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Abstract

Clinical risk assessment for cancer predisposition includes a three-generation pedigree and 

physical examination to identify inherited syndromes. Additionally genetic and genomic 

biomarkers may identify individuals with a constitutional basis for their disease that may not be 

evident clinically. Genomic biomarker testing may detect molecular variations in single genes, 

panels of genes, or entire genomes. The strength of evidence for the association of a genomic 

biomarker with disease risk may be weak or strong. The factors contributing to clinical validity 

and utility of genomic biomarkers include functional laboratory analyses and genetic 

epidemiologic evidence. Genomic biomarkers may be further classified as low, moderate or highly 

penetrant based on the likelihood of disease. Genomic biomarkers for breast cancer are comprised 

of rare highly penetrant mutations of genes such as BRCA1 or BRCA2, moderately penetrant 

mutations of genes such as CHEK2, as well as more common genomic variants, including single 

nucleotide polymorphisms, associated with modest effect sizes. When applied in the context of 

appropriate counseling and interpretation, identification of genomic biomarkers of inherited risk 

for breast cancer may decrease morbidity and mortality, allow for definitive prevention through 

assisted reproduction, and serve as a guide to targeted therapy.
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As inherited variation in DNA sequence has been shown to correlate with future disease risk, 

genomic tests constitute objective “biomarkers” of an individual’s susceptibility to cancer 

[1]. A family history of breast cancer has long been thought to indicate the presence of 

inherited genetic events that predispose to this disease. Although familial breast cancer has 

been recognized since the nineteenth century, the detailed medical description of inherited 

breast (and ovarian cancer) in families took place in the 1970s [2, 3]. Subsequently, up to 

15 % of patients diagnosed with invasive breast cancer were shown to have at least one first-

degree female relative (mother, sister, or daughter) with the disease. Testing for genetic 

biomarkers of risk has evolved over the past two decades to complement family history and 

physical findings. The most notable of these genetic biomarkers emerged from genetic 

analysis of families affected by multiple cases of early-onset (50 years of age) breast cancer, 

leading to the discovery of the breast cancer susceptibility genes, BRCA1 and BRCA2 [4–

6]. The genetic mapping of BRCA1 strongly suggested an inherited risk of breast cancer 

resulting from genetic alterations located on chromosome 17q21 [7]. The subsequent 

discovery of BRCA1, and later BRCA2 [8, 9], initiated widespread interest in hereditary 

breast cancer. These discoveries also galvanized resource allocation to investigators 

exploring translation of this information to improve clinical care for those with breast cancer 

susceptibility. In the late 1990s, mutations in BRCA1/2 were established as the main 

contributors to familial breast cancer, and population specific frequencies of mutations in 

these genes were compiled [10–14]. In the 10 years following, the clinical utility and the 

benefits of clinical genetic biomarkers became evident, as genetic testing led to 

individualized risk reduction strategies including preventive surgeries, chemoprophylaxis 

and targeted therapies [15, 16].

Although genetic tests for cancer risk constitute “biomarkers” in a general sense, these 

genomic markers are distinct from non-genetic biomarkers in that they reflect the impact of 

modifiers of penetrance, population-specific differences in allele frequencies, and influence 

of gene-environment interactions. As genomic testing continues to evolve, biomarkers of 

various strength and significance are being routinely detected and gene-gene and gene-

environment interactions are beginning to emerge [17–22]. Understanding the functional 

significance of genomic alterations is conceptually critical in assessing the potential utility 

of genetic variants as biomarkers. The type of alteration and the location of an aberration in 

a gene, i.e., a synonymous missense variant, a nonsense missense variant, a deletion/

duplication, a translocation, or an inversion, all bear on the assessment of a gene test as a 

“biomarker” of inherited cancer risk. Thus, understanding the type of genetic change is as 

important as the fact that the gene is altered.

Novel biomarkers are being revealed by next generation sequencing and tend to be 

associated with low and moderate penetrance genomic loci [23]. As more is known, 

algorithms will be required to weigh multiple biomarkers simultaneously and hence allow 
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clinicians to most informatively provide recommendations pertaining to risk reduction 

surgeries, surveillance guidelines, family planning, apply novel therapies, and modify and 

dose-adjust existing therapies.

Genetics in Breast Cancer Predisposition

Although the ease of testing for different genetic biomarkers is appealing in the “information 

age,” the ability to contextualize this information remains a challenge. Statements from the 

American Society of Clinical Oncology (ASCO) have stressed the process of offering 

predictive genetic testing and the elements pertaining to medical, social, and psychological 

consequences of positive, negative and yet to be determined results. Provided here is an 

updated algorithm of the contents of informed consent for genomic testing for inherited 

genetic changes (Table 1).

Genetic testing for mutations in BRCA1, BRCA2, and other breast cancer susceptibility 

genes has served as a model for the integration of genomics into the practice of personalized 

medicine, with proven efficacy required for enhanced screening and prevention strategies, 

and as markers for targeted therapy. The rapid pace of molecular sequencing still requires 

due diligence to assure that the basic tenets of genetic counseling are fulfilled. Historically, a 

clinical genetics visit entails rapport building, a detailed account of the family history in the 

form of a pedigree, documentation of medical history, a physical exam with specific focus 

on the presence or absence of syndrome stigmata (e.g. macrocephaly or skin findings which 

may be manifestations of alterations in specific breast cancer genes), review of genetic 

concepts, discussion of options for screening and early detection, an opportunity for 

questions, a link to supporting services and a plan for follow up. In cases whereby a genetic 

visit indicates testing, the basic elements of informed counseling remain the standard of care 

[24], although these may increasingly be conveyed and communicated in on-line via video 

conferencing as well as in-person contexts. In an era of increasing somatic genetic analysis 

of breast and other tumors for the purposes of “targeting” therapies, it will be important to 

distinguish whether the primary purpose of genomic analysis is to determine inherited 

susceptibilities, or whether this information may emerge as a secondary byproduct of tumor 

genomic analysis (Fig. 1).

The current number of individuals having been tested for mutations in BRCA1/2 exceeds 

one million. Pathogenic mutations appear to account for ~ 30 % of high-risk breast cancer 

families and explain ~ 15 % of the breast cancer familial relative risk (the ratio of the risk of 

disease for a relative of an affected individual to that for the general population) (Fig. 1) [4–

6, 25]. Contextualizing disease risk of inherited mutations and sequence variants in 

BRCA1/2 can be complex, since the pathogenicity of sequence variants is uncertain, and 

requires annotation and curation using existing databases (e.g. the Breast Cancer 

Information Core; www.research.nhgri.nih.gov/bic).
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Syndromes of Breast Cancer Predisposition

Hereditary Breast and Ovarian Syndrome

BRCA1 and BRCA2 are the predominant breast cancer susceptibility genes. Pre-test 

probability for BRCA2 testing is higher for families with male and female breast cancer and 

for BRCA1 testing in families with both breast and ovarian cancer [26]. 18,000 cases of 

breast cancer annually are associated with an obvious hereditary predisposition. Detection of 

breast cancer leads to a cure rate of more than 90 % if detected at an early stage. All told 

more than 200,000 breast cancer survivors in the United States developed their primary 

cancers as a result of a constitutional (inherited) predisposition, highlighting the importance 

and rationale for genetic testing [27]. Estimates range from one in 150 to one in 800 

individuals in the population who are genetically predisposed to developing breast cancer 

and in certain ethnic groups these estimates are as high as 1 in 40 [28, 29]. A woman 

carrying a mutation in BRCA1 has a lifetime breast cancer risk as high as 70 % by age 70 by 

epidemiologic analysis [29, 30–32]. In select families with a high frequency of early onset of 

breast or ovarian cancer risk, estimates further increase to as high as 90 % lifetime breast 

cancer risk [33].

Highly Penetrant Breast Cancer Genes

BRCA1 and BRCA2—The BRCA1 and BRCA2 genes function in DNA damage response 

and homologous recombination [34]. BRCA1 is a large gene located on chromosome 17 and 

is made up of 24 exons, 22 of which are coding and two of which are non-coding. BRCA2 
spans greater than 70,000 bases and the gene is comprised of 27 exons (genenames.org).

Premature truncations of the BRCA1 and BRCA2 proteins by nonsense or frame-shift 

alterations are the predominant genomic aberrations underlying susceptibility. Variants of 

uncertain significance were initially observed in up to a quarter of patients, however the 

frequency of these predominantly missense variants of unknown significance (VUS) 

dropped to between 2 and 5 % as large databases of genetic variants and “high-risk” 

kindreds were created [35, 36]. With the uptake of commercial testing by new laboratories, 

and the expansion of testing criteria beyond “high-risk” kindreds, this percentage of VUS 

may again increase [37].

Over 2000 distinct rare variants, in the form of intronic changes, missense mutations, and 

small in-frame insertions and deletions, have been reported in BRCA1 and BRCA2 (Breast 

Cancer Information Core; www.research.nhgri.nih.gov/bic). The main domains of BRCA1, 
which are critical for DNA repair activity, are located in the RING finger and BRCT 

domains. In BRCA2, highly penetrant, pathogenic missense mutations reside mainly in the 

DNA binding domain [38, 39]. Large genomic rearrangements or structural variations occur 

in BRCA1 (14 % of mutations) and BRCA2 (2.6 % of mutations). A reason for the relative 

increase in structural variations in BRCA1 compared to BRCA2 results from the large 

number of Alu repeats in the genomic region containing the BRCA1 gene [40].

Population specific or “founder” mutations in BRCA1/2 have been described. Some of the 

most common founder mutations occur in individuals of Ashkenazi (eastern European) 

Jewish ancestry, including two mutations in BRCA1 (185delG and 5382insC) and one 
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mutation in BRCA2 (6174delT) [41–43]. A small number of patients in the Ashkenazi 

population with breast cancer have non-founder mutations in BRCA1/2 (5 % of all 

mutations) and thus reflex full gene sequencing may be required if founder mutations are 

non-revealing [42, 43]. The Ashkenazi Jewish founder mutations are the best studied and 

described; 3 % of individuals in this population carry a founder mutation. Other examples of 

BRCA1 founder mutations are reported in the Dutch and Hispanic populations. Again for 

these populations, targeted sequencing for specific BRCA1/2 mutations is advised before 

reflex to full gene testing in cases of a negative result. Carriers ascertained from population 

studies demonstrate a lower penetrance of disease in comparison to those identified through 

kindred based studies, which is not surprising as a striking overt phenotype in the families 

prompted initial study.

Including follow up recommendations for screening and prevention for BRCA1 mutation 

carriers remains as a standard of care given a ~ 57 % probability of developing breast cancer 

and a 40 % chance of developing ovarian cancer by age 70. BRCA2 mutation carriers are 

estimated to have a 49 % chance of breast cancer and an 18 % chance of ovarian cancer [44]. 

Contributing factors to the development of cancer include environment, modifying genomic 

alterations and the specific type of constitutional aberration in BRCA1/2. Statistical 

evidence has emerged suggesting genotype-phenotype correlations with regard to ovarian 

cancer risk. The early literature correlated the location of mutations in BRCA1/2 with 

specific phenotypes and gleaned that nonsense and frameshift mutations located in the 

central regions of either coding sequence, termed ovarian cancer cluster regions (OCCR), 

were associated with a greater risk of ovarian cancer than similar mutations in the proximal 

and distal regions of each gene [45, 46]. Among the greater than 22,000 BRCA1/2 mutation 

carriers enrolled in Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) group, 

the relative increases in ovarian cancer and decreases in breast cancer risk for mutations in 

the central region of each gene and higher risk of breast cancer for mutations in the 5′ and 

3′ regions of each gene have been observed. Further variability in risk is also partly 

explained by common genetic modifiers of breast and ovarian cancer risk in BRCA1/2 
mutation carriers that have been identified through genome-wide association studies [19, 

47–51]. [55, 117] (Fig. 2).

The genomic location of a patient’s BRCA1/2 mutation and the risk from modifier genes 

suggests that the BRCA1 mutation carriers in the highest risk category may have an 81 % or 

greater chance of breast cancer and a 63 % or greater chance of ovarian cancer by age 80, 

whereas BRCA2 mutation carriers at greatest risk may have more than an 83 % chance of 

breast cancer by age 80 [19, 52]. In conjunction with other variables modifying risk in 

BRCA1/2 mutation carriers, these emerging biomarker data on mutation location and 

modifier genes offer the potential for more precise risk estimates. It is also possible that such 

biomarkers may correlate with disease behavior. As breast cancer patients with BRCA1 
mutations tend to have tumors that display features of more aggressive disease [53–56], 

genomic biomarkers of risk may also impact on the phenotype (e.g. estrogen receptor status) 

of hereditary disease.

As alluded to previously, VUS, including missense, intronic, and small in-frame insertion/

deletion variants, continue to pose clinical challenges in terms of interpreting test results. 
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Although one large testing company has classified many BRCA1/2 variants as neutral or 

pathogenic using data collected over years, that data have thus far not been placed into 

public access. Thus, laboratories now entering the clinical sequencing space have had 

challenges classifying variants encountered during testing. In an effort to improve the 

classification process for variants in all genes now offered as part of clinic genetic testing, 

the Clinvar (www.ncbi.nlm.nih.gov/clinvar) database has been curating variants and 

attempting to capture clinical information, efforts pioneered for BRCA1/2 by the 

international Evidence-based Network for the Interpretation of Germline Mutant Alleles 

(ENIGMA) Consortium (see below). In 2014, the Global Alliance announced a 

demonstration project to create an international database of BRCA1/2 variants. These steps 

are crucial to allow the most accurate interpretation of these genetic biomarkers for inherited 

risk. In the absence of these definitive databases, evaluation of VUS has often relied on in-

silico models or animal models that predict the functional impact of variants on the basis of 

amino acid conservation and/or structure or try equate the human disease to a different 

species that is not a direct homologue to humans.

To provide algorithms to the interpretation of variants of uncertain significance, expert and 

evidence-based committees focused on the development of quantitative risk prediction 

methods. One such effort is ENIGMA, which has substantially improved assessment of the 

pathogenicity of VUS [57]. The following elements are assessed for each variant: 

conservation, family history, tumor pathology, and the effects of RNA splicing [39, 57–59]. 

This effort also estimates the probability of pathogenicity for each variant using combined 

evolutionary sequence conservation (Align-GVGD) [39, 59–61], and has resulted in 

classification of many BRCA1/2 VUS as pathogenic or of neutral/low effect [59]. Due to the 

lack of statistical power for rare variants or individual VUS, high throughput quantitative 

cell-based in vitro assays have been developed to evaluate the effect of variants on 

established functions of the BRCA1 and BRCA2 proteins, with known controls of normal 

and pathogenic mutations as controls to asses sensitivity and specificity for VUS [39] or 

variant specific biomarker.

A special challenge in interpreting gene variants is the example of hypomorphic mutations, 
which retain some protein activity. Insights are being gained for some specific variants, i.e. 

the p. Arg1699Gln (R1699Q) missense mutation in the BRCT domain of BRCA1 that 

abrogates the repression of microRNA-155 [62] and is associated with a cumulative risk of 

breast cancer of 24 % by age 70 [57], and the well-known polymorphic stop codon in 

BRCA2, p.Lys3326X, which is associated with only a modest increase in breast cancer risk 

[odds ratio (OR) = 1.26] [63] and appears to have little clinical relevance. As more moderate 

risk variants or biomarkers in breast cancer predisposition genes are detected and clinically 

validated, personalized surveillance and prophylaxis measures may be developed.

Impact on Clinical Management for BRCA1 and BRCA2 Mutation Carriers—
Genetic testing informs both medical decisions and family planning. While evidence-based 

medicine continues to evolve, BRCA mutation carriers should undergo a triple assessment 

for breast surveillance, including self-examination, clinician examination and 

mammography/Magnetic resonance imaging (MRI) [64–66].
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Mammography is of limited sensitivity in BRCA mutation carriers; in one study 29 % of 

new tumors were missed by mammography [16]. This limitation may be due to higher breast 

density in younger women and as hereditary breast cancers are often more rapidly growing 

“triple negative” tumors (negative for estrogen and progesterone receptors and lacking 

HER2/neu overexpression or amplification) [67]. It is strongly recommended that women at 

hereditary risk begin annual mammography/MRI screening at age 25 (http://www.nccn.org/

professionals/physician_gls/pdf/f_guidlines.asp#breast_risk) [68]. MRI detects twice as 

many breast cancers in BRCA1/2 mutation carriers as mammography or sonography [16], 

and is considered the standard of care. Alternatively, risk reducing mastectomy (RRM) 

decreases the risk of breast cancer by at least 90 % in BRCA1/2 mutation carriers [69, 70], 

but only 36 % of women in the United States and 22 % in Canada choose to undergo this 

surgery [71]. In contrast, risk-reducing salpingo-oophorectomy (RRSO) has become the 

standard of care for all women with BRCA1/2 mutations because ovarian cancer screening 

methods using serum markers and imaging are ineffective [72, 73]. RRSO has been shown 

to reduce the risk of BRCA-associated gynecologic cancer by 80–96 % [15, 69, 74] and to 

reduce the risk of breast cancer by ~ 50 %, most likely through the induction of premature 

menopause [15, 69, 75]. Most significantly, RRSO reduces overall mortality of women with 

BRCA1/2 mutations by 60 % [76]. This reduction in mortality occurs despite the 0.2 % 

annual risk of cancer of the peritoneal lining around the ovaries and fallopian tubes, which 

remains as these tissues cannot be surgically removed by RRSO [74]. Genetic testing for 

BRCA1/2 mutations and RRSO provided an early example of the deployment of 

‘personalized’ prevention through genetics [16, 77].

Data pertaining to chemoprevention based on inherited biomarkers such as BRCA1/2 are 

limited. Efficacy of tamoxifen for BRCA1/2 mutations carriers was conducted as a sub-

analysis as part of the 13,388 women enrolled in the National Surgical Adjuvant Breast and 

Bowel Project Prevention Trial (NSABP-P1). In this study, 19 BRCA1/2 mutation carriers 

were identified among 288 that developed breast cancer, with risk ratios for developing 

breast cancer with tamoxifen estimated to be 1.67 (95 % confidence interval (CI): 0.32–

10.7) for BRCA1 mutation carriers and 0.38 (95 % CI: 0.06–1.56) for BRCA2 mutation 

carriers [78]. In a larger study of 2464 mutation carriers, tamoxifen use after a first breast 

cancer was associated with a reduced risk of contralateral breast cancer [79]. More refined 

chemoprevention options for women with mutations in BRCA1/2 may evolve. In patients 

with no mutations in BRCA1/2, other selective estrogen receptor modulators and aromatase 

inhibitors have been shown to prevent breast cancer,(http://www.nccn.org/professionals/

physician_gls/pdf/f_guidlines.asp#breast_risk). Some data have also begun to emerge 

suggesting that modulators of RANKL signaling may be a target for chemoprevention [80].

Ovarian cancer chemoprevention studies have produced somewhat conflicting results 

bearing on benefits for BRCA mutation carriers [81–83], although most believe that oral 

contraception does decrease risk of hereditary as well as sporadic ovarian cancer. In that 

regard, treatment and standard of care for BRCA1/2 mutation carriers must address ovarian 

cancer detection and prevention. Given the unproven methods of screening and the high 

mortality at time of diagnosis associated with ovarian cancer, definitive counseling and 

recommendations for prophylactic removal of ovaries after childbearing are standards of 

care for BRCA1/2 mutation carriers or for women with two or more first degree relatives 
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with ovarian cancers in the family (http://www.nccn.org/professionals/physician_gls/pdf/

f_guidlines.asp#breast_risk). [15, 69, 84–88].

Finally, the identification of mutated genes as biomarkers has led to therapeutic applications. 

In vitro and in vivo experiments and clinical trials have shown that platinum chemotherapy 

is effective against BRCA1 (and, by analogy, BRCA2) mutant tumors, in part because 

platinum generates interstrand cross-links that can only be adequately repaired by BRCA1- 

and BRCA2-dependent homologous recombination DNA repair [89]. A new class of drugs 

that inhibit poly(ADP-ribose) polymerase (PARP), an enzyme involved in base excision 

repair [90, 91] shows antitumor activity in the background of BRCA-associated defects in 

homologous recombination-mediated DNA repair [92]. Clinical trials have explored the 

efficacy of PARP inhibitors in the treatment of BRCA1/2 mutant breast, ovarian, pancreatic, 

prostate, and other cancers, and one such compound was recently licensed for use in the U.S. 

for patients with previously treated BRCA mutant ovarian tumors [93]. Not all BRCA 
mutation carriers respond to these agents; mutations in the N-terminal BARD1 binding 

domain of BRCA1, such as the relatively common p.Cys61Gly (C61G), may not confer 

hypersensitivity to PARP ihibitors [94, 95]. Acquired resistance to PARP inhibitors has been 

associated with multiple mechanisms, including drug metabolism and efflux, post-

transcriptional alterations of BRCA1/2, secondary mutations that restore the homologous 

recombination activity of BRCA1/2, and accumulation of somatic genetic alterations that 

counteract the sensitivity associated with BRCA1/2 mutations [95–97]. Whether 

combination therapies can overcome these complications remains to be determined.

Other Highly Penetrant Breast Cancer Predisposing Genes

TP53 and CDH1—Compared to BRCA1/2 mutations, TP53 mutations are rare. However 

when testing for BRCA1/2 is non-revealing or determined not causative, testing of TP53 
may be warranted in cases with a strong family history of cancer and negative BRCA1/2 
testing. Li-Fraumeni syndrome (LFS) is a multi-cancer predisposing syndrome driven by 

genomic alterations in the TP53 gene. TP53 encodes the tumor suppressor protein p.TP53. 

Patients with TP53 mutations have an increased risk of breast cancer [98]. In determining 

the importance to variants detected by next generation sequencing similar steps taken by 

ENIGMA’s efforts in assessing the BRCA genes are required. The International Association 

Cancer Research (IARC) hosts the TP53 locus specific database. The database curates 

frequency of variants, if the variant has been detected in the germline, been found in the 

tumor, seen in a cell line, segregation information of the variants and functional prediction of 

the genomic variant on protein function. National guidelines for patients with Li-Fraumeni 

Syndrome support TP53 testing concurrently for women ≤35 years of age or as a follow-up 

test after negative BRCA1/2 testing (http://www.nccn.org/professionals/physician_gls/pdf/

genetics_screening.pdf).

For carriers of TP53 mutations, it seems reasonable to consider adding annual MRI starting 

at age 20–25 years of age or based on earliest age of onset in the family. When patients are 

found to harbor a TP53 mutation, there is some laboratory based evidence that radiation 

exposure may be deleterious, although this remains incompletely documented. Ongoing 

trials are testing other approaches such as whole body MRI, PET, and other focused 
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screening; patients should discuss approaches to novel screening and technology with their 

providers [99].

Reports of germline CDH1 mutations emerged in patients with hereditary diffuse gastric 

cancer in the late 1990s [100–104] and it was soon observed that these families also 

included individuals with lobular breast cancer. In screening of over 400 cases of breast 

cancer, three patients were found to harbor germline mutations in CDH1. Families with 

multi-generations affected with gastric cancer have a 30 % chance of harboring a mutation 

in E-Cadherin (CDH1), and 70 % of carriers of mutations in this gene develop gastric 

cancer. In addition to the diffuse gastric cancer risk individuals with CDH1 mutations also 

have approximately a 40–50 % risk of lobular cancer of the breast (http://www.nccn.org/

professionals/physician_gls/pdf/genetics_screening.pdf).

While no formal testing recommendations are established for patients with CDH1 mutations 

and breast cancer, Petridis et al. recently proposed CDH1 mutation screening should be 

considered in patients with bilateral lobular carcinoma in situ with or without invasive 

lobular breast cancer and with or without a family history. Gastrectomy for patients with 

CDH1 mutations is routinely advised. However, the identification of families with CDH1 
mutations through multi-gene panel testing and no family history of gastric cancer are 

proving difficult to counsel, as the risk of gastric cancer in those patients is unknown. 

Patients are also presented options regarding mastectomy given the frequency of breast 

cancer in these patients or cumulative risk for breast cancer for females by age 75 years is 

52 % [104].

PTEN/STK11—The majority of patients that undergo inherited genetic testing do not have 

overt physical manifestations of a syndrome. However, a few constitutional syndromes with 

overt phenotypes and genetic testing or “biomarkers” do have an increased risk of breast 

cancer such as Cowden syndrome/Bannayan-Riley-Ruvalcaba syndrome/PTEN hamartoma 

tumor syndrome (PHTS), and Peutz-Jeghers syndrome [105–107]. Major criteria to assess in 

diagnosing female patients suspected of having Cowden syndrome include breast cancer, 

endometrial cancer, follicular thyroid cancer, multiple gastrointestinal hamartomas or 

ganglioneuromas, macrocephaly ( > 97 %), and mucocutaneous lesions (trichilemmoma, 

palmoplantar keratosis, extensive mucosal papillomatosis or verrucous facial papules). 

Minor criteria include autism spectrum disorder, colon cancer, ≥three esophageal glycogenic 

acanthosis, lipomas, intellectual disability, papillary or follicular variant of thyroid cancer, 

thyroid structural lesions, renal cell carcinoma, single gastrointestinal hamartoma or 

ganglioneuroma, testicular lipomatosis, and vascular anomalies. Individuals with a family 

member with a known mutation, patients with autism and macrocephaly, two or more biopsy 

proven trichilemmomas, two or more major criteria where one has to equal macrocephaly, 

three major criteria without macrocephaly or one major and three minor criteria and four 

minor criteria [108]. Screening for patients with Cowden is as per National Comprehensive 

Cancer Network (NCCN) guidelines; breast MRI is part of this strategy and preventive 

surgeries can also be considered (http://www.nccn.org/professionals/physician_gls/pdf/

genetics_screening.pdf) (Table 1).
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STK11—Peutz-Jeghers syndrome (PJS) is an autosomal dominant cancer predisposition 

syndrome with clinical characteristics of mucocutaneous pigmentation and gastrointestinal 

polyps. Patients with PJS are at increased risk of colon cancer, breast cancer, ovarian 

(mucinous tumors and sex cord tumors with annular tubules) [109–112]. Most mutations are 

small deletions/insertions or single base substitutions resulting in aberrant protein function 

with loss of kinase activity. In the analysis of greater than 400 patients, and close to 300 of 

these individuals with known STK11 mutations, the cancer risk for the development of 

breast cancer was 50 % by age 60 [113, 114]. However, in the largest study to date of PJS 

patients no differences in breast cancer risk have been found [113, 114] but the absolute 

numbers of kindreds with this syndrome collected for study is still small.

The major phenotype of PJS is gastrointestinal polyps. Patients require frequent endoscopic 

surveillance with polypectomy, which decreases the rate of intussusception and potential 

bowel loss. Patients with PJS should be counseled required the high rate of breast cancer and 

the benefits of prophylactic mastectomy and bilateral salpingo-oophorectomy after the age 

of 35 to prevent malignancy. In addition to monitoring of the gastrointestinal tract, routine 

screening of the breast (e.g. mammography and possibly MRI) should be standard of care 

for individuals with PJS. In addition, patients should be offered investigational pancreatic 

cancer screening (e.g. magnetic resonance cholangiopancreatography (MRCP) or 

endoscopic ultrasound) starting at an early age, as well as small bowel visualization, and 

pelvic exam with consideration of transvaginal ultrasound (although unproven, to address 

ovarian cancer risk) and annual physical exam [113, 114].

Moderate Penetrance Breast Cancer Genes or Biomarkers: CHEK2, ATM, PALB2, BRIP1, 
RAD51C, RAD51D, BARD1

There are no standardized guidelines for the management of other cancer risks or for the 

relatives of carriers with moderate penetrance gene mutations; screening recommendation 

should be established based on the patient’s personal and family histories.

CHEK2—CHEK2 normally functions by preventing cellular entry into mitosis when DNA 

is damaged. In 2000, Lee et al. reported that CHEK2 function in DNA damage by 

phosphorylating BRCA1 [115]. Further experiments revealed CHEK2 and BRCA1 
interaction is necessary for BRCA1 to restore the survival after DNA damage. Heterozygous 

mutations were initially reported in a LFS-like family, suggesting CHEK2 serves as a tumor 

suppressor and mutations predispose individuals to cancer [116]. Subsequently mutations 

were shown to be associated with a moderate risk of breast cancer, rather having any 

association with LFS. Population studies have aimed to determine the role of CHEK2 in 

patients without an identifiable mutation in BRCA1/2 but a suggestive family history [117]. 

The truncating mutation CHEK2*1100delC affecting kinase activity was revealed in 1.1 % 

of healthy individuals compared to 5.1 % coming from over 700 families with breast cancer 

(male and female breast cancers both included) and negative BRCA1/2 testing. These data 

suggest a greater than a two-fold increase of breast cancer risk in females and 10-fold 

increase in men with the CHEK2*1100delC. As a means to assess for additional mutations 

in BRCA negative families with breast cancer, Shutte et al. assessed 89 kindreds with three 

or more individuals with breast cancer and did not find other appreciable site specific 
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variation in CHEK2 [118]. Although studies are still in progress, it appears that the detection 

of a CHEK2 deleterious mutation in the setting of a strong family history of breast cancer 

may warrant clinical use of this biomarker in the pre-symptomatic assessment for screening. 

Whether the absolute level of CHEK2-associated risk meets threshold for MRI screening 

can be determined on an individualized basis, taking into account population derived as well 

as family history data.

ATM—ATM is a gene encoding a protein that allows for the efficient repair of DNA. ATM 
when altered manifests phenotypes from bi-allelic and arguably mono-allelic genomic 

alterations. Individuals with two mutations or bi-allelic or homozygous mutations develop 

severe disease of the immune system and are predisposed to developing leukemia and 

lymphoma, called Ataxia-Telangiectasia (A-T). Various degrees of evidence support or 

refute individuals harboring a single mutation in the ATM gene as having an increased risk 

of developing breast cancer, stomach, ovarian, pancreatic, or lung cancer [119–122, 123]. 

Approximately 1 % of the population is heterozygous for mutations in the ATM gene.

Mutant specific evidence for ATM p.S49C and p.F858L in association with increased breast 

cancer susceptibility show an odds ratio of 1.44 combining data from an American and 

Polish study [124]. When mutations that have been identified specifically in patients with 

ATM have been studied in mono-allelic carriers the estimated relative risk for familial breast 

cancer was = 2.37. The data are based on the evaluation of individuals from 443 familial 

breast cancer kindreds [120, 125–127]. Breast cancer-associated ATM mutations tend to be 

missense mutations whereas missense mutations are uncommon in individuals with A-T, 

even in the same host population [121].

Individuals who are carriers for ATM gene mutations should be aware that they might be 

sensitive to radiation, although the magnitude of this radiation sensitivity requires further 

study. There are no ATM mutation specific sets of recommendations for therapy, treatment, 

or tailored management options [128–131]. No definitive evidence has emerged regarding 

increased risk of mammograms in ATM mutation carriers, however, MRIs and ultrasound 

remain an important screening strategy. Annual breast MRI screening is recommended for 

women with a lifetime risk for breast cancer of 20–25 % or greater and it is generally 

recommended that MRI be used in conjunction with mammogram.

Regarding prevention, prophylactic mastectomy has not been evaluated extensively in 

individuals who are carriers for ATM gene mutations. There is no evidence concerning the 

effectiveness of chemoprevention in the ATM gene carrier population, although there is also 

no evidence that it will not be as effective as in the general population.

PALB2—PALB2 is a gene encoding a necessary protein of the Fanconi complex and is also 

known as the partner and localizer of BRCA2 and FANCN. PALB2 interacts with the 

BRCA2 protein and work together to correct and fix DNA breaks. PALB2, as it helps control 

the rate of cell growth and division, is a tumor suppressor (http://ghr.nlm.nih.gov/gene/

PALB2). Moreover, by limiting mistakes in DNA repair, PALB2 aids in maintaining the 

stability of genetic information.
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Literature is emerging in regards to the contribution of germline mutations of PALB2 and 

hereditary breast cancer. Approximately a dozen mutations have been identified in PALB2 
and familial breast cancer. Mutations in PALB2 are estimated to lead to a two-fold increase 

in breast cancer risk. In 2007, investigators sequenced the PALB2 gene in close to 1000 

individuals with breast cancer who were negative for BRCA1/2 mutations [132]. Ten out of 

923 harbored PALB2 mutations conferring a 2.3-fold higher risk of breast cancer. The 

Q775X variant was identified in 1/50 high-risk women or 2/356 breast cancer cases and not 

present in any of > 6000 controls [133]. Assessing 559 women with contralateral disease and 

565 women with unilateral disease as controls, fine truncating pathogenic mutations were 

identified. A study of Australian and New Zealand women who were negative for BRCA1/2 
mutations underwent PALB2 testing and 26 out of 747 women were detected having PALB2 
genomic alterations. Two women harbored nonsense mutations and two frameshift 

mutations. Investigators concluded that ~ 1.5 % of Australasian women in families with 

multiple members affected with breast cancer segregate PALB2 mutations in their families.

Recent studies analyzing the risk of breast cancer in > 150 families assessing truncating, 

splicing or deletions in PALB2 and family history estimated the risk of breast cancer for 

female carriers compared to the general population was eight to nine times as high among 

women younger than 40, six to eight times as high among those 40–60 years of age and five 

times as high for those females older than 60 years of age [134]. The estimated cumulative 

risk of breast cancer among female mutations carriers was 35 % by age 70 and the absolute 

risk ranged from 33 to 58 % depending on the extent of family history [134]. The 

investigators of this study concluded the breast cancer risk from PALB2 potentially overlap 

with that for BRCA2 mutation carriers and that loss of function mutations account for 

roughly 2.4 % of familial aggregation of breast cancer [134]. These data would support the 

role for MRI breast screening in this genetically defined population.

BRIP1—BRIP1, or alternatively named FANCJ, similar to PALB2 manifests disease in both 

the heterozygous and homozygous state. BRIP1 is also known as the BRCA interacting 

helicase. Patients with constitutional bi-allelic mutations in these two genes are notable for a 

Fanconi anemia phenotype. One study suggests that constitutional heterozygous carriers 

have a relative risk of breast cancer of 2.0 [135], however further validation studies need to 

be done.

RAD51C and RAD51D—Nonsense, frameshift, splice and non-functional missense 

mutations have been described in RAD51C, however the evidence that they are a driver of 

familial breast cancer is limited [136, 137]. Evidence of RAD51C mutations in familial 

ovarian cancer is greater than familial breast cancer [137, 138]. In a cohort of familial breast 

and ovarian cancer cases a distinct difference was noted between ovarian and breast cancer 

i.e., data revealed a relative risk of 5.88 in mutation carriers for ovarian cancer and 0.91 for 

breast cancer [139].

Loveday et al. also demonstrated a similar risk ratio for patients harboring mutations in 

RAD51D. Regarding therapeutics, the group showed that cells deficient in RAD51D are 

sensitive to treatment with a PARP inhibitor, suggesting a possible therapeutic approach for 

RAD51D mutant patients with a family history of breast and predominantly ovarian cancer.
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BARD1—In Finnish families with breast and/or ovarian cancer, 5.6 % of individuals were 

detected to have a cys557-to-ser substitution (C557S) in the BARD1 gene compared to 

healthy controls (5.6 vs. 1.4 %, p = 0.005) [140]. The highest prevalence of C557S was 

detected in a subgroup of 94 patients with breast cancer whose family history did not include 

ovarian cancer (7.4 vs 1.4 %, p = 0.001). The C557S mutation is located in a region of 

BARD1 needed for induction of apoptosis and possibly also transcriptional regulation. The 

investigators concluded that C557S may be a breast cancer-predisposing allele.

Low Penetrant Polygenes

Other single nucleotide variations or single nucleotide polymorphisms have been detected 

conferring a moderate to low penetrant breast cancer genes or biomarkers [23] (Fig. 2). 

Genome-wide association studies (GWAS) have identified common genetic variants in 76 

loci associated with small increases in the risk of breast cancer (Fig. 1) [63, 141]. However, 

most of these variants have weak effects on risk (OR < 1.10) [63]. Little is known about the 

relevance of these risk factors to the different molecular subtypes of breast cancer, although 

three of these loci (MDM4, 19p13.1, and TERT-CLPTM1L rs10069690) are exclusive to 

triple-negative breast cancer [142–145] and BRCA1-associated breast cancer [19]. Although 

the identification of causal variants and mechanism of action for most remain unclear, some 

variants are near known genes such as BRCA2, TGFBR2, MYC, and TET2 [63]. One 

mechanism of action of common variants is on gene transcription, as evidenced by the 

11q31.1 locus and Cyclin D1 expression via a transcriptional enhancer and a silencer of the 

CCND1 gene [146], and FGFR2 expression via induction of FOXA1, ERa, and E2F1 

binding to enhancers [142].

The clinical utility of these common variants as a paradigm of polygenic risk assessment for 

human cancer remains a work in progress [144–146]; breast cancer–associated common 

variants combined with traditional breast cancer risk markers had minimal impact on risk 

prediction models [147] or discriminatory accuracy [148]. A polygenic risk score calculated 

as the sum of the ORs for each allele, correlated with risk of early onset breast cancer (OR = 

3.37, P = 0.03) [148] and other such studies are now under way [145], with the goal of 

leading to better identification of women who will benefit from enhanced screening and 

intervention [22].

New Paradigms for Genomic Biomarkers of Risk

Two decades of molecular biologic and genetic epidemiologic research have resulted in tests 

for inherited genomic variants as useful biomarkers for breast cancer risk. Tests for highly 

penetrant (high-risk) genetic mutations have been incorporated into clinical practice. 

Currently, “panel” tests for large numbers of genes, including some of unclear clinical 

utility, are commercially available. A pressing challenge posed by these developments is the 

interpretation and actionability of the large number of variants and “low penetrance” 

mutations discovered. To address this challenge, in 2014, the Prospective Registry of 

Multiplex Testing (PROMPT) began as an academic-commercial-and patient-centered 

initiative, and readers are encouraged to access it at https://connect.patientcrossroads.org. 

Such longitudinal studies would also add to the evidence base for targeted screening and 

prevention in genetically defined high-risk cohorts. Other federal initiatives are underway to 
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catalogue and interpret the emerging array of genomic biomarkers of inherited cancer risk, 

which will only increase as screening of entire exomes and genomes becomes more feasible.
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Fig. 1. 
Elements of informed consent
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Fig. 2. 
Breast cancer biomarkers
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