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Abstract

Hypoxia and low temperature at high altitudes are the main environmental pressures for
alpine animals, inducing phenotypic plasticity at several levels. To investigate the effect of
these variables on the organ mass of Phrynocephalus viangalii, 138 individuals belonging to
four populations living along an altitudinal gradient in the Qinghai-Tibet Plateau (China)
were dissected to remove heart, lungs, stomach, and intestinal tract. Organ dry mass, indi-
viduals’ sex, and body mass, as well as mean annual temperature and average air pressure
(calculated from a 30-year-data series obtained from the National Climatic Data Center)
were subjected to two-way analyses of covariance and generalized linear mixed models
(GLMMs). Except for the heart, organ mass varied significantly among populations,
although only lung and stomach mass increased significantly with increasing altitude.
Males’ heart and lung mass was higher than that of females, which might be due to their dif-
ferent behavior and reproductive efforts. GLMM analyses indicated that air pressure had a
positive effect on heart, lung and intestinal tract mass, whereas temperature had a negative
effect on these three organs. In order to explain the effect of hypoxia and low temperature
on P. vlangalii’s organ mass, further rigorous study on respiration, energy budget and food
intake was encouraged.

Introduction

Phenotypic plasticity, the ability of a genotype to produce different phenotypes across environ-
mental conditions, is a tactic enabling organisms to adapt to heterogeneous environments
[1,2]. This plasticity might be induced by short-term acclimatization or long-term evolutionary
adaptation, involving phenotypic components such as morphology and physiology [3-6]. To
some extent, classic ecological rules might be regarded as phenotypic plasticity descriptors
along an environmental gradient. High altitude, associated with low temperature and hypoxia,
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has attracted much attention from evolutionary biologists and physiologists [5,7,8], as it is a
particularly severe challenge to animals triggering a series of phenotypic variations.

In terms of physiological changes, high altitude exposure alters cardiovascular functions
such as cardiac output, heart rate, and blood pressure [9,10], and hemodynamics, including
hemoglobin content and blood-O, affinity [5,6]. Organ mass also changes as altitude increases,
and an increase in heart mass due to high altitude exposure has been reported [4,6]. However,
many of the known biological responses to hypoxia were not derived from studies based on
plateau native species, and thus the phenotypic plasticity induced by hypoxia exposure referred
therein might be the result of maladaptation (reviewed in [5]). Moreover, most studies con-
ducted so far were based on endotherms, with only a few recent researches focusing the physio-
logical adaptation to high altitude in ectotherms [6,11,12]. Yet, organ mass variation with
altitude increase remains largely unknown.

The Qinghai-Tibet Plateau, with more than one million km? and an average elevation
exceeding 5000 m, is the largest and highest plateau on Earth. The uplift of the plateau remod-
eled the geomorphology of China and changed the climate in East Asia [13]. A series of oro-
genic events affected the evolutionary processes of the species inhabiting this area [14-16],
leading to the formation of endemic species such as Phrynocephalus vlangalii. This small lizard
lives in altitudes ranging from 2300 to 4500 m [17], being the ideal model for studying pheno-
typic plasticity in high altitude. The present research aimed to (1) examine the phenotypic plas-
ticity of P. vlangalii organs along a natural altitudinal gradient, verifying if the phenotypic
plasticity in this ectotherm follows the typical rules observed in small mammals (endotherms),
and (2) investigate the effects of low temperature and hypoxia on P. vlangalii organ mass. We
hypothesized that populations living at high altitude would have larger heart and lung masses,
because of low oxygen pressure, while the mass of digestive organs would remain unchanged,
due to P. viangalii’s ectothermic and low energy-expenditure.

Materials and Methods

Our experimental procedures complied with the current laws on animal welfare and research
in China and were specifically approved by the Animal Research Ethics Committee of Lanzhou
University.

One hundred and thirty eight P. vlangalii individuals, stored in absolute ethanol, were
obtained from Room 419, School of life Sciences, Lanzhou University (the sample ID see S1
Table). These individuals were collected in four locations along an altitudinal gradient (2810 to
4250 m) in the Qinghai-Tibet Plateau (Fig 1) in summer 2010, 2011, and 2012. Only adult indi-
viduals whose snout-vent length (SVL) was larger than the smallest size at maturity were con-
sidered in this study. The size at sexual maturity for each population was based on the SVL of
the smallest P. viangalii females containing embryos within that population [18], as the size at
sexual maturity varied with altitude. To avoid measurement errors, the SVL and body mass of
each individual considered in this study were those registered in the specimen label. Some indi-
viduals only allowed collecting data for two organs, because they were used in other research
(Table 1). As the specimens were storage in absolute alcohol and the lipids in organs might be
dissolved, readers must take care in comparing our result with other studies.

Adult specimens were dissected to remove the heart, lung, stomach, and intestinal tract.
After removing fat and connective tissue, organs were dried for 72 h at 60°C and weighed to
obtain their dry mass, which was used in the subsequent analysis. To evaluate the effect of envi-
ronment on organ mass, mean annual temperature and average air pressure were calculated
based on a 30-year-data series obtained from the National Climatic Data Center (China).
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Fig 1. Phrynocephalus viangalii sampling sites. The four populations of P. vlangalii were sampled in the
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All morphological data were log-transformed to eliminate the effect of index dimension and
meet the required normality and homogeneity assumptions. Then a two-way analysis of
covariance (ANCOVA) was used to test differences in organ mass among the four populations.
Organ mass was the dependent variable, population and sex were the fixed factors, and body
mass was the covariable. Unstandardized residuals from the regression of organ mass on body
mass were calculated to produce size-adjusted variables. After removing the effect of body

Table 1. Altitude and climatic factors in the four sampling locations of Phrynocephalus viangalii within the Qinghai-Tibet Plateau (China) and the
several phenotypic variables considered in the present study.

Population Sex N | SVL(mm) | Body mass | Heart mass | Lung mass Stomach Intestinal | Altitude | Temperature Air
(9) (mg) (mg) mass (mg) | tract mass (m) (°c)? pressure
(mg) (hPa)®
Golmud Males |12 |55.38+1.55 | 6.01+0.47 8.1+0.8 7.610.6 13.241.7 11.1+1.1 2810 5.8 724.7
Females | 7 | 53.04+1.28 | 5.60+0.39 5.5+0.6 5.810.6 11.0£1.0 11.310.8
Delingha Males |18 |54.90+1.00 | 6.12+0.33 | 7.940.7 (17)° | 7.840.7 (17) | 10.741.0 (14) | 17.1+1.7 (14) | 2900 4.4 708.7
Females | 28 | 55.22+0.89 | 8.25+0.40 9.810.9 8.610.5 16.1£1.7 (14) | 19.841.7 (14)
Daotanghe | Males |13 |54.81+0.57 | 5.74+0.22 | 10.5%1.0(11) | 10.8£0.6 (11) | 17.1+2.6 (4) | 20.3+3.1 (4) 3367 0.8 688.8
Females | 18 | 54.37+0.63 | 6.69+0.36 7.6+0.5 7.7+0.6 15.5+#2.7 (6) | 20.6+1.9 (6)
Maduo Males |19 |56.05+0.47 | 7.31+0.31 | 10.2+0.8 (13) | 11.4£0.5 (13) 12.4+1.2 18.8+1.5 4250 -3.3 604.3
Females | 23 | 56.71+0.68 | 8.59+0.44 8.4+0.7 9.5+0.5 14.5+1.3 (15) | 23.6+3.0 (15)
SVL, snout to vent length.
@ average values based on a 30-year-data series obtained from the National Climatic Data Center, China.
® numbers between brackets indicate sample size; some specimen’s preservation status only allowed collecting data for two organs
doi:10.1371/journal.pone.0162572.t001
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mass, a linear regression analysis between organ mass and altitude was conducted for the entire
population and for males and females, separately. Finally, generalized linear mixed models
(GLMMs) were used to test the effect of climate on organ mass (dependent variable), setting
mean annual temperature and air pressure as the fixed effect, and population, sex, and body
mass as random factors. Statistical significance was evaluated using Type III sums of squares
tests in IBM SPSS 20 (IBM Corp., New York, USA), considering P < 0.05 as the significance
level.

Results

Data obtained for the 138 adult specimens are listed in Table 1. 53 individuals only allowed col-
lecting heart and lung masses, and three individuals only collecting stomach and intestinal
tract masses.

Two-way ANCOVA results indicated that, after controlling for body mass, sex had a signifi-
cant effect on heart and lung mass, but not on stomach and intestinal tract mass (Table 2). In
the four populations studied, males had relatively larger heart and lung mass than females, but
similar stomach and intestinal tract mass (Fig 2). The mass of lung, stomach and intestinal
tract was differed significantly among populations, while the mass of heart was similar among
populations (Table 2). None of the interactions between sex and altitude was significant
(Table 2).

Linear regression analysis showed that only lung and intestinal tract mass increased signifi-
cantly with increasing altitude (Table 3, Fig 2). When males and females were analyzed sepa-
rately, only the lung mass of males increased significantly with increasing altitude (Table 3).

As indicated by the GLMM coefficients presented in Table 4, which represent the slope of
the relationship between organ mass and each predictor variable, partial pressure of oxygen
(air pressure) had a significant and positive effect on heart, lung and intestinal track mass, but
not on stomach mass. Temperature had a significant negative effect on heart, lung and intesti-
nal track mass, but not on stomach mass.

Discussion

Our results showed that, with the exception of heart mass, organ mass changed with increasing
altitude, although only lung and intestinal track mass increased significantly with increasing
altitude. There was no significant correlation between altitude and heart or stomach mass. Sex
only showed a significant effect on heart and lung mass. The main effect of hypoxia was the
decrease in heart, lung and intestinal track mass, while low temperature increased the mass of
heart, lung and intestinal track mass.

The effect of sex might be due to the differences in reproductive role and behavior between
the two sexes. Under sexual selection, P. vlangalii males usually maintain a larger territory than

Table 2. Effects of altitude and sex on organ mass in Phrynocephalus viangalii.

Organ Males vs. females Altitude Interaction?

Heart F1 126 = 8.426, P* = 0.004 F3126=1.188,P=0.317 F3,126 =2.310, P = 0.080
Lung F1,126 =19.911, P <0.001 F3,126 = 5.970, P = 0.001 F3,126 =2.579, P = 0.057
Stomach Fi76=0.012,P=0.914 F3 76 =2.946, P = 0.038 F376=1.293, P =0.283
Intestinal tract F176=0.346, P = 0.558 F3 76 =5.745, P = 0.001 F3 76 =0.445, P =0.721

@ Data were analyzed by two-way ANCOVA using body mass as covariable.

* Values are significant at P < 0.05.

doi:10.1371/journal.pone.0162572.1002
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Fig 2. Altitudinal variation of Phrynocephalus viangalii organ mass in the Qinghai-Tibet Plateau, China. (A) heart, (B) lung, (C) stomach, (D)
intestinal tract. The effect of body mass was eliminated using the unstandardized residuals obtained from the linear regression analysis performed for
each organ. Black squares and empty circles represent the means for males and females, respectively, and the error bar represents the standard
error. The solid and dotted lines represent the fitting of organ mass to altitude for males and females, respectively. The coefficients of the linear
regression analysis are displayed above lines and the asterisk (*) denotes P < 0.05.

doi:10.1371/journal.pone.0162572.9002

Table 3. Relationship between organ mass and altitude, based on linear regression analyses.

Organ Males Females Total

Heart r*=0.198, Fy 5, =2.317, P*=0.134 r=-0.116, F1 74 =1.001, P=0.320 r=0.019, Fy 133 =0.047, P=0.828
Lung r=0.448, F, 57 = 14.342, P < 0.001 r=0.159, F1 74 =1.931,P=0.169 r=0.283, F; 133 = 11.550, P = 0.001
Stomach r=-0.050, F1 41 =0.101, P=0.753 r=-0.067, F1 40=0.181, P=0.673 r=0.046, F1 53=0.174, P =0.678
Intestinal tract r=0.186, Fy 41 =1.474, P =0.232 r=0.277,F; 40=3.322, P=0.076 r=0.244, F, g3 = 5.267, P = 0.024

@ The effect of body mass was eliminated using the unstandardized residuals obtained from the prior linear regression analyses of organ mass on body
mass.
* Values are significant at P < 0.05.

doi:10.1371/journal.pone.0162572.1003
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Table 4. Influence of low temperature and hypoxia on Phrynocephalus vlangalii organ mass, based on generalized linear mixed models.

Source of variation Random effect Fixed effect

Var S.E. Z-value P-value* Coefficient S.E. t-value P-value*
Heart mass
Residual 0.029 0.004 7.693 <0.001
Population 0.001 0.059 0.017 0.987
Sex 0.004 0.004 0.926 0.354
Body mass 0.255 0.264 0.965 0.335
Intercept -15.777 6.102 -2.585 0.011
Air pressure 0.025 0.009 2.688 0.008
Temperature -0.316 0.122 -2.577 0.011
Lung mass
Residual 0.013 0.002 7.859 <0.001
Population 0.000?
Sex 0.004 0.003 1.156 0.247
Body mass 0.249 0.198 1.263 0.207
Intercept -8.292 4.427 -1.873 0.063
Air pressure 0.014 0.007 1.999 0.048
Temperature -0.186 0.089 -2.099 0.038
Stomach mass
Residual 0.020 0.003 6.123 <0.001
Population 0.0002
Sex 0.000 0.001 0.216 0.829
Body mass 0.623 0.504 1.236 0.217
Intercept -10.856 7.442 -1.459 0.148
Air pressure 0.018 0.011 1.546 0.126
Temperature -0.290 0.152 -1.917 0.059
Intestinal track mass
Residual 0.021 0.003 6.251 <0.001
Population 0.0002
Sex 0.0002
Body mass 0.332 0.288 1.152 0.249
Intercept -14.989 6.786 -2.209 0.030
Air pressure 0.024 0.010 2.327 0.022
Temperature -0.313 0.138 -2.272 0.026

& This parameter was redundant.
* Values are significant at P < 0.05.

doi:10.1371/journal.pone.0162572.t004

females during reproduction [19,20]. As a result, males not only frequently show mating
behaviors, but are also more territorial [21]. These performances require expending vast
amounts of energy, so sexual selection might have indirectly affected males’ cardiorespiratory
system, leading to the evolution of more powerful heart and lungs in males than in females in
order to provide more energy to muscle cells.
Vertebrates living at high altitude are not able to avoid hypoxia exposure only by changing
their behavior. Many endotherms can compensate hypoxia by reducing O, demand through
metabolism suppression [22] and ectotherms mainly adapt to hypoxia through metabolic
depression [23,24]. Alternatively, several physiological adjustments might be performed to pre-
serve O, supply in hypoxia [5], such as ventilatory O, convection. Previous studies indicated

PLOS ONE | DOI:10.1371/journal.pone.0162572 September 7,2016
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that the increased hypoxia would cause an increase in ventilation and breathing frequency in
amphibian and reptilian [25,26]. Alternatively, having large lungs also can increasing O, diffu-
sion as it increases the surface area where diffusion occurs. Our results indicated that lung
mass also increased with increasing altitude in P. vlangalii, suggesting this species might com-
pensate hypoxia by increasing ventilatory O, convection. However, a significant positive effect
of air pressure on lung mass was detected using GLMM, indicating further studies need to be
performed.

Altitude exposure also induces major changes in cardiovascular function, such as tachycar-
dia, pulmonary hypertension [7,9], and heart mass [6,27], which can increase cardiac output.
This plasticity mainly concerns the initial physiological responses to high altitude, and most of
these changes actually correspond to maladaptation [5]. Our results suggest that during ances-
tral acclimatization, blood O, transport might not have been compensated by a cardiac output
increase in P. vlangalii, as heart mass did not change with altitude. However, GLMM results
indicated that hypoxia had an positive effect on heart mass, and this species might have, there-
fore, compensated for the low O, transportation increasing hemoglobin concentration, hemat-
ocrit, and hemoglobin binding-affinity to O, [5]. This is supported by recent studies
comparing Phrynocephalus spp. populations, which revealed that those inhabiting high alti-
tudes had higher hematocrit, hemoglobin concentration, and oxygen carrying capacity than
those inhabiting low altitudes [6,11,27,28].

Low temperature is another environmental pressure affecting animals living at high altitude,
especially ectotherms. To acclimate to cold, Phrynocephalus spp. lizards inhabiting high alti-
tudes evolved a lower optimal body temperature and critical thermal minimum than lizards
inhabiting low altitudes [29]. In order to overcome the disadvantage of developing embryos in
low temperatures, these species also evolved viviparity [30] and an atypical reproductive cycle
[31]. In our study, we found that low temperature also affected heart, lung, and intestinal track
mass in P. viangalii.

For ectotherms, ventilation is normally regulated to meet the needs for CO, elimination, to
support the increased metabolic rate with increasing temperature [32]. Phrynocephalus spp.
always decrease their optimal body temperature in response to cold [29], resulting in a stan-
dard metabolic rate decrease [6], which would reduce their pulmonary ventilation as expected
in ectotherms. However, lung mass increased with decreasing temperature in P. vlangalii,
against the above hypothesis. Pulmonary ventilation could be changed through tidal volume,
breathing rate or both. Unfortunately, our samples did not allow estimating any of these,
although we tried to verify tidal volume increased in P. vlangalii with decreasing temperature.
Thus, further research is needed on P. vlangalii pulmonary ventilation response to cold.

Under low temperatures, small mammals’ heat-loss increases resulting in increasing energy
demand and intake, which lead to changes in the mass of small intestine and heart [3]. Our
results indicated that ectotherms living in cold conditions also have a relatively larger heart and
intestinal track than those living in warm environments. However, as mentioned above, ecto-
therms always suppress metabolism in response to low temperature and thus the larger organ
mass found might be due to an increase in energy intake. A rigorous study on P. viangalii’s
energy budget and food intake is therefore needed to enable a clear interpretation of the rela-
tionships between decreasing temperature and organ mass increase.

Supporting Information

S1 Table. Sample ID for 138 Phrynocephalus vlangalii used in this study. * samples which only
collected heart and lung mass. ® samples which only collected stomach and intestinal tract mass.
(DOCX)
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