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ABSTRACT

Alzheimer disease (AD) is becoming one of the most prevalent neurodegenerative conditions worldwide. Although the disease progression is

becoming better understood, current medical interventions can only ameliorate some of the symptoms but cannot slow disease progression.

Neuroinflammation plays an important role in the advancement of this disorder, and n–3 (v-3) polyunsaturated fatty acids (PUFAs) are involved in

both the reduction in and resolution of inflammation. These effects may be mediated by the anti-inflammatory and proresolving effects of bioactive lipid

mediators (oxylipins) derived from n–3 PUFAs [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in fish oil. Although interventions have

generally used fish oil containing both EPA and DHA, several studies that used either EPA or DHA alone or specific oxylipins derived from these fatty

acids indicate that they have distinct effects. Both DHA and EPA can reduce neuroinflammation and cognitive decline, but EPA positively influences

mood disorders, whereas DHAmaintains normal brain structure. Fewer studies with a plant-derived n–3 PUFA, a-linolenic acid, suggest that other n–3

PUFAs and their oxylipins also may positively affect AD. Further research identifying the unique anti-inflammatory and proresolving properties of

oxylipins from individual n–3 PUFAs will enable the discovery of novel disease-management strategies in AD. Adv Nutr 2016;7:905–16.
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Introduction
Alzheimer disease (AD)3 is the most common neurodegen-
erative disorder and constitutes ;60–80% of all dementia
(1–3). Age is the most common predictor, with 1 in 5 people
aged >80 y and 1 in 3 people >90 y having AD (4, 5). With
the life expectancy of the global population increasing, the

prevalence of AD is set to escalate. From 1980 to 2010,
when the life expectancy increased by;6 y for the US pop-
ulation, the age-adjusted death rates for AD increased
55-fold (6). Globally, 35.6 million people are living with de-
mentia and this number is expected to reach 115.4 million
by 2050 (7). An effective cure for the disease has yet to be
discovered, and so lifestyle and nutritional factors are crucial
in managing the disease. This review article aims to examine
the role of n–3 PUFAs and PUFA-derived oxylipins in reduc-
ing neuroinflammation associated with AD.

Pathology of AD
AD is a disorder that has both familial and sporadic forms.
Familial AD (FAD) has an onset <65 y of age and is found
in <1% of the total cases (2). It is caused by autosomal dom-
inant mutations in the amyloid precursor protein (APP)
gene, the presenilin 1 (PS1) gene, and the presenilin 2 (PS2)
gene (8). In the sporadic form of AD, the apolipoprotein E
(ApoE) e4 allele has the strongest association with the risk
of developing AD (9). Homozygotes of the ApoE e4 allele
have 15 times more risk of developing AD than a noncarrier
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of this allele (10), and each copy of the allele lowers the age at
onset by 10 y (9).

Despite the large amount of research in AD over the past
3 decades, the exact disease-related alterations in the AD
brain and the order in which they occur remain to be under-
stood (2). Like many other chronic diseases, AD develops
due to multiple factors rather than a single cause, including
several changes in the brain that begin up to 20 y before any
symptoms appear (2). Current understanding of the pathol-
ogy indicates that AD is characterized by progressive loss
of synapses and neurons (8). As AD progresses, the capacity
of synapses to transfer information starts to diminish, the
number of synapses decreases, and subsequently death of
the neurons occurs (2). Progressive dysfunction of the syn-
apses and neurons is usually preceded by molecular events
involving the accumulation of oligomeric assemblies of mis-
folded proteins. Among these molecular lesions identified in
AD, amyloid plaques and neurofibrillary tangles (NFTs) are
the most defining ones (11, 12). Amyloid plaques are formed
in the extraneuronal space from aggregates of toxic amyloid b
(Ab), and NFTs are formed inside neurons by hyperphos-
phorylated tau protein.

A key protein involved in Ab formation is APP, an integral
membrane glycoprotein expressed in the brain that is in-
volved in the regulation of synaptic function, neuronal activ-
ity, and brain cholesterol metabolism. APP can undergo
sequential protein cleavage either through an a-pathway or
a b-pathway (13). In the a-pathway, which is usually non-
amyloidogenic, APP is cleaved first by a-secretase and then
by g-secretase. In the amyloidogenic b-pathway, APP is first
cleaved by b-secretase [b-site APP cleaving enzyme 1
(BACE1)], releasing the soluble peptide APPb into the ex-
tracellular matrix and leaving a 99–amino acid C-terminal
fragment within the membrane. This fragment is further pro-
cessed by g-secretase to form Ab40 or Ab42 and APP intra-
cellular C-terminal domain (AICD) (14). AICD is further
stabilized by Fe65, an intranuclear adapter protein, and binds
to transcription factor Tip60, initiating the transcription of
the enzyme neprilysin involved in Ab degradation, thus reg-
ulating Ab concentrations (15). In AD, impaired APP and
subsequent Ab degradation result in increased deposition
and reduced clearance of Ab40 and Ab42 peptides in the ex-
tracellular matrix, eventually leading to the oligomerization of
Ab and plaque formation (16). Although initially it was
thought that Ab deposition happens only in the extracellular
space, new data from transgenic mice and human patients
point to the possibility of intracellular accumulation and its
involvement in AD pathology (17).

The cascade of events starting from the cleavage of APP
and leading to neuronal loss is referred to as the “amyloid
cascade” hypothesis (18). This hypothesis, proposed in
1992, posits that Ab deposition, the primary pathologic
episode in AD causing the establishment of senile amyloid
plaques, leads to abnormalities in tau protein causing NFT
(18). Tau is a microtubule-associated protein (MAP) in-
volved in regulating microtubule dynamics and stability.
In AD, hyperphosphorylation of tau protein dissociates it

from the microtubule structure, resulting in aggregation of
tau protein into filamentous NFTs (19). NFTs cause a phys-
ical barrier to intracellular communication. In addition,
dissociation of tau protein results in the destabilization of
microtubules. The disruption of intracellular communica-
tion and the destabilization of microtubules lead to neuronal
death and dementia (20, 21).

In the inherited form of AD (FAD), impairment of APP
metabolism is caused due to mutations in APP, BACE1, PS1,
and PS2. Although these genetic causes have been identified
in FAD, what causes the aggregation of Ab in the sporadic
form of AD has yet to be completely understood. Histopath-
ologic hallmarks are indistinguishable between FAD and
sporadic forms of AD. Genomewide association studies
have identified potential roles of genes involved in endoso-
mal vesicle recycling, cholesterol metabolism, and in the in-
nate immune system (22, 23). However, most of the risk and
pathology of sporadic AD have been accounted for by the
ApoE e4 allele (24). ApoE is a 299–amino acid glycoprotein
involved in the transport of lipids, including cholesterol,
through ApoE receptors on the surface of the cell. Although
neurons usually synthesize ApoE only under stress, microg-
lia, astrocytes, choroid plexus, and vascular smooth muscle
cells in the brain constitutively express ApoE (25). Although
ApoE mainly functions as a lipid transporter in the brain, it
also regulates Ab metabolism, aggregation, and deposition.
Due to genetic polymorphisms, there exist 3 major isoforms,
ApoE e2, ApoE e3, and ApoE e4 (26), with differing amino
acids at positions 112 and 158 (27). The exact mechanism by
which the product from e4 allele stimulates AD pathology
is not completely understood. Several possibilities, such as
ApoE e4 interaction with tau protein, ApoE e4–mediated
enhancement of Ab production and oligomerization, in-
volvement of ApoE e4 at the level of cholesterol metabolism,
and interaction of ApoE e4 with bacterial pathogens have
been suggested but remain controversial (28).

Involvement of ApoE e4 in the metabolism of Ab is widely
studied and probably the most accepted of the above possibil-
ities due to the observation that ApoE is co-deposited with Ab
in amyloid plaques (29). One argument is that because Ab can
interact with both the lipid-binding site and the receptor-
binding site within ApoE, and because the Ab-binding
site on ApoE overlaps with the lipid-binding region, Abmight
compete with lipids for ApoE binding (30). The transport of
lipids to neurons by ApoE is essential for synaptic mainte-
nance and repair (31). Thus, the disruption of lipid binding
in AD by Ab and Ab oligomers may compromise synaptic in-
tegrity and function. In addition, ApoE e3 and ApoE e2 have
higher affinity for HDLs, whereas ApoE e4 has high affinity
for LDLs and VLDLs (32). The specific ApoE isoform and
its lipidation status seem to dictate the nature of interaction
between Ab and ApoE. For example, ApoE e4/Ab complexes
are far less stable than ApoE e3/Ab and ApoE e2/Ab com-
plexes (33). This renders ApoE e4 less efficient than ApoE
e3 or ApoE e2 in clearing Ab (34), resulting in increased
concentrations of Ab oligomers in an isoform-dependent
manner (ApoE e4 > ApoE e3 > ApoE e2) (35).
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Potential Therapeutic Agents
The currently approved drugs for AD do not address the
progressive neurodegeneration in AD and have yielded
only mild symptomatic improvements (36). Most of these
drugs target pathways in the amyloid cascade, focusing on
diminishing Ab generation from APP, preventing formation
and facilitating removal of toxic Ab aggregates, or prevent-
ing hyperphosphorylation and aggregation of tau protein
(37). Immunization approaches that use anti-Ab antibodies,
although successful at clearing Ab and reducing plaque load,
have failed to improve cognitive abilities (38–40) and in
some cases have caused serious side effects such as greater
brain atrophy and meningoencephalitis (38). Compounds
that inhibit Ab aggregation or destabilize Ab oligomeric spe-
cies have to pass through the challenge of the blood-brain
barrier to be effective (37). Drugs targeting inhibition of
b-secretase (41), inhibition or modulation of g-secretase
(42), or upregulation of a-secretase (43) also are being in-
vestigated. However, although these enzymes are primarily
involved in APP metabolism, they also have other substrates
that are physiologically important, which makes inhibition a
less viable option (37). Another approach is to modulate tau
phosphorylation and aggregation by inhibiting glycogen
synthase kinase 3 (GSK3), but a phase III clinical trial that
examined this found no improvements in cognition and
functional status (44, 45).

Inflammation in AD
In all of the amyloid cascade alterations that occur in AD,
inflammation plays a crucial role in the clinical progression
(46). Numerous studies have reported the association of el-
evated markers of inflammation and the accumulation of ac-
tivated microglia with the pathologic lesions of AD (47). The
deposition of Ab causes activation of microglia, recruitment
of astrocytes, and sustained production of proinflammatory
cytokines (48, 49). These cytokines in turn accelerate Ab
production and amyloid formation, thus initiating a cycle
of inflammation and amyloidogenesis (46, 50). In addition,
inflammatory processes in cerebral vasculature also acceler-
ate the progression of AD (51). The expression of inflamma-
tory adhesion molecules is elevated in the endothelial cells of
the AD brain (52, 53). In comparison to age-matched con-
trols, AD brain microvessels released higher concentrations
of inflammatory factors such as NO, TNF-a, TGF-b, IL-1b
and IL-6 (52, 54, 55). Release of these inflammatory media-
tors contributes to the vicious cycle of amyloidogenesis and
the resulting increase in inflammation. Although the involve-
ment of inflammation in the development of disease is well
documented, the cause of this inflammation is not yet under-
stood. Revealing the causes of inflammation is crucial in de-
veloping preventative measures. In the meantime, strategies
that target the resolution of inflammation represent an addi-
tional approach to treating this disease.

n–3 PUFAs are one such potential modulator of neuroin-
flammation (56). Increases in inflammation accelerate amyloi-
dogenesis (46, 50) and n–3 PUFAs reduce the amyloid load and
tau hyperphosphorylation by reducing neuroinflammation

(57, 58). n–3 PUFAs are PUFAs with a double bond at the
third carbon atom from their methyl end (Figure 1). Two
major types of n–3 PUFAs, DHA and EPA, are abundantly
present in fish oil. A plant-derived source of n–3 PUFA is
a-linolenic acid (ALA; 18:3n–3), which is present in flaxseed
oil and other plant oils.

In vitro experiments in immortalized BV-2 microglial cells,
the main immune cell mediators in the brain, showed that
EPA and/or DHA administration decreases the expression of
proinflammatory factors, such as inducible NO synthase
(iNOS), cyclo-oxygenase (COX) 2, IL-1b, IL-6, TNF-a, and
NF-kB, and downregulates the cell-surface expression of the
protein CD14 and Toll-like receptor 4 receptors involved in
initiating the inflammatory response (59–61). In other types
of brain cells (glial cultures and c6 glioma cells), the adminis-
tration of EPA attenuates the increase in expression of proin-
flammatory cytokines such as IL-1b and IL-6 and promotes
expression of the anti-inflammatory cytokine IL-4 (62–64).
In rats, the consumption of a diet containing EPA for 4 wk be-
fore LPS-induced hippocampal inflammation prevented the
reduction in hippocampal protein concentrations of anti-
inflammatory cytokines IL-4 and IL-10 (65) and mitigated
an increased expression of proinflammatory IL-1b (66). In hu-
mans, epidemiologic and observational studies have estab-
lished an association of higher concentrations of n–3 PUFAs
as well as lower n–6 to n–3 PUFA ratios with lower proinflam-
matory cytokine production (67–69). In elderly patients with
chronic heart failure, n–3 PUFA supplementation resulted in
reductions in plasma concentrations of TNF, IL-6, and inter-
cellular adhesion molecule 1 (ICAM-1) (70), suggesting that
similar effects may be observed in the brain. Indeed, there is
an emerging literature that suggests the potential beneficial
effect of n–3 PUFAs on inflammation in AD and other types
of neurological disorders.

Role of Dietary n–3 PUFAs
It is estimated that primary intervention of known environ-
mental risk factors in AD could prevent up to 20% of pre-
dicted new cases by 2025 (71, 72). In fact, the discordant
occurrence of AD in monozygotic twins and differences in
onset of up to 15 y in such patients show the role of modi-
fiable environmental factors in disease progression (73–75).
In particular, the potential role of n–3 PUFAs in modulating

FIGURE 1 Structure of ALA, EPA, and DHA. ALA, a-linolenic
acid.
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the risk of cognitive impairment has gained special attention
due to the fact that observational studies reported a lower in-
cidence of AD in populations who consume a high amount of
fish (76–78). DHA, a predominant n–3 PUFA in fish oil, is a
key component of membrane phospholipids in the brain
(79); and oxidative products of PUFAs act as cellular media-
tors and may be involved in improving neuronal health, neu-
rogenesis, and neuronal function through several mechanisms,
resulting in the reduction in and resolution of inflammation.
Interest in n–3 PUFAs for the treatment of AD is evidenced
by guidelines from the 2013 International Conference on Nu-
trition and the Brain that included guidelines on modifications
in dietary fat intake (80) and a recent letter from 109 scientists
in 36 countries that urged the health ministers of the G8 coun-
tries to promote clinical trials for the prevention of AD, includ-
ing those with n–3 FAs (72).

These expert recommendations with regard to n–3
PUFAs and AD come from the positive effects of n–3 FAs in
cognition as elucidated by a large body of evidence from ob-
servational studies, randomized controlled trials, and animal
studies (78, 81–91). For example, a cross-sectional population-
based study in 1613 subjects reported that, with an in-
crease of 137 mg n–3 PUFAs/d, the risk of cognitive decline
was reduced by 19% (OR: 0.81; 95% CI: 0.66–1.00) (85). A
recent meta-analysis byWu et al. (92) indicated that a higher
intake of fish was associated with a lower risk of AD. In a sys-
tematic review, Otaegui-Arrazola et al. (86) analyzed fish
intake and the incidence of AD from population-based
longitudinal observational studies. They identified and sum-
marized 8 studies, of which 7 showed that, in the general
population, the consumption of fish $1 time/wk signifi-
cantly reduced AD risk and was associated with slower cog-
nitive decline rates and better cognitive function. A recent
retrospective cohort study in patients with mild cognitive
impairment (MCI) and AD showed improvements in cogni-
tion and less atrophy with the long-term (6–48 mo) use of
fish-oil supplements in ApoE e4 participants (93). In addi-
tion, lower plasma and erythrocyte membrane n–3 PUFAs
are linked to poorer cognition (94). Note also that some
of the benefits observed with fish consumption might be de-
rived from other ingredients in fish, such as vitamin D (95),
because vitamin D deficiency has been linked to an increased
risk of dementia and AD (96).

Results from interventional studies with fish-oil supplemen-
tation in humans have been inconclusive. A study in participants
with subjective memory complaints showed improvements in
some cognitive functions with 6 wk of 37.5 mg EPA+DHA sup-
plementation/d combined with phosphatidylserine (97). In a
randomized, double-blind, placebo-controlled study, improve-
ments in cognitive performance were reported with 1.8 g n–3
PUFA supplementation/d for 24 wk in patients with MCI but
not in patients with AD (98). The OmegAD study also found
similar results in which benefits of n–3 PUFAs (1.7 g DHA and
0.6 g EPA/d for 6 mo) were observed in very mild AD but
not in advanced AD (99). This suggests that n–3 PUFA supple-
mentation might not be beneficial in advanced stages of disease
in which substantial neuronal loss has occurred. However,

benefits in the earlier stages of disease suggest a potential
role of n–3 PUFAs on primary prevention of AD.

Collectively, these results support the role of n–3 PUFAs in
preventing and ameliorating AD-related symptoms. DHA and
EPA, the major n–3 PUFAs in fish oil, are postulated to be the
beneficial elements. However, the n–3 PUFA supplements
used in the studies were usually a mixture of EPA and DHA
(mainly fish oil), and individual effects of n–3 PUFAs are
not well studied. The exact composition of the FAs tested in
fish-oil preparations vary greatly depending on the source of
the fish and method of preparation (100), and experiments
evaluating the individual effects of EPA and DHA are rare
due to the difficulty and higher cost associated with purifying
EPA and DHA. However, understanding the specific roles of
each of the major n–3 PUFAs will facilitate therapeutic interven-
tions and possibly enhance the generation of structural analogs
as treatment options. A longitudinal population-based study
showed that the top quartile of plasma DHA concentrations
was associated with a lower risk of developing all-cause de-
mentia and AD than were the other 3 quartiles (101); further-
more, cholesteryl-ester DHA concentrations were low in both
serum and brains of patients with AD (102). Improvements in
some cognitive functions were reported in patients with sub-
jective memory complaints with DHA supplementation (103).
Another study in patients with AD and patients with MCI re-
ported significant improvements in immediate memory and at-
tention score with 240mgDHA supplementation/d inMCI but
not in advanced AD (104). No improvements were found in pa-
tients with advanced AD with DHA supplementation in one
study (105), or with EPA supplementation in another (106).

Long-duration studies in human subjects are complex and
therefore few. Animal models of AD, on the other hand, pro-
vide an opportunity to test long-term interventions aimed at
primary prevention starting at an early age. Most studies with
supplementation of n–3 PUFAs in animal models of AD
have had positive results. Hooijmans et al. (107), examin-
ing animal studies reported up to April 2011, conducted
a systematic review and meta-analysis of the effects of
long-term n–3 PUFAs on AD. The study assessed 4 outcome
measures (cognition, Ab deposition, neuronal loss in the hip-
pocampus, and cortical FA concentrations) from 15 animal
studies that used supplementation for $10% of the animal’s
life span. Three of these 15 studies used a mixed source of n–3
PUFAs, and other studies used DHA as the supplement.
Analysis of the pooled data from the studies showed a sub-
stantial reduction in Ab deposition with n–3 PUFA supple-
mentation, as well as significant improvements in cognition
and a striking reduction in hippocampal neuronal loss
or neurodegeneration.

A PubMed search for publications between April 2011
and November 2015, which adopted the keywords and filters
used by Hooijmans et al. in the review discussed above, re-
trieved 8 more animal studies that included n–3 PUFA sup-
plementation in animal models of AD (Table 1) (108–115).
All 8 of these studies showed improvements in cognitive and
neuronal variables with n–3 PUFA supplementation. Three
of these 8 studies used a mixed source of EPA and DHA. In
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aged mice, 2-mo EPA + DHA treatment increased these long-
chain n–3 PUFAs in the brain and restored spatial memory
deficits (113). Markers of neuroinflammation were also re-
duced significantly in the hippocampus of these aged mice.
In the study by Kariv-Inbal et al. (114), a fish-oil diet miti-
gated the worsened neuronal markers and behavioral perfor-
mance in ApoE e4 mice. Oral administration of 300 mg EPA
and DHA $ kg–1 $ d21 to Ab-infused rats for 12 wk before
infusion resulted in a significantly lower number of reference
and working memory errors, increased EPA and DHA con-
centrations and decreased arachidonic acid (AA; an n–6
PUFA, 20:4n–6) in the corticohippocampal region, and lower
oxidative stress in the cerebral cortex and hippocampus (115).

The remaining 5 animal studies used DHA supplementation
alone. Hosono et al. (109) supplemented Tg2576 mice with
DHA for 4 mo and reported a reduction in memory impair-
ment. In another transgenic APP/PS1 rat model of AD, DHA
supplementation reduced hippocampal Ab plaque density and
prefibrillar Ab oligomers and improved cognition (108). Torres
et al. (110) administrated a 2-hydroxy derivative of DHA
(OH-DHA) orally to a double transgenic PS1/APP mouse
model of AD for 4 mo at a dose of 15 mg $ kg–1 $ d21.
OH-DHA supplementation significantly downregulated Ab
concentrations (without affecting APP transgene expression)
and normalized tau hyperphosphorylation. Fiol-deRoque
et al. (112) reported significant improvements in memory
recovery in the radial arm maze test in the above-mentioned
mice. In another experiment with tau knockoutmice,Ma et al.
(111) reported that 5mo ofDHA supplementation improvedmi-
crotubule stability by restoring phosphorylated and total GSK3b
and mitigating hyperactivation of the tau C-Jun N-terminal
kinases. These improvements in tau hyperphosphorylation also
resulted in partial correction of hippocampal synaptic deficits.

Differential Effects of Individual n–3 PUFAs
on AD
As indicated, although EPA and DHA are both neuroactive
n–3 PUFAs, their effects on neuroinflammation and AD

might be different from each other (see Table 2). EPA has a
prominent effect on mood disorder–related symptoms. In
studies in patients with depressive disorder, EPA administra-
tion significantly improved markers of depression (121, 122),
and a meta-analysis of randomized controlled trials showed a
greater antidepressant effect of EPA than DHA (123). Another
clinical trial that compared EPA and DHA as monotherapy
for major depressive disorder found no beneficial effect
with either EPA or DHA (124). In addition, although both
EPA and DHA have anti-inflammatory effects, EPA appears
to be more effective than DHA. A study that investigated dif-
ferential effects of purified EPA and DHA on stimulated pe-
ripheral blood mononuclear cells from patients with AD
showed that EPA was more effective than DHA in reversing
the proinflammatory profile of the AD patients’ cells (125).
Stronger anti-inflammatory effects of EPA were reported in
several other models as well (126, 127). In neuronal tissue,
EPA acts as an anti-inflammatory agent by blocking the effects
of IL-1 (128, 129), which is associated with age-related im-
pairment in neuronal function (130). A study in older subjects
discovered that higher plasma EPA, but not DHA, was associ-
ated with lower gray matter atrophy of the right hippocampal
and parahippocampal area (131).

EPA also has been shown to improve cognition. In AD,
Hashimoto et al. (132) studied the effect of preadministration
of EPA in cognition and learning with the use of rats infused
with Ab and reported a decrease in the number of reference
memory errors and working memory errors. DHA appears
to be effective in cognitive variables and in reducing AD-
related structural abnormalities. In triple transgenic (3xTg)-
AD mice, DHA improved cognition and reduced entorhinal
cortex neuron dysfunction (133); and in female APPswe/
PS1DE9 transgenic mice, a DHA diet reduced plaque load
(134). In the APP/PS1 transgenic rat model of AD, DHA sup-
plementation reduced hippocampal Ab plaque density, in-
creased soluble Ab oligomer concentrations, and improved
behavioral aspects (108). DHA-containing phosphatidylcho-
line treatment improved learning and memory abilities,

TABLE 1 Studies published after April 2011 that included n–3 PUFA supplementation in animal models of AD1

Study, year (ref) AD model Supplement Duration Dose Outcome

Teng et al.,
2015 (108)

Transgenic APP/PS1 rats DHA from algal
sources

4 mo 0.6% (wt:wt) of the diet Reduced Ab plaque density
Improved behavioral testing

Hosono et al.,
2015 (109)

Tg2576 mice DHA 4 mo 2.4 g/kg diet Reduced Ab(1–42)-to-Ab(1–40) ratio

Torres et al.,
2014 (110)

Transgenic 5xFAD mice 2-Hydroxy DHA 4 mo 15 mg $ kg–1 $ d21 Reduction in Ab accumulation
Improved cognitive scores

Ma et al.,
2014 (111)

Tau knockout mice DHA alone or
with a-lipoic acid

5 mo 0.6% DHA (or with
500 ppm a-lipoate)

Protected against hyperphosphorylation
Lower hippocampal synaptic deficits
Improved Morris water maze deficits

Fiol-deRoque et al.,
2013 (112)

Transgenic 5xFAD mice 2-Hydroxy DHA 4 mo 15 mg $ kg–1 $ d21 Improved radial arm maze test scores

Labrousse et al.,
2012 (113)

Aged C57Bl6/J mice EPA+DHA 2 mo 5.45 g EPA + 3.6 g
DHA/kg diet

Reduced inflammatory markers
Improved spatial memory deficits

Kariv-Inbal et al.,
2012 (114)

ApoE-targeted
replacement mice

Fish oil 4 mo 3.03 g fish oil/kg diet Reduced hippocampal Ab concentrations
Improved behavioral performance

Hashimoto et al.,
2011 (115)

Ab-infused rats Purified EPA+DHA 12 wk 300 mg $ kg–1 $ d21 Improved reference and working memory

1 Ab, amyloid b; APP, amyloid precursor protein; ppm, parts per million; PS1, presenilin 1; ref, reference.
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reduced phosphorylated tau concentrations, and partially cor-
rected neuronal morphology in an Ab23–35-induced AD rat
model (135). Interestingly, DHA supplementation for 18 mo
in human patients did not reduce cognitive decline (105). In
conclusion, although both EPA and DHA showed benefits
in inflammation and cognition in AD, EPA appears to be ben-
eficial in mood disorders and DHA beneficial in preserving
the structural integrity of the brain. In addition, active metabo-
lites of EPA and DHA (i.e., oxylipins; see below) are different,
which might play a major role in their inflammation-related
mechanisms in AD (136–138).

Although the effects of fish-oil–based n–3 PUFAs on AD
have been tested in animal and human trials, plant-based

n–3 PUFAs such as ALA have received less attention. In con-
trast to other tissues (139), however, cerebral and cerebellar
neurons appear to more efficiently convert ALA to DHA
(140–142), and this can result in improvements in reference
memory tasks (143). In addition, ALA conversion to EPA is
efficient (141, 144), which could be important if oxygenated
EPA metabolites (oxylipins) are the specific mediators of
neuroprotection in AD. Neuroprotective effects of ALA in
other forms of neurological diseases have been shown. In
a rat model of spinal cord ischemia, ALA caused significant
protection by reducing the loss of motor neurons and pre-
venting apoptotic neuronal cell death (145). Yamamoto
et al. (146) reported increased learning ability with supple-
mentation of ALA-rich oil in rats. In an in vivo model of
cerebral global ischemia, intracerebroventricular adminis-
tration of ALA 30 min before induction of ischemia almost
completely inhibited neuronal loss (147). ALA supplemen-
tation in rats improved cerebrovascular flow, which plays a
pivotal role in the pathology of AD (148, 149), possibly by
the activation of the tandem of pore domains in a weak in-
wardly rectifying K+ channel-1 related K+ channel (TREK-1)
potassium channel, which is an important vasodilatation
mediator. Specifically in AD, a prospective study conducted
in participants aged 65–94 y found that ALA intake was
strongly protective among persons with the ApoE e4 allele
(78). Spinal cord injury is associated with excitotoxicity, in-
flammation, and oxidative stress (150); and supplementation
of ALA to spinal cord ischemic rats after injury reduced neu-
ronal loss and improved functional outcome (145). The ad-
ministration of ALA after this type of injury in adult rats
showed significant neuroprotection by reducing neuronal
cell loss, oligodendrocyte loss, and neuronal apoptosis and
improving functional outcome (151, 152). In a brain ischemia
rat model, the administration of ALA inhibited microglia ac-
tivation, attenuated cell apoptosis, and improved behavioral
function recovery (153).

Role of Oxylipins Derived from n–3 PUFAs in
Their Anti-Inflammatory Effects
PUFAs participate in the process of causing or resolving in-
flammation through a class of lipid-derived mediators called
oxylipins. These bioactive lipids are oxygenated FA metabo-
lites biosynthesized by COX, lipoxygenase (LOX), and cyto-
chrome P450 (CYP) enzymes (154). Oxylipins derived from
n–3 PUFAs can potentially modulate neuroinflammation in
2 ways; first, through their anti-inflammatory effects, and
second, through their proresolving effects. Oxylipins formed
from n–3 PUFAs are generally anti-inflammatory, whereas
those produced from n–6 PUFAs are generally proinflam-
matory (155, 156). n–3 PUFA–derived oxylipins act as
anti-inflammatory compounds by reducing the concentra-
tion of and competing with proinflammatory oxylipins
produced from n–6 PUFAs (157, 158). Inflammation is
normally terminated by resolution, an active process involv-
ing a number of biochemical steps (159). The resolution of
inflammation is important to achieve homeostasis in the tis-
sue, but this process appears to be dysregulated in AD (160).

TABLE 2 Effect of EPA and DHA on markers of
neuroinflammation1

PUFA; study, year (ref) Effect

DHA
Rey et al., 2016 (116) Resolvin D1, a DHA oxylipin, decreased

LPS-induced expression of TNF-a, IL-6,
and IL-1b

Zhao et al., 2011 (117) NPD1, a DHA oxylipin, downregulated
Ab42-triggered expression of COX-2
and of B-94 (a TNF-a–inducible
proinflammatory element)

Lu et al., 2010 (59) Reduced expressions of TNF-a, IL-6, iNOS,
and COX-2

Pan et al., 2009 (118) Mitigated increases in IL-6
De Smedt-Peyrusse
et al., 2008 (61)

Downregulated LPS-stimulated cell
surface expression of CD14 and TLR4

Lowered TNF-a protein expression,
IL-1b protein expression, and activation
of NF-kB

Kawashima et al.,
2008 (62)

Attenuated IL-1b–induced IL-6
production

Lukiw et al., 2005 (119) NPD1, a DHA oxylipin, downregulated
COX-2, TNF-a, and IL-1b expression

Marcheselli et al.,
2003 (120)

NPD1, a DHA oxylipin, downregulated
NF-kB activation and COX2 gene
expression

EPA
Rey et al., 2016 (116) Resolvin E1, an EPA oxylipin, decreased

LPS-induced expression of TNF-a,
IL-6, and IL-1b

Lu et al., 2010 (59) Inhibited iNOS and COX-2 expression and
NO production

Kawashima et al.,
2008 (62)

Inhibited IL-6 production, attenuated
IL-1b–induced IL6 gene expression

Moon et al., 2007 (60) Inhibited PGE2, IL-1b, IL-6, TNF-a, and
release of NO

Downregulated the production of COX-2,
iNOS, and proinflammatory cytokines
at mRNA and/or protein levels

Suppressed NF-kB activation by blocking
IkB degradation,

Lynch et al., 2007 (63) Elevated IL-4 and blocked LPS-induced
increases in IL-1b

Minogue et al.,
2007 (64)

Lowered LPS- and Ab-induced increases
in IL-1b protein

Kavanagh et al.,
2004 (65)

Prevented LPS-induced reduction in
anti-inflammatory IL-4 and IL-10

1 Ab, amyloid b; COX, cyclooxygenase; IkB, inhibitor of kB; iNOS, inducible nitric
oxide synthase; NPD1, neuroprotectin D1; PGE2, prostaglandin E2; ref, reference;
TLR4, Toll-like receptor 4.
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Proresolving oxylipins produced from n–3 PUFAs are im-
portant mediators of this resolution phase of the inflamma-
tory process (159). For example, resolvins, lipoxins, protectins,
and maresins initiate pathways that signal the termination of
an acute inflammatory phase (161). Understanding the role
of specific oxylipins in neuroinflammation and its resolution
may therefore shed light on how individual n–3 PUFAs medi-
ate their beneficial effects in AD.

The most studied class of oxylipins is the eicosanoids pro-
duced from 20-carbon PUFAs, AA, and EPA. AA is the n–6
PUFA that is abundantly present on the membrane phospho-
lipids of inflammatory cells (157) and generates proinflamma-
tory oxylipins such as prostaglandin E (PGE) 2 and leukotriene
B (LTB) 4. EPA exposure reduces the concentrations of AA oxy-
lipins in inflammatory cells (157, 162, 163) in a dose-responsive
manner (164). It can compete with AA for all 3 oxylipin path-
ways, resulting in the production of lower concentrations of
AA-derived oxylipins and higher concentrations of EPA-derived
oxylipins that are biologically less active (e.g., PGE3, LTB5)
(165–167). In addition, EPA generates oxylipins such as E-series
resolvins (RvEs) that mediate the resolution of inflammation
(168, 169). For example, RvE1 (5S,12R,18R-trihydroxy-
6Z,8E,10E,14Z,16E-eicosapentaenoic acid) competes with LTB4
(158), prevents the infiltration of neutrophils into sites of inflam-
mation (169), decreases pulmonary polymorphonuclear neutro-
phil accumulation, reduces proinflammatory gene expression
(170), reduces proinflammatory cytokine production (171),
and inhibits leukocyte recruitment (172). Other EPA oxylipins
such as 18-hydroxy-eicosapentaenoic acid (18-HEPE) also im-
part anti-inflammatory effects (173).

DHA supplementation also reduces the production of AA-
derived oxylipins. For example, glial cells in culture produce
less thromboxane B2 (TXB2) and 6-keto-prostaglandin F1a
(6-k-PGF1a) and 12-hydroxy-eicosatetraenoic acid (12-HETE)
when supplemented with DHA (174). In addition, many novel
oxylipins derived from DHA via the LOX and CYP pathways
have recently been identified, with many of these appearing to
play a particular role in the resolution of inflammation. These
include the D-series resolvins, protectins, and maresins (56,
169), which are elevated in the murine brain with DHA-rich
fish-oil feeding (175). Reduced concentrations of DHA-
derived neuroprotectin D1 (NPD1) have been reported in the
AD brain (119, 160), and low concentrations of NPD1 are in-
versely related to cellular markers of neuroinflammation
(176). NPD1 has been shown to be neuroprotective (119,
160, 177). In human neural progenitor cells stimulated with
IL-1b, NPD1 downregulates NF-kB activation and COX-2 ex-
pression (120). The infusion of NPD1 in the mouse brain re-
duces infarct volume, leukocyte infiltration, NF-kB activation,
and COX-2 expression with greater potency than does DHA
itself (120). The infusion of the aspirin triggered epimer
of NPD1 (AT-NPD1; 10,17R-dihydroxy-DHA) also reduces
neuroinflammation similar to NPD1 (178).

Although the body of literature for ALA is much smaller,
it has been shown to reduce inflammation in various models
(179, 180) and to provide neuroprotection (149). ALA also
produces metabolically active oxylipins (181), and although

much less is known about these, they may mediate its ben-
eficial effects in AD. In older adults, 4 wk of ALA feeding
normalized the proinflammatory oxylipin profile in blood
(182), suggesting that it also could have effects on the brain.
The ALA-derived oxylipin 13-hydroxy-octadecatrienoic acid
(13-HOTrE) significantly suppressed IL-1b–induced expres-
sion of matrix metalloproteinase (MMP) 1, 3, and 9 proteins
in chondrocytes, suggesting that it is an anti-inflammatory
substance (183). This oxylipin also is associated with less
glomerulomegaly, indicating that it may have an anti-
inflammatory effect (184).

Conclusions
There is a pressing demand for more research in preventing,
delaying, and diminishing the effects of AD (185). In this re-
gard, n–3 PUFAs can help reduce and resolve inflammation,
which plays a major role in the progression of AD. However,
although the use of mixed sources of EPA and DHA in most
studies prevents an understanding of the individual effects of
these PUFAs, several studies do indicate that they may have
distinct effects such as EPA’s more prominent effects in
mood disorders and DHA’s ability to alleviate structural ab-
normalities. This may, in part, be due to their different effects
on the oxylipin profiles they generate, and their effects on the
reduction in and resolution of neuroinflammation. In addi-
tion, oxylipins synthesized from ALA also may have antineur-
oinflammatory effects. Future research delineating the unique
anti-inflammatory and proresolving properties of oxylipins
from individual n–3 PUFAs will help the development of
novel disease management strategies in AD.
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