Table 2.
Summary of the four meta-analysis examples
Meta | k | I 2 | Equal- α | W-optimal | Width | |
---|---|---|---|---|---|---|
Analysis | CI (τ) | interval (τ) | Ratio | |||
CERVIX3 | 5 | 56 % | (0, 1.287) | (0, 1.048) | 0.050 | 0.814 |
NSCLC4 | 11 | 75 % | (0.227, 0.887) | (0.193, 0.824) | 0.040 | 0.954 |
NSCLC1 | 17 | 45 % | (0.013, 0.426) | (0.028, 0.436) | 0.021 | 0.986 |
CERVIX1 | 18 | 62 % | (0.201, 0.707) | (0.182, 0.678) | 0.035 | 0.982 |
I 2 is the heterogeneity statistic of Higgins and Thompson [28]. In each case we show the equal tailed (α 1=α 2=0.025) 95 % confidence interval for τ, the W-optimal interval for τ, the value of that provides the W-optimal interval (also for τ) and the ratio of the width of the W-optimal interval and the equal tailed confidence interval. In each case we see that there is reduction in the interval width by adopting α 2>>α 1