice.

Cathelicidin inhibits lipid accumulation in adipocytes

To determine the role of cathelicidin in fat metabolism in vitro, Oil Red O staining was used 

to measure intracellular lipid accumulation in differentiated adipocytes. Exposure to LL-37 

and mCRAMP (1 to 5 μM) in differentiated human adipocytes, which were isolated from 

mesenteric fat tissues and mouse 3T3-L1 adipocytes, led to significantly reduced levels of 

lipid accumulation, as reflected by the Oil Red O Staining (Figure 2A and 2B). LL-37 and 

mCRAMP at 10 μM caused an increase in non-specific Oil Red O staining, which was 

possibly caused by observed apoptotic cell death in human differentiated adipocytes and 

mouse 3T3-L1 adipocytes respectively (data not shown). Taken together, our data indicates 

that exposure to cathelicidin inhibits lipid accumulation in adipocytes.

Cathelicidin inhibits fat accumulation by suppressing CD36 mRNA expression in 
differentiated adipocytes

Several fat receptors, such as free fatty acid receptor 2 (FFAR2), free fatty acid receptor 3 

(FFAR3), and CD36, were reported to mediate lipid accumulation in adipocytes18. We 

measured FFAR2/Ffar2, FFAR3/Ffar3, and CD36/Cd36 mRNA expression in human and 

mouse adipocytes to assess their roles in cathelicidin associated lipid accumulation. 
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Exposure to LL-37 and mCRAMP led to reduced mRNA expression of CD36/Cd36, but not 

FFAR2/Ffar2, and FFAR3/Ffar3, in both human and mouse adipocytes (Figure 2C-F).

To determine if cathelicidin plays a role in inhibiting lipid accumulation via inhibition of 

CD36 expression, Cd36 over-expressing constructs were transfected into differentiated 

mouse adipocytes. Cd36 mRNA expression in the transfected group was increased 18 fold 

when compared to the control group, as validated by real-time RT-PCR (Figure 3A). The 

Cd36 over-expression was shown to reverse the inhibitory effects of cathelicidin on lipid 

accumulation, as shown by the Oil Red O Staining (Figure 3B).

Cathelicidin inhibits CD36 mRNA expression in mesenteric fat

An increase in mesenteric fat Cd36 mRNA expression was observed in high-fat diet-treated 

non-diabetic and diabetic mice (Figure 3C). Lentiviral cathelicidin overexpression 

significantly reduced mesenteric fat Cd36 mRNA expression in high-fat diet-treated diabetic 

but not non-diabetic mice (Figure 3C). This trend is consistent with the cathelicidin 

dependent reduction of fat mass in high-fat diet-treated diabetic mice as shown in Figure 1D.

Cathelicidin reduces fat mass in high-fat diet-treated diabetic mice via CD36 inhibition

To understand whether cathelicidin reduces fat mass via inhibition of CD36 expression in 
vivo, high-fat diet-treated diabetic mice were infected with Camp- and/or Cd36-

overexpressing lentiviruses (Figure 3D). Mesenteric fat Cd36 mRNA expression in the 

CD36-overexpressing lentivirus-infected group was increased 17 fold when compared to the 

control group (Figure 3E).

Cd36 overexpression reversed the cathelicidin-mediated reduction of fat mass and 

augmentation of lean mass in high-fat diet-treated diabetic mice (Figure 3F and 

Supplementary Figure 3B). This data suggests that cathelicidin inhibits obesity via inhibition 

of CD36 expression. However, Cd36 overexpression did not affect body weight, hydration 

ratio, fasting/OGTT glucose levels, blood total cholesterol levels, free fatty acid levels, and 

food consumption regardless of cathelicidin overexpression (Supplementary Figure 3A, 3C, 

3D, 3E, 4A, 4B, and 4C). Cd36 overexpression alone did not alter fat mass and lean mass in 

high-fat diet-treated diabetic and non-diabetic mice (Figure 3F and Supplementary Figure 

3B).

Hepatic cathelicidin overexpression reduces lipid accumulation in the liver in high-fat diet-
treated diabetic mice via CD36 inhibition

Obesity can also lead to fatty liver disease19. Through Masson Trichrome lipid staining, 

livers from high-fat diet-treated diabetic and non-diabetic mice showed extensive lipid 

accumulation, indicating hepatic steatosis (Figure 4A). Cathelicidin over-expression reduced 

lipid accumulation in liver tissues in both high-fat diet-treated diabetic and non-diabetic 

mice (Figure 4A). Lentiviral Cd36 overexpression reversed the inhibitory effects of 

cathelicidin on hepatic steatosis in high-fat diet-treated diabetic mice (Figure 4A).

Through immunohistochemistry and image quantification, CD36 protein expression was 

significantly increased in the liver of high-fat diet-treated diabetic and non-diabetic mice 
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(Figure 4B and 4C). Cathelicidin significantly reduced hepatic CD36 expression of high-fat 

diet-treated diabetic and non-diabetic mice (Figure 4B and 4C). Again, the inhibitory effect 

of cathelicidin in the hepatic steatosis of high-fat diet-treated diabetic mice was reversed by 

lentiviral Cd36 overexpression (Figure 4B and 4C). Reduced CD36 protein expression was 

also observed in cathelicidin-treated HepG2 hepatocytes (Figure 4D).

There were low basal levels of cathelicidin protein expression in the livers of regular diet-

treated non-diabetic mice (Supplementary Figure 5). Hepatic cathelicidin expression of 

high-fat diet-treated non-diabetic mice was significantly higher than that of regular diet-

treated non-diabetic mice while hepatic cathelicidin expression of high-fat diet-treated 

diabetic mice was significantly lower than that of regular diet-treated non-diabetic mice. The 

lentiviral cathelicidin overexpressing group had significantly stronger hepatic cathelicidin 

expression than the non-expressing group (Supplementary Figure 5).

To demonstrate the cathelicidin-mediated inhibition of lipid accumulation in hepatocytes in 
vitro, we measured lipid accumulation in well-established human hepatocyte HepG2 cell 

lines using Oil Red O staining. Cathelicidin (1-5 μM) significantly reduced lipid 

accumulation in HepG2 cells (Figure 4E).

Cathelicidin reduces CD36 expression in adipocytes and hepatocytes via extracellular 
signal-regulated kinase (ERK) inhibition

A previous report has shown that ERK mediates CD36 expression20. In our studies, 

exposure of differentiated human adipocytes to LL-37 (1-10 μM) reduced ERK 

phosphorylation, which was partially reversed by the ERK activator epidermal growth factor 

(EGF) (Figure 5A). Also, cathelicidin-mediated inhibition of CD36 expression in the 

adipocytes was partially reversed by EGF, suggesting that cathelicidin inhibits CD36 

expression in adipocytes via ERK inhibition (Figure 5B). Co-incubation of adipocytes with 

EGF increased basal lipid accumulation and reversed the cathelicidin-mediated inhibition of 

lipid accumulation (Figure 5C). This finding suggests that cathelicidin inhibits lipid 

accumulation via an ERK-dependent mechanism.

Similarly, LL-37 inhibited ERK phosphorylation in human HepG2 hepatocytes (Figure 5D). 

Co-incubation of HepG2 hepatocytes with EGF reversed the cathelicidin-mediated decrease 

of CD36 expression (Figure 5E). Pretreatment with ERK1/2 inhibitor U0126 reduced overall 

CD36 protein expression in hepatocytes (Figure 5E).

The hepatic ERK phosphorylation signal of high-fat diet-treated diabetic and non-diabetic 

mice was significantly stronger than those of regular diet-treated normal mice (Figure 5F). 

Lentiviral cathelicidin expression significantly diminished hepatic ERK phosphorylation of 

all high-fat diet-treated mice, regardless of diabetic status (Figure 5F).

Endogenous cathelicidin modulates obesity and hepatic steatosis in high-fat diet-treated 
non-diabetic mice

As the high-fat diet-treated non-diabetic mice had increased mesenteric fat cathelicidin 

mRNA expression (Figure 1B), we studied the role of endogenous cathelicidin in obesity 

development using high-fat diet-treated c57BL/6J wild-type and cathelicidin deficient 
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Camp-/- mice (Supplementary Figure 6A). Although wild-type and Camp-/- mice showed no 

statistically significant difference in overall body weight after being treated with either a 

high-fat diet or a regular diet (Supplementary Figure 6B), high-fat diet-treated Camp-/- mice 

did show a significant increase in fat mass percentage, a significant reduction in lean mass, 

and severe hepatic steatosis (Supplementary Figure 6C-E). The endogenous cathelicidin 

deficiency did not appear to affect fasting blood glucose, OGTT blood glucose and total 

blood cholesterol levels in mice treated with either a high-fat diet or a regular diet 

(Supplementary Figure 6F-H). This data suggests that endogenous cathelicidin may 

modulate fat mass and hepatic steatosis in high-fat diet-treated non-diabetic mice.

Lentiviral cathelicidin reduces pro-inflammatory gene expression in the sciatic nerves of 
high-fat diet-treated diabetic mice

Inflammation is involved in peripheral diabetic neuropathy21. Lentiviral cathelicidin 

administration significantly decreased sciatic nerve aldose reductase and proinflammatory 

cytokine TNFα mRNA expression (Supplementary Figure 7A and 7B), suggesting that 

cathelicidin reduces pro-inflammatory gene expression associated with peripheral 

neuropathy.

Circulating serum cathelicidin protein levels are associated with BMI values of non-
diabetic and prediabetic subjects

We also measured the serum LL-37 protein levels among non-diabetic, prediabetic, and Type 

2 diabetic subjects. Baseline characteristics of non-diabetic, prediabetic, and Type II diabetic 

subjects are shown in Supplementary Table 1-3. We divided the entire test population into 3 

groups according to the Centers for Disease Control and Prevention (CDC) definition of 

obesity, i.e. normal (BMI <24.9); overweight (BMI 25-29.9) and obese (BMI >30).

In non-diabetic subjects, the serum LL-37 levels of overweight and obese groups were 

significantly higher than those of normal groups (Figure 6A). Elevated serum LL-37 protein 

levels were associated with increasing BMI values of non-diabetic subjects. In prediabetic 

patients, serum LL-37 protein levels were also positively correlated with BMI values (Figure 

6C). The difference in serum LL-37 protein levels between the overweight group (BMI 

25-29.9) and the combined class II and class III obese group (BMI >35) was statistically 

significant (Figure 6B). Prediabetic subjects of class I obese group (BMI range 30-34.9) had 

significantly reduced serum LL-37 levels when compared to non-diabetic subjects in the 

same BMI range (Figure 6C). In the Type II diabetic group, we did not find a correlation 

between serum LL-37 levels and BMI values (Supplementary Figure 1).

Discussion

This is the first report in the literature showing the metabolic effects of cathelicidin in 

obesity and diabetes. We have discovered a novel cathelicidin dependent molecular target 

that modulates obesity and fatty liver disease in diabetic mice and its link to an ERK-CD36 

dependent mechanism. We have also discovered a correlation between circulating 

cathelicidin levels and obesity among non-diabetic and prediabetic subjects.
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The underlying cause for the difference in responses to cathelicidin overexpression among 

high-fat diet-treated non-diabetic and diabetic mice still requires further investigation. We 

speculate that cathelicidin overexpression was unable to change the fat mass of the high-fat 

diet-treated non-diabetic mice because the mesenteric fat already expressed high levels of 

endogenous cathelicidin, which possibly desensitized the cathelicidin-mediated signaling 

mechanism (Figure 1B). In contrast, high-fat diet-treated diabetic mice expressed relatively 

low levels of endogenous cathelicidin (Figure 1B); the mesenteric fat cells of these mice 

may have improved sensitivity to cathelicidin overexpression.

As shown by our in vitro studies, cathelicidin specifically inhibits CD36 and Cd36 mRNA 

expression in human and mouse adipocytes respectively (Figure 2E and 2F). CD36 is 

broadly expressed in a variety of tissues including livers and adipose tissues22, and it can 

bind to many lipid ligands23. Recently regarded as a lipid sensing mechanism24, CD36 

expression is involved in a number of metabolic pathways related to obesity. Mesenteric fat 

Cd36 mRNA expression was increased in high-fat diet-treated diabetic and non-diabetic 

mice (Figure 3C), indicating that CD36 is involved in the gain of fat mass in vivo. Cd36 
deficient mice have reduced adipose tissue compared to wild-type mice25. Similarly, 

lentiviral Cd36 overexpression reversed the effects of cathelicidin in decreasing the fat mass 

of high-fat diet-treated diabetic mice (Figure 3F). We also found that Cd36 overexpression in 

mouse 3T3-L1 adipocytes reversed the cathelicidin-mediated inhibition of lipid 

accumulation (Figure 3B). Thus, cathelicidin inhibits obesity in diabetic mice via 

modulating CD36 expression.

In another previous report, the cathelicidin peptide inhibited ERK phosphorylation in 

macrophages26. The ERK1 deficient mice were resistant to obesity in response to a high fat 

diet27. This finding indicated that the ERK pathway is necessary for lipid accumulation and 

obesity. Although we did not have enough fat tissue available for ERK 

immunohistochemistry, the ERK activator, EGF, reversed the cathelicidin-mediated 

inhibition of CD36 expression and lipid accumulation in adipocytes and hepatocytes (Figure 

5). These findings demonstrate the ERK-dependent anti-obesity effect of cathelicidin.

A previous study reported that hepatic steatosis was linked to up-regulation of CD3628. In 

another study, CD36 deficient mice showed reduced hepatic steatosis29. Using 

immunohistochemistry, we found that hepatic CD36 protein expression is primarily up-

regulated in high-fat diet-treated diabetic and non-diabetic mice, compared to regular diet-

treated mice (Figure 4B). Lentiviral overexpression of cathelicidin in the high-fat diet-

treated diabetic and non-diabetic mice ameliorated hepatic steatosis, which was reversed by 

Cd36 overexpression (Figure 4A and 4B). In a previous study, the liver of ob/ob and diet-

induced obese mice showed increased ERK activity, while diet-induced obese ERK-deficient 

mice showed improvement in insulin sensitivity30. Similar to our finding in adipocytes, 

cathelicidin inhibited ERK phosphorylation and CD36 expression in cultured HepG2 

hepatocytes (Figure 5D and 5E). We also observed elevated ERK phosphorylation in the 

liver of high-fat diet-treated mice, which was reduced by lentiviral cathelicidin treatment 

(Figure 5F). This finding indicates the role of ERK in the cathelicidin mediated regulation of 

CD36 expression in obesity and hepatic steatosis.
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In addition to demonstrating that cathelicidin reduces the fat mass of high-fat diet-treated 

diabetic mice, we also observed an increase in lean mass, which consists of muscle and bone 

tissue (Figure 1E). Peripheral neuropathy in diabetes is often associated with muscle 

wasting31, which causes loss of lean mass. We speculate that one of the mechanisms by 

which cathelicidin can increase lean mass is by reducing muscle wasting in diabetic mice 

through modulation of aldose reductase and TNFα expression in peripheral nerves 

(Supplementary Figure 7A-B). High aldose reductase expression in the sciatic nerve is well 

known to mediate diabetic peripheral neuropathy of the lower limbs32. Aldose reductase 

inhibitor has been shown to prevent loss of nerve conduction velocity, skeletal muscle mass, 

and contractile capability in streptozotocin diabetic rats33-36. High TNFα expression can 

further damage nerve structure and impair its function37. We did not measure a quantitative 

change in bone and muscle mass, which is beyond the scope of this investigation. We plan to 

study the physiological effects of cathelicidin in nerves, bones and muscles under diabetic 

conditions and other metabolic conditions in the future.

In our study, we failed to find any correlation between serum cathelicidin levels and BMI 

values among Type II diabetic patients (Supplementary Figure 1). We speculate that there 

are many variables among diabetic patients, including medications and lifestyles, which may 

influence cathelicidin expression. Similar to the non-diabetic groups of another study38, the 

non-diabetic group and prediabetic group in our study showed a positive correlation between 

serum cathelicidin levels and BMI values (Figure 6B). We speculate that the non-diabetic 

and prediabetic patients have relatively simpler clinical profiles than Type II diabetic 

patients (for example, the former groups in our study took fewer medications).

This study investigated the direct effect of cathelicidin in controlling lipid accumulation in 

adipocytes. Since cathelicidin also possesses antimicrobial effect, it will be interesting to 

explore whether cathelicidin can alter gut microbiota that indirectly modulate intestinal 

nutrient absorption in the future.

In conclusion, this is the first report to show the novel metabolic effects of cathelicidin. 

Circulating cathelicidin levels correlate with BMI values in non-diabetic and prediabetic 

subjects. Cathelicidin, through an ERK- and CD36-dependent mechanism, inhibits lipid 

accumulation in adipocytes and hepatocytes (Figure 6D). Cathelicidin may be a novel drug 

target for treating obesity and hepatic steatosis. Orally active cathelicidin mimic should be 

developed for the convenient administration of cathelicidin to patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Lentiviral cathelicidin over-expression reduced fat mass and increased lean mass in 
high-fat diet-treated diabetic mice
(A) Experimental plan of animal experiments. C57BL/6 mice were fed with high-fat diet for 

a total of 11 weeks. Streptozotocin was injected intraperitoneally to induce diabetes on week 

8. Cathelicidin expressing lentivirus particles were also injected at the same time via tail 

veins. Details are described in Materials and Methods section. (B) Cathelicidin (Camp) 

mRNA expression of mouse mesenteric fat was determined by real-time RT-PCR. High-fat 

diet-treated diabetic mice had significantly reduced Camp mRNA expression (p=0.0001), 

compared to regular diet-treated non-diabetic mice. The mesenteric fat Camp mRNA 
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expression of cathelicidin expressing group was significantly higher than those of control 

lentivirus expressing group (p=0.0001), showing the high expression efficacy of the 

lentivirus. (C) Body weight of the mice at week 11. High-fat diet-treated non-diabetic mice 

had significantly higher body weight (p=0.0002 and p=0.0007) than those treated with 

regular diet. Body weights of high-fat diet-treated diabetic mice were similar to regular diet-

treated normal mice. Lentiviral cathelicidin overexpression did not affect their body weights. 

(D) Fat mass of the live mice at week 11 was measured by EchoMRI machine. High-fat diet 

treatment increased the fat mass of both non-diabetic and diabetic mice. Lentiviral 

cathelicidin overexpression significantly decreased the fat mass of the high-fat diet-treated 

diabetic mice but not high-fat diet-treated non-diabetic mice. (E) Lean mass of the live mice 

at week 11 was measured by EchoMRI machine. High-fat diet treatment decreased the lean 

mass of both non-diabetic and diabetic mice. Lentiviral cathelicidin overexpression 

significantly increased the fat mass of the high-fat diet-treated diabetic mice but not high-fat 

diet-treated non-diabetic mice. (F) Fasting blood glucose levels at week 10. High-fat diet 

treatment increased fasting blood glucose levels that were further exacerbated by 

streptozotocin- induced diabetes. Lentiviral cathelicidin overexpression did not affect the 

hyperglycemia. n=6 mice per group.
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Figure 2. Cathelicidin inhibited lipid accumulation and CD36 expression in adipocytes
(A) Serum-starved human differentiated adipocytes were exposed to TFA or LL-37 (1-5 μM) 

for 16 hours. The lipid accumulation was determined by Oil red O staining at 500nm. LL-37 

(1-5 μM) significantly reduced lipid accumulation in human adipocytes. (B) Serum-starved 

mouse differentiated 3T3-L1 adipocytes were exposed to TFA or mCRAMP (1-5 μM) for 16 

hours. The lipid accumulation was determined by Oil red O staining at 500 nm. mCRAMP 

(1-5 μM) significantly reduced lipid accumulation in mouse adipocytes. (C) Real-time RT-

PCR of human differentiated adipocytes. Human FFAR2 and FFAR3 mRNA expression 
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were not affected by LL-37 exposure. (D) Real-time RT-PCR of mouse differentiated 3T3-

L1 adipocytes. Mouse Ffar3 and Ffar3 mRNA expression was not affected by mCRAMP 

exposure. (E) Human CD36 mRNA expression in adipocytes was significantly reduced by 

LL-37 (1-5 μM) (F) Mouse Cd36 mRNA expression in adipocytes was significantly reduced 

by mCRAMP (1-5 μM). Results are representative of three independent experiments.

Tran et al. Page 17

Int J Obes (Lond). Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Cathelicidin reduced lipid accumulation via inhibition of CD36 expression
(A) Serum-starved mouse differentiated 3T3-L1 adipocytes were transfected with mouse 

CD36 expressing construct or empty control vector overnight, followed by exposure to TFA 

(vehicle control) or mCRAMP (1-5 μM) for 24 hours. Mouse Cd36 mRNA expression was 

significantly increased in Cd36 transfection group to demonstrate transfection efficiency. (B) 

Cathelicidin (1-5 μM) significantly reduced lipid accumulation in adipocytes that was 

partially reversed by Cd36 overexpression. (C) Mesenteric fat was collected on week 11 (the 

end of the experimental period). Cd36 mRNA expression was measured by real-time RT-
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PCR. Mesenteric fat Cd36 mRNA expression was significantly increased in high-fat diet-

treated diabetic and non-diabetic groups. Lentiviral cathelicidin overexpression led to 

significant reduction of mesenteric fat Cd36 mRNA expression in the high-fat diet-treated 

diabetic group but not in the non-diabetic group. (D) Experimental plan of animal 

experiments. Mice were fed with high-fat diet for a total of 11 weeks. Streptozotocin was 

injected to induce diabetes on the 8th week. Cathelicidin expressing lentivirus particles and 

Cd36 expressing lentivirus particles were also injected at the same time via tail veins on the 

same day. Details are described in Materials and Methods section. (E) Mesenteric fat Cd36 
mRNA expression of the Cd36 lentivirus-infected group was significantly higher than that of 

the control lentivirus-infected group. (F) High-fat diet treatment increased fat mass of high-

fat diet-treated diabetic mice. Lentiviral cathelicidin overexpression significantly decreased 

the fat mass of the high-fat diet-treated diabetic mice that was reversed by Cd36 
overexpression. n=6 mice per group.
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Figure 4. Lentiviral cathelicidin overexpression inhibited hepatic steatosis via CD36
(A) Masson Trichrome staining of liver tissues of mice dissected on week 11. The 

background was stained in red color. Lipid accumulation was presented as white dots. High-

fat diet-treated diabetic and non-diabetic mice all developed steatosis, compared with normal 

mice with regular diet. Steatosis was ameliorated in Camp-expressing groups that were 

reversed by Cd36 overexpression, regardless of diabetic status. (B) Immunohistochemistry 

of CD36 protein in liver tissues of mice dissected on week 11. (C) Quantification of CD36 

protein in liver tissues. CD36 protein expression, as indicated by brown color, was 
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significantly increased in high-fat diet-treated diabetic and non-diabetic mice, compared 

with normal mice with regular diet. Hepatic CD36 protein expression was significantly 

reduced in Camp-expressing groups, compared with control counterparts. CD36 protein 

expression was significantly increased in Cd36-expressing groups, indicating successful 

lentiviral transfection. n=6 mice per group. (D) Serum-starved HepG2 cells were exposed to 

TFA (vehicle control) or LL-37 (1-10 μM) for 24 hours. Western blot of HepG2 cells with 

quantification. LL-37 (1-10 μM) significantly reduced CD36 protein expression in human 

hepatocytes. (E) Oil red O staining was used to determine lipid accumulation. LL-37 (1-5 

μM) significantly reduced lipid accumulation in hepatocytes. Experiments are representative 

of 2 independent experiments.
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Figure 5. Cathelicidin inhibited CD36 expression and lipid accumulation in human differentiated 
adipocytes and hepatocytes via an ERK-dependent pathway
(A) Serum-starved human differentiated adipocytes were treated with 0.1% TFA or 

epidermal growth factor (EGF, 1 μg/ml) for 30 minutes followed by exposure to TFA or 

LL-37 (1-10 μM) for 48 hours. LL-37 inhibited ERK1/2 phosphorylation that was reversed 

by ERK activator EGF pretreatment. (B) LL-37 inhibited CD36 protein expression that was 

reversed by EGF pretreatment, suggesting cathelicidin mediated ERK-dependent CD36 

inhibition in adipocytes. (C) Lipid accumulation in adipocytes was determined by Oil Red O 

staining. LL-37 inhibited lipid accumulation that was reversed by EGF pretreatment, 

Tran et al. Page 22

Int J Obes (Lond). Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggesting the ERK-dependent mechanism. Results are representative of two independent 

experiments. (D) Serum-starved human HepG2 hepatocytes were exposed to 0.1% TFA or 

LL-37 (1-10 μM) for 48 hours. LL-37 inhibited ERK1/2 phosphorylation in hepatocytes. (E) 

Serum-starved human HepG2 hepatocytes were pretreated with ERK activator EGF (1 

μg/ml) or ERK inhibitor U0126 for 30 minutes, followed by exposure to TFA or LL-37 

(1-10 μM) for 48 hours. LL-37 inhibited CD36 expression in hepatocytes that was reversed 

by pretreatment of EGF. ERK inhibitor U0126 further reduced CD36 expression, suggesting 

an ERK-dependent mechanism. Results are representative of two independent experiments. 

(F) Immunohistochemistry and quantification of ERK phosphorylation in liver tissues of 

mice dissected on week 11. ERK phosphorylation, as indicated by brown color, was 

significantly increased in high-fat diet-treated diabetic and non-diabetic mice, compared 

with normal mice with regular diet. Hepatic ERK phosphorylation was significantly reduced 

in Camp-expressing groups, compared with control counterparts.
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Figure 6. Circulating cathelicidin LL-37 levels are positively correlated with BMI of non-diabetic 
subjects
(A) The age-matched data pool of non-diabetic subjects is divided into 3 groups according to 

CDC BMI-obesity definitions (normal BMI<24.9 n=11; overweight BMI 25.0-29.9 n=12; 

obese BMI>30 n=11). The serum LL-37 levels of obese non-diabetic patients are 

significantly higher than those of normal non-diabetic subjects. (B) The data pool of 

prediabetic patients is divided into 3 groups according to CDC BMI-obesity definitions 

(overweight BMI<25-29.9 n=5; class I BMI 30-34.9 n=10; class II + III obese BMI>35 

n=5). Class II obese and III obese prediabetic patients have significantly higher serum 
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cathelicidin levels than overweight prediabetic patients. (C) The LL-37 levels of the non-

diabetic and prediabetic groups. Circulating LL-37 levels of prediabetic groups with BMI 

range 30-34.9 are significantly lower than those of non-diabetic subjects with the same BMI 

range. LL-37 levels of prediabetic patients and non-diabetic subjects with BMI >35 are 

similar. Non-diabetic BMI 30-34.9 n=17; non-diabetic BMI >35 n=16; prediabetic BMI 

30-34.9 n=10; prediabetic BMI >35 n=5. (D) Summary of cathelicidin-mediated effects.
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