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Abstract

Research over the past 30 years has identifiedmechanistic biochemical
oxidation pathways that contribute to asthma pathophysiology. Redox
imbalance is present in asthma and strongly linked to the pathobiology
of airflow obstruction, airway hyperreactivity, and remodeling. High
levels of reactive oxygen species, reactive nitrogen species, and
oxidatively modified proteins in the lung, blood, and urine provide
conclusive evidence for pathologic oxidation in asthma. Concurrent

loss of antioxidants, such as superoxide dismutases and catalase, is
attributed to redoxmodifications of the enzymes, and further amplifies
the oxidative injury in the airway. The presence of high levels of
urine bromotyrosine, an oxidation product of eosinophil
peroxidase, identifies activated eosinophils, and shows promise for use
as a noninvasive biomarker of poor asthma control.
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Awealth of studies point to an immunologic
genesis of asthmatic airway inflammation,
but, ultimately, most effector cells
produce reactive oxygen species
(ROS) and reactive nitrogen species
(RNS), which produce pathophysiologic
outcomes of airway reactivity, injury, and
remodeling (1–4). This article summarizes
information on oxidant biology that
was presented at the Thomas L. Petty
Lecture at the Thomas L. Petty Aspen
Lung 2015 Conference. Comprehensive
overview of oxidative processes in asthma
can be found in work by Comhair
and colleagues (5) and Ghosh and
colleagues (6, 7).

ROS in Asthma

Enhanced oxidant production is well
documented in asthma. Mitochondria are
the primary intracellular source of
superoxide generation under normal

physiologic states (8), but high levels of
superoxide can be formed by the reduced
nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases that are
found in granulocytes, including
neutrophils and eosinophils (9–12). High
levels of hydrogen peroxide can also be
formed by NADPH oxidases, Duox1 and
-2, expressed in bronchial epithelial cells
upon activation by histamine binding to
cell-surface receptor (13). Eosinophils and/
or neutrophils are present in increased
numbers in airways of subjects with asthma
and produce much more ROS than in cells
found in healthy lungs (14–22). Early
studies showed that the amount of
ROS generated by eosinophils and/or
neutrophils is directly correlated to the
severity of hyperreactivity in patients with
asthma (16, 21, 23). Experimental exposure
of subjects with atopic asthma to allergen,
or asthma exacerbations, lead to even
greater amounts of superoxide (16, 24),
with airspace cells in subjects with asthma

producing up to 83 106 nmol superoxide/
million cells/h (16, 25).

Bromotyrosine, a Biomarker of
the Activated Eosinophil

Eosinophils are cellular biomarkers of
atopic, or Th2-high, asthma (26–29, 30–33).
Activated eosinophils degranulate to release
major basic protein, eosinophilic cation
protein, and eosinophil peroxidase (EPO)
(26–29, 34). EPO is one of the mammalian
peroxidase superfamily, which also includes
myeloperoxidase (MPO), lactoperoxidase,
thyroid peroxidase, and prostaglandin H
synthase. All use peroxide for the oxidizing
equivalents for catalysis (35). MPO is
present in neutrophils and monocytes, and
secreted during cell activation (35). EPO
and MPO both use hydrogen peroxide to
oxidize thiocyanate (36, 37). MPO may also
use bromide and chloride as substrates, but
at plasma levels of halides, MPO uses

Erzurum: Oxidant Biology in Asthma S35

mailto:erzurus@ccf.org
http://10.1513/AnnalsATS.201506-385MG
http://www.atsjournals.org


chloride over 500-fold more than bromide
(38, 39). On the other hand, EPO can use
bromide, but cannot use chloride as a
substrate. Multiple studies of various
inflammation models using either MPO-
knockout or EPO-knockout mice
confirm consistently that bromotyrosine
generation in vivo is absent or reduced to
virtually nondetectable levels in the EPO-
knockout mouse, and chlorotyrosine
formation is absent in the MPO-
knockout mouse (40, 41). Thus,
chlorotyrosine is specific for MPO, and
bromotyrosine is highly selective for EPO
in vivo (4, 42–45). Bromotyrosine is found
at high levels in asthmatic airways and
increases with asthma exacerbations (43,
46). Bromotyrosine is stable and excreted in
urine, where it can be quantitated and
used as a biomarker of the activated
eosinophil (42, 47). Urine bromotyrosine
levels increase during asthma
exacerbation (42), and the presence of high
levels of urine bromotyrosine identifies
subjects with asthma with poor control, or
at risk of exacerbation (48, 49)

Nitric Oxide and
Airway Inflammation

In addition to ROS, RNS are also increased
in asthma. Nitric oxide (NO) is higher in
asthmatic airways as compared with
nonasthmatic airways (1, 3, 50, 51).
Measurement of the fraction of exhaled NO
(FeNO) is a sensitive biomarker of
airway inflammation (52–57), and was
approved by the U.S. Food and Drug
Administration for evaluation of
antiinflammatory treatment responses in
asthma (57–62). NO synthases (NOSs)
produce NO by converting L-arginine to
L-citrulline (63). The inducible NOS (iNOS;
NOS2) is induced by cytokines, including
IFN-g, IL-1b, TNF-a, IL-4 and/or IL-
13 (63–65). The Th2 cytokines are not
essential for iNOS expression; hence, FeNO
does not perfectly correlate with Th2
biomarkers, such as eosinophils or
bromotyrosine (66). The higher-than-
normal FeNO in asthma is associated with
greater transcriptional activation of the
NOS2 gene and iNOS protein expression
(3, 64, 67, 68). The signal transduction
effects of NO are classically related to
binding to guanyl cyclases, but its
byproducts also have biologic effects. NO
reacts with oxygen or ROS to form nitrite,

nitrate, and RNS, such as peroxynitrite.
The addition of NO to thiol residues
(nitrosothiol) is called nitrosation, and can
alter function and/or structure of proteins
(69–71). NO addition to tyrosyl residues
(nitrotyrosine) is termed nitration, and
occurs in the setting of increased RNS.
Nitration usually leads to inactivation of
proteins (72–75). EPO may use nitrite for
nitration of protein-bound tyrosyl residues
(76); in fact, up to 70% of nitrotyrosine
formed in the murine asthma model is
produced by EPO (40). Studies show that
subjects with well controlled asthma have
higher levels than individuals without
asthma of airway NO, nitrate, and
nitrotyrosine, and very low levels of
S-nitrosothiols (1, 77). Nitrotyrosine is
present at very high levels in airways of
patients during asthma attacks (4, 78, 79).
Unbiased metabolomic profiling has
recently revealed a unique NO-associated
endotype of asthma typified by changes in
taurine transport and bile acid metabolism,
which are known systemic effects of NO (80).

Redox Abnormalities
in Asthma

The lung has a wide variety of antioxidants
(e.g., glutathione, catalase, and superoxide
dismutases (SODs) (81), but increased
ROS and RNS in asthma overcome
antioxidant defenses (5, 82). Airways
of individuals with asthma have higher-
than-normal levels of glutathione.
Maintenance of the optimal intracellular
thiol/dithiol redox ratio is important to cell
functions and survival. Protein cysteinyl
thiols are susceptible to oxidation, and
cells can resist oxidation of thiols by
protein thiolation (83), particularly with
glutathione to generate S-glutathionyated
proteins (i.e., mixed disulfides) (84).
Recent work suggests alterations in
glutathionylation in asthmatic airways
(85, 86). The intracellular redox in
asthmatic airway cells appears to be shifted
to greater intracellular reducing potential,
with higher ratio of the reduced-to-
oxidized glutathione (87), perhaps as a
response to the repetitive oxidative stress
(2). Recently, quantitative nuclear imaging
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Figure 1. Oxidant biology in asthma. Reactive oxygen and nitrogen species and proteins oxidatively
modified by nitration and/or bromination are increased in asthma. The higher levels of oxidants are
generated endogenously by inflammatory cells and epithelial cells, and amplified by inhalational
exposure to microbes, allergens, pollutants, and environmental tobacco smoke. Loss of
antioxidants and alterations in thiol/dithiol balance further augment pathologic oxidative processes.
NO = nitric oxide.
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using the radiopharmaceutical, [99 mTc-
exametazime (HMPAO)], which is retained
in tissues dependent on intracellular
reduced glutathione levels, confirmed a
greater intracellular reducing potential in
asthma in vivo, and predominantly in lower
central regions of the lungs (88).

Redox-Mediated Loss of
Antioxidant Activities

In addition to greater ROS and RNS,
asthmatic lungs have lower-than-normal
SOD and catalase activities (2, 77, 87,
89–91). The loss of SOD is associated with
more severe airflow obstruction and greater
airway hyperreactivity and remodeling
(2, 5, 89–91, 92). The redox thiol/dithiol
imbalance in asthma results in systemic
change in cytosolic copper-zinc SOD
(CuZnSOD), such that CuZnSOD is
susceptible to autoinactivation by hydrogen
peroxide (2, 5, 89–91, 92, 93). On the other
hand, the decrease in mitochondrial
manganese SOD (MnSOD) activity is
associated with nitration of tyrosyl residues
in the protein (2, 91). Similarly, catalase

activity is decreased in the asthmatic airway
in association with increased oxidation of
specific tyrosyl residues in the protein
(77). Murine asthma models verify
a mechanistic role of SOD loss in
pathophysiology of asthma. The CuZnSOD
transgenic mice have less airway
inflammation and hyperreactivity in
comparison to wild-type mice in a murine
asthma model (94). In human studies,
exposure to second hand smoke is
associated with even lower levels of serum
SOD in asthma, and, overall, more
severe asthma (93). Increased ROS in
asthma is usually attributed to leukocyte
activation, but murine models of
asthma also point to metabolic–
mitochondrial origins of greater ROS in the
asthmatic airway smooth muscle (95).
Subjects with asthma who were provided
coenzyme Q, an essential component
of mitochondrial electron transport
chain and a mitochondrial antioxidant (96),
recovered SOD activity and redox
thiol balance to healthy, nonasthmatic
levels (97).

Conclusions

Altogether, the inflammation in asthma
is defined by oxidant biology and
alterations of airway redox (Figure 1).
Redox abnormalities are amplified by
infections, exposure to pollutants, and/or
allergen in subjects with atopic
asthma. EPO-mediated reactions produce
high levels of brominating and
oxidizing species that damage proteins.
High levels of NO production and
reactive nitrogen oxides contribute to
the oxidant pathophysiology. Loss of
enzymic antioxidant activities further
fuels redox disturbances and injury
to the airway. Future studies to
develop noninvasive signature
biochemical biomarkers of oxidative
pathways, and/or to design therapies
targeting redox mechanisms to limit
formation of damaging oxidant
species, may be useful to provide
optimal care of the patient with
asthma. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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