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Abstract

For many organisms, stage is a better predictor of demographic rates than age. Yet no general 

theoretical framework exists for understanding or predicting evolution in stage-structured 

populations. Here, we provide a general modeling approach that can be used to predict evolution 

and demography of stage-structured populations. This advances our ability to understand evolution 

in stage-structured populations to a level previously available only for populations structured by 

age. We use this framework to provide the first rigorous proof that Lande’s theorem, which relates 

adaptive evolution to population growth, applies to stage-classified populations, assuming only 

normality and that evolution is slow relative to population dynamics. We extend this theorem to 

allow for different means or variances among stages. Our next major result is the formulation of 

Price’s theorem, a fundamental law of evolution, for stage-structured populations. In addition, we 

use data from Trillium grandiflorum to demonstrate how our models can be applied to a real-world 

population and thereby show their practical potential to generate accurate projections of 

evolutionary and population dynamics. Finally, we use our framework to compare rates of 

evolution in age- versus stage-structured populations, which shows how our methods can yield 

biological insights about evolution in stage-structured populations.
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Evolution occurs when organisms exhibit differences in the vital rates of birth, death, and 

dispersal that are at least partly heritable. The best-developed body of evolutionary theory 

that accounts for interindividual variability in vital rates is for age-structured populations 

(e.g., Lande 1982a, 1982b; Charlesworth 1994). Yet in many species, age (time since birth) 

is not the best index for characterizing individual variation in demography. Many factors 

other than age, such as sex, body size, location, developmental stage, the magnitude of 

nutritional reserves, and measures of physiological condition, can be better predictors of 

birth and death than is age alone. As a concrete example—and indeed a motivation for this 

study—Trillium grandiflorum (Melanthiaceae) is a perennial, nonclonal herb that occupies 

mature forest in the deciduous biome of eastern North America. After reproduction, seeds 

germinate in their first year, then pass through a number of stages, each defined by the 

number and sizes of leaves, before reaching the reproductive stage (Knight 2004). It is not 
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uncommon for an individual to live in, say, a three-leaf stage for some years, before 

becoming reproductive. Reproductive individuals can also regress to previous stages, 

particularly after being damaged by deer herbivory. Because this damage is correlated with 

flowering time, declining as the growing season progresses, within each season there is a 

component of selection in favor of later-flowering plants.

Evolutionary biologists who seek to predict adaptive evolution in species like Trillium, 

where vital rates depend primarily on stage, lack an established general framework for doing 

so comparable to the one available for age-structured populations (e.g., Charlesworth 1994). 

It is not known whether approaches developed for age structure will be valid for more 

general kinds of population structure. Indeed, describing evolutionary dynamics in stage-

structured populations poses a major challenge not present for populations structured solely 

by age, since in stage-structured populations any given stage might at any time contain a 

mixture of cohorts of different ages, each of which could have a different history of 

selection.

Even if a general framework were available for studying evolution in stage-classified 

populations, its complexity might present a major obstacle to its utility for evolutionary 

biologists, due to “the difficulty of providing concise descriptions of evolutionary dynamics 

with these models” (Charlesworth 1994, p. 11). Moreover, some of the most basic tenets of 

evolutionary biology that are known to be valid with age structure have yet to be firmly 

established for stage structure. This lack of progress not only inhibits evolutionary biologists 

from applying stage-structured methods but also undermines the conceptual grounding of 

stage-structured population evolution within presumably general theories of evolution.

These considerations suggest that there is a serious need in evolutionary biology for a 

general, practical, and sound understanding of how evolutionary processes operate in stage-

structured populations. It is equally important to understand how such processes relate to 

well-known evolutionary principles. To these ends, we focus here on three main objectives. 

First, we seek a general set of tools that can be used to model evolution by natural selection 

in any stage-structured population. Second, we assess whether Lande’s theorem (Lande 

1976, 1979, 1982a, 1982b) holds for generally structured populations. Third, we derive a 

version of Price’s theorem (Price 1970) that applies to stage-classified populations. We also 

demonstrate the use of the general model and simplifications of it to a real population of 

Trillium and a hypothetical population with only two stages and then use our results to 

develop biological insights about rates and directions of evolution in age- versus stage-

structured populations.

A General Model

We first describe how to construct a completely general discrete-time model of stage-

structured population dynamics and evolution, assuming the population includes a number 

of discrete stages. The model tracks changes over time in both the population sizes and the 

joint probability density functions (PDFs) of genotypes and phenotypes for all stages. 

Selection could act on any set of stages through the stage-dependent vital rates, which can in 

turn be functions of a multivariate phenotype denoted by the vector z. The model we 
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consider is completely general in that it permits transitions between any pair of stages, 

reproduction by any stage, and newborns in any stage.

The modeling framework we present focuses on evolution over single time steps (which we 

will generically call years) and so pertains directly to short-term analyses of populations 

living in variable environments or with density dependence. Making predictions about long-

term evolution using this short-term framework, of course, requires one to make assumptions 

about variation in transitions through time owing to both environmental change and changes 

in population size and structure (e.g., if there is density dependence) and about sources of 

genetic variation such as mutation.

We also assume that numbers are large enough to ignore demographic stochasticity. Density 

dependence and stochasticity are important and realistic complications, but the framework 

we present here provides a necessary step for future extensions that directly explore the 

impact of such factors on evolution in stage-structured populations.

Let z p (z1, z2, …, zm)T represent a multivariate quantitative trait whose components are 

expressed in specific stages. Our framework extends beyond quantitative traits and can be 

used to describe allele and genotype frequency dynamics in stage-structured populations by 

letting z indicate allele or genotype content (e.g., Rice 2004). Let z = g + e, where g is the 

additive genetic (i.e., breeding) value and e is the nonadditive genetic value plus an 

environmental deviation (e.g., developmental noise).We also assume that, at birth (before 

selection), g and e are uncorrelated and the expected value of e is 0. Our model follows, at 

each time step and for each stage i, the number of individuals Ni and the joint PDF of g and 

z, denoted pi(g, z).

An individual in stage j can contribute to stage i in the next year in two distinct ways: via 

reproduction or by making a direct transition. Direct transitions can include retention of 

individuals in a given stage, growth to a higher stage or regression to a lower stage. Let tij(z) 

be the probability of a direct transition (survival and retention, growth, or regression) to 

stage i in the next year from stage j in the current year, and let fij(z) be the number of 

surviving offspring in stage i the next year produced by an individual in stage j in the current 

year. Denote the total transition rate as aij (z) = tij (z) + fij (z). Our notation emphasizes that 

stage-specific transition probabilities and fertilities may depend on an individual’s 

phenotype z. Consideration of our general framework stresses that empirical information 

about how stage-dependent vital rates (direct transitions and reproduction) are determined 

by traits of interest is required for accurate projections of adaptive evolution in real 

populations. A real-world application is discussed below.

We begin by describing how abundances in each stage change through transition and 

reproduction over a time step. The average transition probability to stage i and fertility to 

stage i of a stage j individual are, respectively,

(1)
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(2)

where the integrals are evaluated over all values of the vectors g and z. The number of 

current individuals that transition directly to i in the next year is , whereas the 

number of the next year’s newborns that begin in stage i is . Summing these 

contributions gives the total abundance of individuals in stage i next year:

(3)

This shows that the population dynamics can be projected using a Lefkovitch matrix with 

ijth element equal to āij = t̄ij + f̄ij (see Caswell 2001, chap. 5). The total population size in the 

next year is the sum of equation (3) over all stages: .

Derivation of the change in the joint probability density function pi (g, z) is considerably 

more involved than for Ni, and we relegate most of the details to appendix A. The reasoning 

there shows that the joint PDF of genotype and phenotype in stage i at the next time step is

(4)

where , and  are as defined above. The function θi (g, z) is the joint PDF of g and z 

of all individuals that transition directly to stage i (see eq. [A1]). This is weighted by , 

the fraction of stage i individuals in the next year that reach that stage through direct 

transition. The second part of the sum in equation (4) describes contributions to the class i 
PDF via reproduction. The factor ϕi(g, z) is the joint PDF of genotypes and phenotypes 

among newborns in class i (eq. [A5]). The weighting factor  is the proportion of stage 

i individuals next year that are newly born. The specific form of ϕi(g, z) depends on the 

genetic basis of inheritance, mating scheme, distribution of the environmental component of 

phenotype among offspring, and so forth. In appendix A, we derive ϕi(g, z) for a particular 

case with random mating, namely, the infinitesimal model of inheritance (Fisher 1918; 

Bulmer 1971) with a normally distributed environmental component. However, the above 

machinery applies much more broadly.

Taken together, recursions (3) and (4) provide a general model for projecting adaptive 

evolution in a stage-structured population. The framework does not require the population to 

have reached any particular state, such as a stable stage distribution (SSD), and with 

additional assumptions, it could be extended (along the lines, say, described in Caswell 

2001) to accommodate more complex population dynamics, such as density dependence or 
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variable environments. Moreover, as indicated in appendix A, the framework can be adapted 

to any genetic basis or mating system. We do not pursue such extensions here; rather, we 

illustrate the practical application of our approach below by using data from a real-world 

system (the Trillium study mentioned in the introduction). In the process, we also assess the 

accuracy of our approach by comparing its predictions to results generated by individual-

based simulations.

The modeling framework developed in this section is completely general and provides a 

well-defined approach to developing accurate predictions of both short- and long-term 

evolutionary change in stage-classified populations. The approach is, however, sufficiently 

complex that it is not immediately apparent how—or even if—evolution in stage-structured 

populations can be related to important evolutionary concepts familiar from consideration of 

far simpler populations. In the next section, we demonstrate how one such result, Lande’s 

theorem, emerges from our general stage-classified modeling framework.

Lande’s Theorem

Lande’s theorem relates the rate of adaptive evolution of quantitative traits to the rate of 

population growth. It reveals a clear, simple link between evolutionary dynamics and 

demography. Although Lande (1982a, 1982b) showed that this striking result holds for 

populations classified by age, it has never been clear whether it applies to populations with 

other sorts of structure, such as those classified by developmental stage, body size, or spatial 

location. The goal of this section is to apply to stage-structured populations the assumptions 

required of Lande’s theorem and rigorously answer this question.

Lande’s theorem, in both its original and generalized forms (Lande 1976, 1979, 1982a, 

1982b), assumes that breeding values and phenotypes have a joint normal distribution 

(Falconer and MacKay 1996; Lynch and Walsh 1998). This assumption is, strictly speaking, 

dubious (though perfectly reasonable as a starting point). It is more doubtful for stage-

structured populations since even if distributions in stages and among newborns were normal 

in one year, the stage-specific distributions the next year, being mixtures of different normal 

distributions, would generally deviate from normality. Despite the added scope for violating 

assumptions of normality, we assume it applies in our modeling framework in an effort to 

derive a version of Lande’s theorem for stage-structured populations. Using the Trillium 
case study mentioned above (Knight et al. 2008), we show later that the normal-based 

simplification of our general model is capable of providing surprisingly accurate 

approximations of evolutionary and population dynamics in a situation where one might 

expect that the normality assumption would break down.

Assume that the joint genotype-phenotype distribution in stage j is Gaussian (normal), with 

means ḡj and z̄j and correlation matrices Gj and Pj, and that the additive-genetic and 

nonadditive (environmental) components of the phenotype are uncorrelated. The genotype of 

an offspring is the average of the genotypes of its parents. Using these assumptions and 

definitions in equations (3) and (4), the stage i genotypic mean in the next year is
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(5)

where  is the fraction of individuals in stage i in the next year contributed by 

stage j. The last equation in (5) is obtained using integration by parts for the integration with 

respect to phenotype z. Overbars indicate expected values over the distribution of stage j, 
and ∇z̄j = (∂/∂z̄1, ∂/∂z̄2, …, ∂/∂z̄m)T is the gradient operator with respect to trait means 

evaluated at z̄j, the multivariate mean phenotype of stage j. The first sum in the last line of 

equation (5) is a weighted average of stage-specific mean genotypes contributing to stage i. 
The second sum describes the combined effects of selection.

The mean phenotype in the next year is determined by separate terms for direct transitions 

and for births, since with reproduction, the environmental component of the phenotype is 

assumed to be reset. The phenotypic recursion is

(6)

where  and  are the relative contributions to stage i by stage j 

through direct transition and reproduction, respectively. Note that .

Lande’s theorem for age-structured populations (Lande 1982a, 1982b) states that the mean 

phenotype eventually evolves at the same rate Δz̄ = z̄′ − z̄ at each age and that this shared 

asymptotic rate is

(7)

where G is the additive-genetic covariance matrix for the characters z and is the geometric 

growth rate of the λ̄ population at the stable age distribution based on a Leslie projection 

matrix with vital rates averaged over the phenotypic distribution. Equation (7) shows that the 

change in the trait mean depends on the amount of heritable variation (G) and on the effect 

of a change in the trait on fitness (the gradient term). Besides multivariate normality, this 

result assumes selection is weak and evolution is slow relative to population dynamics.

In appendix B, we consider the same assumptions for a stage-classified population whose 

population dynamics are described by the Lefkovitch matrix Ā with elements āij—the 

average values aij = tij + fij—and with the evolutionary dynamics of equations (5) and (6). 

We prove there that the asymptotic rate of evolution Δz̄ is the same for all stages, even if 
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phenotypic means z̄i and additive-covariance matrices Gj differ among stages. This shared 

rate of evolution is

(8)

where is the population growth rate at the stable stage λ̄ distribution for Ā. The vector w = 

{wi} describes the stable population structure, and v = {vi} is the set of stage-specific 

reproductive values normalized so that vTw = 1. Moreover, if every class has the same mean 

z̄ and additive-genetic variance G, then the arguments in appendix B show that equation (8) 

collapses to Lande’s equation (7). To our knowledge, this is the first rigorous demonstration 

that Lande’s theorem is valid for stage-classified populations. Indeed, our proof shows it 

applies to any such population—including those that have multiple newborn and parental 

classes.

Application to a Real-World Case

We now illustrate the practical application of our general model (eqq. [3], [4]), normal 

approximations (eqq. [5], [6]), and the stage-structured version of Lande’s equation (7) to an 

empirical setting. Knight (2003, 2004) studied populations of Trillium grandiflorum 
declining due to increased deer herbivory on flowering plants. Consumed plants lose 

aboveground tissues but can survive and resprout from underground tissue. However, they do 

not reproduce in the year of consumption and have an increased probability of regressing to 

a nonreproductive stage the next year. The probability of browsing on a plant was higher for 

earlier-flowering plants and 0 for late-flowering plants. Knight et al. (2008) examined the 

evolution of flowering time in response to deer herbivory to discern whether selection could 

act rapidly and effectively enough to rescue populations from extinction. Here we show how 

the general and approximate modeling frameworks developed here can be used to address 

this issue.

The demographic model for Trillium includes six stages, the first being germinants and the 

last reproductive plants. Higher values of the phenotype z (flowering time in days) increase 

fecundity and reduce the probability of reproductive-stage regression (because of lower 

browsing). The matrix of phenotype-dependent vital rates, aij (z), is

(9)

Element a16 represents reproduction, and all other elements are direct transitions. Browsing 

as a function of flowering time was fitted using linear regression, giving 0.758 − 0.062z. 

This was used until it reached 0 at a flowering time of about z = 12.23 days, beyond which 
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browsing was assumed to cease (causing the three elements in the right column of eq. [9], 

which depend on flowering time, to become constant). For the population represented by 

this matrix of vital rates, the measured distribution of flowering time z (of reproductive 

plants) had a mean of z̄ = 7.6 days and variance P = 10.543 days2. We do not know the 

additive-genetic variance G for flowering time, so we projected dynamics using four 

assumed heritabilities h2 = G/P.

We predicted evolution of mean flowering time z̄ (averaged over all stages) and dynamics of 

total density  using four approaches: the general joint probability density 

function method (JPDF; eqq. [3], [4]), the Gaussian approximation (eqq. [5], [6]) with fixed 

variances but without the assumption that evolution is slow relative to population dynamics, 

Lande’s theorem (eq. [7]), and an individual-based model (IBM; see Knight et al. 2008 for 

details of this model). In the IBM, each individual is simulated, along with its genetics, with 

probabilities of each transition and fecundity given by the vital rate matrix (9). One hundred 

populations were simulated for each heritability with the IBM and the results averaged for 

all realizations that did not become extinct. The IBM approach incorporates many kinds of 

stochasticity in development, reproduction, inheritance, and death, unlike the other three 

approaches, which are all deterministic. The distributions of genotypes and phenotypes in 

the IBM and JPDF are not constrained to be Gaussian.

We compared the evolution of flowering time for this system using these four methods and 

four different heritabilities (fig. 1). All methods agreed quite well for the first several 

hundred years. Overall, the JPDF approach agrees very well with the IBM, except for rather 

late in the evolution at the lowest heritability (h2 = 0.25; fig. 1A). Only for this heritability 

did extinctions occur in the IBM. Populations in the deterministic methods can approach 

arbitrarily close to zero abundance but do not become extinct; this limitation may account 

for the slightly more rapid evolution with the IBM seen up until about year 600 because only 

populations that persisted are depicted, and these would tend to have evolved faster than 

those that did not. The evolutionary plateau in the IBM for the lowest heritability (h2 = 0.25; 

fig. 1A) may reflect depleted genetic variation due to selection and drift (these populations 

plummeted to low numbers; see fig. 2A). Where results differ among models, the 

deterministic methods all tend to evolve faster than the IBM, especially those based on 

Gaussian assumptions with fixed variances. Phenotypic variances from the IBM showed an 

initial increase followed by a significant decrease as selection removed genetic variation (see 

fig. 3). Thus, methods based on fixed variances would naturally be expected to evolve faster 

than the IBM. The JPDF method does not assume fixed variances and so can model variance 

depletion by selection; its evolution slows in a pattern similar to that of the IBM, although 

not quite as much. (Note that the JPDF accounts for non-normal distributions but not 

processes such as drift.)

Figure 2 shows corresponding trajectories for total abundance. It is intriguing that while 

Lande’s equation gives faster evolution than the other methods, it also predicts deeper 

declines in population. As far as population size projection is concerned, the Gaussian 

approximation is expected to be very similar to Lande’s equation: both use a transition 

matrix with each element averaged over an assumed normal phenotypic distribution. The 
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difference is that Lande’s equation (as we have applied it) projects population size using the 

dominant eigenvalue of the average transition matrix, whereas the Gaussian method tracks 

abundance of each stage separately. That is, our implementation of Lande’s equation 

assumes a stable stage distribution each generation, whereas the Gaussian method does not. 

For this example, deviations from the SSD or from the normal approximations that emerge 

as selection takes place do not seem to have a strong quantitative effect on the rate of 

evolution or changes in population size. Taken together, these results support the validity and 

accuracy of our general JPDF modeling framework (indeed, the dynamics it predicted are 

almost identical to those in the IBM) and show that for this system, simpler approximations 

that assume normality work reasonably well.

Only the overall average flowering time is shown in figure 1, but the JPDF, Gaussian, and 

IBM methods also describe evolution of mean flowering time for each stage. These stage-

specific evolutionary trajectories share the same general shape as the overall average (cf. 

figs. 1, 3), with some stages consistently higher (stages 1, 2, and 6), some lower (stages 4 

and 5), and one about the same (stage 3) as the average. That pattern remains throughout, 

with the curves slowly converging with time (fig. 3). This convergence is probably due in 

part to the fact that over time, more individuals flower late enough to completely avoid 

browsing and, thus, avoid further selection. For the IBM, there is also a reduction of genetic 

variance, which is greatest for the reproductive stage (stage 6; bold lines in fig. 3) targeted 

by selection. Therefore, this stage evolves somewhat slower than do the others, and since its 

phenotype is higher than average, this contributes to the slow convergence.

The JPDF method allows one to project evolution of the entire probability density function 

for the flowering-time phenotype, including evolved departures from normality. In this 

example, the initial distribution was Gaussian and, as the population evolved, the flowering-

time distribution became right skewed (fig. 4). Notice too the kink that evolves in the 

distribution function at 12.23 days (the zero-browsing threshold). It is impossible to predict 

the evolution of such detailed features using the Gaussian approximation or Lande’s theorem 

for stage-classified populations.

Application to a Conceptual Question

The Trillium example demonstrates the practicality and versatility of both our general and 

approximate modeling frameworks for predicting the joint evolution and population 

dynamics of real-world stage-structured populations. Our methods can also be used to 

develop conceptual insights related to stage structure per se, as we illustrate now.

The basic question we consider is how does repeating a stage affect adaptation rates? For 

simplicity and clarity, we examine this issue by applying our extension of Lande’s theorem 

(eq. [8]) to a simple system, consisting of a pair of populations with different two-stage life 

histories. One might, for instance, imagine desert plants with two classes: seed and adult. 

One population is age structured, with juveniles that mature into adults in a year (or die), 

and adults that produce offspring and then die. The other population is identical, except that 

individuals can stay in the juvenile stage for multiple years (e.g., a desert plant might have a 

seed bank with long-lived seeds and delayed germination; a similar analysis could allow 
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individuals to remain as adults for multiple years). For both populations, f11 = f21 = f22 = t12 

= t22 = 0, and the Lefkovitch matrix Ā contains elements ā11 = t̄11, ā12 = f̄12, ā21 = t̄21, and 

ā22 = 0.We focus on the evolution of a simple quantitative trait z with mean z̄ that may affect 

one or more of these vital rates. (All derivations are provided in app. C in the online edition 

of the American Naturalist.)

Consider first the age-structured population (t̄11 = 0 making Ā a Leslie matrix). In this case, 

the asymptotic growth rate of the population is λ̄
age = (f̄12t̄21)1/2. The rate of adaptive 

evolution in this population, as derived in appendix C (eq. [C6]), is

(10)

The notation d/dz̄i indicates the derivative with respect to z̄ is evaluated at z̄i

Compare these rates for an age-structured population to those of a stage-structured 

population for which the first stage can be repeated (t̄11 > 0). The stage-structured 

population grows asymptotically at rate  and, as derived in 

appendix C (eq. [C8]), evolves at rate

(11)

Observe that λ̄
stage > λ̄

age, which means the stage-structured population will grow faster 

than a comparable age-structured one (because of increased juvenile survival). It also 

implies that the factor in front of the parentheses is less than 1.

If the focal trait z has no effect on the probability of repeating the first stage, then dt1̄1/dz̄1 = 

0 and the first term inside the parentheses of equation (11) is 0. Since the leading factor is 

positive and less than 1, allowing retention in the first stage slows the rate of evolution 

without changing its direction compared with the rate in an age-structured population, all 

else being equal. (If we include t̄11 but reduce the maturation rate t̄21 by an equal amount [so 

stage 1 survival stays the same], then the same framework shows that evolution is still 

slowed [as is population growth] when dt̄11/dz̄1 = 0.)

If the focal trait does influence the probability a stage 1 individual survives and remains in 

that stage from one time step to the next (i.e., d ln t̄11/dz̄1 ≠ 0), then equation (11) shows that 

repetition of the first stage could accelerate, slow, or even reverse the direction of evolution 

relative to the comparable age-structured population. Stage- and age-structured populations 

would have opposite evolutionary directions if the magnitude of d ln t̄11/dz̄1 were large 

enough and its sign opposite to that of Δz̄age, the direction of evolution in the age-structured 

population. Biologically, such a reversal might occur for a trait z, such as seed coat 

thickness, which might tend to be reduced if there is no seed bank but would be increased in 
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a species with a seed bank if thicker coats give much higher seed survival. A similar analysis 

could be used to analyze the impacts of repeating the second stage. This could be relevant, 

for instance, to a plant with a perennial adult class but seeds that either germinate and 

become adults or die at each time step.

Price’s Theorem

In this section we show how evolution in stage-structured populations can be related to a 

simple, universal law of evolution, Price’s theorem (Price 1970), which provides a general 

statement about any evolutionary system—including a stage-structured one. Originally, 

Price’s equation was applied mainly to the levels-of-selection issue (e.g., Frank 1998; see 

Leigh 2010 for an overview), but it has recently begun to be applied to a wide range of 

evolutionary and ecological issues, including evolutionary epidemiology (Day and Gandon 

2006) and even community and ecosystem ecology (e.g., Fox and Harpole 2008). Coulson 

and Tuljapurkar (2008) developed an age-structured Price equation, which has been used to 

draw interesting insights about stasis and change in body size of the red deer of Rhum 

(Coulson and Tuljapurkar 2008), the Soay sheep of St. Kilda (Ozgul et al. 2009), and 

yellow-bellied marmots in Colorado (Ozgul et al. 2010).

Here, we briefly remind the reader of Price’s theorem for a univariate trait in an unstructured 

population and then show how one can write a Price equation for a stage-structured 

population. To complement this derivation, we show in appendix D in the online edition of 

the American Naturalist how a Price equation can be derived directly from the recursions of 

the general joint PDF method (eqq. [3], [4]). This alternative derivation could be useful for 

instance in examining complicated mating systems and selection regimes.

Price’s equation for the change in a univariate trait over a single time step is (e.g., Rice 

2004)

(12)

where z is the phenotype of a “parent,” w is the number of its “offspring,” d is the average 

deviation of its offspring’s phenotypes from its own, and z̄, w̄, and d̄ are the respective 

averages of z, w, and d over all parents. Note that “parent” and “offspring” can be broadly 

defined such that an individual is treated as an offspring of itself. The deviation d can have a 

genetic basis or result from phenotypic plasticity or other factors such as maternal effects.

We obtain a stage-structured version of Price’s equation by applying the law of total 

covariance (a straightforward extension of the law of total variance or the conditional 

variance formula; e.g., Weiss 2005) to equation (12): Cov (X, Y) = Cov [E(X|V), E(Y|V)] + 

E[Cov (X, Y|V)], where X and Y are random variables and V is a given condition. Applying 

this law to the covariance terms in equation (12) and conditioning on stage directly yields 

the general (univariate) stage-structured form of Price’s equation:

Barfield et al. Page 11

Am Nat. Author manuscript; available in PMC 2016 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(13)

where Covj (z, w) is the covariance between parental phenotype z and fitness w in stage j, 
Covj (d, w) is the covariance between d and w for parents in stage j, and z̄j, w̄j, and d̄j are the 

respective averages of z, w, and d over all parents in stage j. Unsubscripted operators Cov 

and E are computed over stages. Here, we define parent and offspring to include the results 

of direct transitions as well as actual births (so if an individual changes from stage j to stage 

i, it is treated as a stage j individual giving rise to an offspring in stage i). It can be shown 

that Coulson and Tuljapurkar’s (2008) age-structured version of Price’s equation is a special 

case of equation (13), as is Taylor’s (1990) stage-structured formulation for allele frequency 

evolution. Unlike the latter, equation (13) holds regardless of whether a population has 

reached a stable stage distribution. Like Price’s original equation (12), equation (13) is 

easily extended to multivariate traits (see Rice 2004).

The first two components of equation (13) reflect changes in z̄ due to differences among 

stages. Indeed, the mean phenotype can change from one year to the next even if all 

individuals within a stage are identical (so that the third and fourth terms of eq. [13] are 0) 

and there is no average tendency for offspring phenotypes to differ from their parents (E(d̄i) 
= 0). By comparison, the third and fourth components of equation (13) describe changes in z̄ 
due to variability within stages. Note that Covj (z, w) /w̄ is the selection differential 

(Robertson 1966) for z in stage j, which is nonzero if trait and fitness are correlated within 

that stage. The third term of equation (13) is thus the average selection differential over all 

stages. The fourth term is similar but reflects the relationship between fitness and parent-

offspring phenotype difference. For example, this component would be positive if a parent 

who produces more offspring also tends to have offspring that have phenotypic values larger 

than its own.

Equation (13) makes no assumptions about the cause—genetic, environmental, or epigenetic

—of any parent-off-spring phenotype difference d. Such differences could arise in Trillium 
if (for instance) there is a directional change in the environment (e.g., warming temperature) 

and flowering time is a plastic trait responsive to temperature. The second, fourth, and fifth 

components of equation (13) then account for the among-stage, within-stage, and overall 

impacts of this plastic response on change in the mean phenotype. Some stages could 

experience greater plasticity than others (second term), there could be more variance in the 

magnitude of such plastic responses among individuals within stages (fourth term), or the 

plastic response could manifest at the level of the entire population (fifth term).

Discussion

Our results provide three important advances for evolutionary biology. The first is a general 

set of modeling tools for prediction of joint evolution and demography of stage-structured 

populations. Such a framework has not been available, and its establishment completes the 

tool set available for understanding evolution in stage-structured populations, which 
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previously contained only methods specialized for populations structured by age (e.g., 

Charlesworth 1994). Our next advance is the first rigorous verification that Lande’s theorem 

applies to stage-classified populations. Our derivation shows that this simple equation 

applies to any structured population, assuming only multivariate normality and evolution 

that is slow relative to population dynamics. Our third major result is extending a 

fundamental law of evolution—Price’s theorem—to stage-structured populations.

Our general framework extends Taylor’s earlier treatment of models of allele frequency 

change in stage-structured populations (Taylor 1990) by allowing standing variation and 

populations that have not reached a stable stage distribution. Our model can be used to 

predict the evolution of quantitative traits and, through use of indicator variables, allele or 

genotype frequencies. It can also be used to project the evolution of trait moments and 

distributions for an entire population or individual stages, providing null expectations for 

hypothesis testing in empirical systems.

There was good reason to doubt that Lande’s theorem would hold in general for stage-

structured populations, and Caswell (1989; see also Caswell 2001, p. 284) hypothesized that 

it might apply only to stage-structured models with the same general flow of individuals as 

an age-structured model. Our analysis shows that given normality and slow evolution, 

Lande’s theorem applies to any stage-structured population, even if offspring are born into 

more than one class or individuals can repeat a stage or regress to a previous one, or there 

are differences among stages in trait means or variances. Assuming normality may seem 

problematic, because even if a population is at an SSD and phenotypes and breeding values 

initially have a joint normal distribution, the mixing of survivors from different stages tends 

to destroy normality. Our Trillium example shows that Lande’s equation approximates 

projections assuming Gaussian distributions but does deviate somewhat from the general 

model (which closely agrees with our individual-based simulations). Nevertheless, Lande’s 

formulation provides a quite reasonable description of this population’s evolution. Our result 

extends the domain of life histories over which this illuminating description of evolution 

should be applicable.

Our formulation of Price’s theorem shows how stage-classified evolution can be placed 

within this broad evolutionary principle and provides a relatively compact equation (13) that 

can be used as an alternative to our general modeling framework to project evolution of 

phenotypic means, variances, and other moments (e.g., Rice 2004). This may be useful in 

systematic comparisons among stage-structured taxa differing in life histories and patterns 

of inheritance. Some might find it easier to incorporate complications like nonrandom 

mating, phenotypic plasticity, temporal variability, and even density dependence using 

Price’s equation (13) than with our general formulation (eqq. [3] and [4]).

While the vital rates of almost all organisms are stage dependent, evolutionary biologists 

have until now lacked a general theoretical framework within which to organize stage-

classified demographic data and analyze the implications of stage structure for evolution. 

Our results complete such a framework and provide relatively accessible formulas that can 

be used to understand evolutionary pasts and predict evolutionary futures of stage-structured 

populations.

Barfield et al. Page 13

Am Nat. Author manuscript; available in PMC 2016 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank T. Knight for the model of the Trillium population and for help with early work on its evolution and D. 
Watkins, who provided a critical insight for our proof of Lande’s theorem. We are also grateful to anonymous 
reviewers for providing much helpful feedback that improved this manuscript. R.D.H. and M.B. thank the 
University of Florida Foundation for support. R.G. was supported by National Science Foundation (NSF) grants 
DEB-0515451 and DEB-0919376 and R.D.H. and M.B. by NSF grants DEB-0525751 and DEB-0515598 and 
National Institutes of Health grant GM-083192.

APPENDIX A

General Framework for Modeling Evolution of a Stage-Structured 

Population

This appendix provides details behind the general equation (4) for projecting the 

evolutionary dynamics of a stage-structured population. We use the definitions and 

assumptions described in the main text and find an equation for , the joint probability 

density function (PDF) of genotypic and phenotypic values in stage i in the next year, as a 

function of the PDF in the current year, pi (g, z). The distribution in the next year is due to a 

mixture of current individuals who directly transition from all stages to stage i (including 

those that remain in stage i) and any new offspring recruiting into that stage. The joint PDF 

of individuals that transition to stage i from j is given by tij(z)pj(g, z)/t̄ij. The PDF of all 

individuals that transition to stage i is the weighted average of these distributions, with each 

weight equal to the fraction of all individuals transitioning to stage i that come from stage j:

(A1)

The next step is to find the joint PDF among newborns in stage i. Consider the distribution 

of g among parents of offspring born into stage i:

(A2)

Let R (g|g′, g″) be the probability that parents with genotypes g′ and g″ produce an 

offspring with genotype g. Assuming the population is either monoecious or without sex 

differences, and that parents mate at random, then the genotypic distribution among 

offspring in stage i is

(A3)
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(Though we do not do so here, one could employ the formalism of Barton and Turelli [1991; 

see also Kirkpatrick et al. 2002] in place of equation [A3] to allow practically any genetic 

basis or even nonrandom mating.)

A special case of interest is the infinitesimal model of inheritance (Fisher 1918; Bulmer 

1971). With this model, the (multivariate) breeding value of an offspring is the average of 

the breeding values of its two parents plus a zero-mean normal random variable with 

covariance matrix VLE—the additive-genetic covariance matrix among the m characters at 

linkage equilibrium. In this case, the offspring genotype PDF is given by

(A4)

where the asterisks indicates convolution. The arguments of the parents’ PDFs are halved 

because parental genotypes are averaged.

The phenotype of the offspring is the sum of the genotype and a zero-mean random variable 

representing the nonadditive genetic and environmental components of phenotype. The joint 

PDF of the offspring, ϕi(g, z), can be found from the genetic distribution, ωi(g), using the 

fact that the joint probability of two outcomes is the product of the probability of the first 

outcome (genotype) and the probability of the second outcome (phenotype) given the first:

(A5)

where γi(z|g) is the PDF of the phenotype given the genotype for newborns, which is the 

PDF of the nonadditive genetic plus the environmental component of the phenotype 

evaluated at z − g. If this component has a multivariate normal distribution, then

(A6)

where VE is the covariance matrix for the environmental component of the phenotype.

Returning to the general derivation, the last step in deriving the new joint distribution of 

genotypes and phenotypes in stage i is to average the contributions of existing individuals 

that transition into the stage with those of individuals that are newborn into that stage. 

Weighting by the relative contributions of those two sources shows, finally, that the joint 

PDF for the genotypes and phenotypes found in stage i in the next year is

(A7)
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which is equation (4) in the main text.

APPENDIX B

Lande’s Theorem for Stage-Structured Populations

We prove here that Lande’s equation, Δz̄ = G∇ ln λ̄, applies to random mating stage-

structured populations under assumptions comparable to those used in the derivation for age-

structured populations (Lande 1982b). To that end, it will be convenient to put equations (5) 

and (6) in the form of a matrix equation. Let the vector of phenotypes and genotypes be xτ = 

(ζ̄, γ̄)T, where ζ̄ = {z̄i} and γ̄ = {ḡi}, and let the vector of selection terms be β = (βz, βg)T, 

where βz = {bzi}, βg = {bgi}, bgi = Σj cijGj∇z̄j ln āij, and bzi = Σj cij (Pj∇z̄jt̄ij + Gj∇z̄jf̄ij) 
(superscript T denotes the transpose). Also, define matrices of contributions of each stage to 

every other stage:  and , and combine these into a single 

matrix:

(B1)

The matrices C, Ct, Cf, and K contain only nonnegative numbers, and C = Ct + Cf. Under 

our assumptions, C is primitive (i.e., all the elements of the matrix power Ck are positive for 

some integer k > 0) and row stochastic (i.e., each row of C sums to 1). The matrix K is 

likewise row stochastic but is “reducible” because of the lower-left sub-matrix 0 that it 

contains. (Interested readers may consult Caswell [2001] and Meyer [2000] for more 

information about the matrix terminology, definitions, and results used in this appendix.) 

Using this notation, the recursions for evolution assuming normality, equations (5) and (6), 

can be written as the linear recursion

(B2)

To solve this equation, we need to assume that evolutionary dynamics are much slower than 

population dynamics. Also assume the population dynamics are density independent and 

described by the Lefkovitch matrix Ā with elements āij, the average values of the aij over the 

phenotypic distribution. Since evolution is slow, Ā (and β) are nearly constant and the 

population maintains a stable-stage distribution (SSD; Caswell 2001). At SSD, all stages 

grow geometrically at the same rate, so  where λ̄ is the eigenvalue of largest 

magnitude of Ā. Let w = {wi} and v = {vi} be the respective right and left eigenvectors of Ā 
corresponding to λ̄. The elements of w sum to 1 and give the proportions in each stage at the 

SSD, and v (which contains reproductive values) is scaled so that vTw = 1. At SSD, the 

coefficients  and  take on constant values: 

 and similarly for  and .

With these assumptions, direct iteration of equation (B2) gives

Barfield et al. Page 16

Am Nat. Author manuscript; available in PMC 2016 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(B3)

so the rate of evolution at time τ is

(B4)

We need the following result for the reducible, stochastic matrix K (Meyer 2000, p. 698):

(B5)

with I being the identity matrix, 1 a vector of all 1s, and r = {ri} the left eigenvector of C, 

corresponding to its leading eigenvalue normalized so that rT1 = 1. (Since C is row 

stochastic, its leading eigenvalue is 1, with a corresponding right eigenvector of 1.) Now 

observe that, since K is row stochastic, Ct1 + Cf1 = 1. Thus Cf1 = (I − Ct)1, which implies 

(I − Ct)−1Cf1 = 1. (D. Watkins pointed out this latter result to us.) So, in fact,

(B6)

Combining equations (B4) and (B6),

(B7)

The second equality follows from the fact that K̂(K − I) is a matrix of zeros because rTC = 

rT by definition of r:

(B8)

Result (B7) shows that, asymptotically,

(B9)
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for all stages i. It can be shown that ri = viwi. Recalling too that cij = λ̄−1āijwj/wi at the SSD 

and simplifying shows equation (B9) is equivalent to

(B10)

(Taylor [1990] used the same weighting vector r when analyzing models for allele frequency 

change in stage-structured populations at SSD.)

In his derivation for age-structured populations, Lande (1982a) assumed the mean phenotype 

and additive genetic covariance matrix were approximately the same for every age class. (He 

argued this is conceivable given weak selection.) If we make comparable assumptions for 

our stage-structured model (i.e., assume z̄j = z̄ and Gj = G for all stages j), then the shared 

rate of evolution (B10) becomes

(B11)

Now consider

(B12)

where we combined the standard result ∂λ̄/∂āij = viwj/vTw (e.g., Caswell 2001, p. 209) with 

our regularization vTw = 1. Substituting equation (B12) in equation (B11) shows that 

Lande’s equation, Δz̄ = G∇z̄ ln λ̄, holds for stage-structured populations.
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Figure 1. 
Evolution of mean flowering time (averaged over all stages), as predicted by four models of 

evolution for the Trillium system. A, Heritabilities (h2) of 0.25 and 0.5. B, h2 = 0.75. C, h2 = 

1. Note the different scales on the abscissa. The other parameters used are described in the 

main text and are assumed to be the same for all models. JPDF (joint probability density 

function) corresponds to equations (1)–(4), Gaussian denotes equations (5) and (6), Lande 
denotes equation (7), and IBM (individual-based model) denotes the individual-based model 

(100 realizations were run, and the averages calculated over all populations that persisted).
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Figure 2. 
Population dynamics for the four models of Trillium evolution, assuming an initial 

population of 5,000. Same notation and parameters as in figure 1. Geometric mean 

population size was used for the IBM (individual-based model). Note the logarithmic 

ordinate scale. A, h2 = 0.25 and 0.5. B, h2 = 0.75 and 1. JPDF = joint probability density 

function.
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Figure 3. 
Stage-specific phenotypic means and variances for flowering time in stages 1, 3, 5, and 6 

(indicated by the key) from the IBM (individual-based model) for h2 = 0.5 (averages over 

100 runs). For clarity, values have been smoothed using a 5-year moving average, and stages 

2 (similar to stage 1) and 4 (similar to 5) have been omitted. The bold lines are for stage 6.
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Figure 4. 
Probability density functions of the phenotype for the joint probability density function 

model for h2 = 1 at 0, 200, 400, 600, and 800 years (from left to right).
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Having escaped the devastating destruction of white-tailed deer, Trillium plants flower 

peacefully in a forest understory. Photograph by Tiffany Knight.
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