Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Oct 15;89(20):9514–9518. doi: 10.1073/pnas.89.20.9514

Primary electron transfer kinetics in bacterial reaction centers with modified bacteriochlorophylls at the monomeric sites BA,B.

U Finkele 1, C Lauterwasser 1, A Struck 1, H Scheer 1, W Zinth 1
PMCID: PMC50162  PMID: 1409661

Abstract

The primary electron transfer has been investigated by femtosecond time-resolved absorption spectroscopy in two chemically modified reaction centers (RC) of Rhodobacter sphaeroides, in which the monomeric bacteriochlorophylls BA and BB have both been exchanged by 13(2)-hydroxybacteriochlorophyll a or [3-vinyl]-13(2)-hydroxybacteriochlorophyll a. The kinetics of the primary electron transfer are not influenced by the 13(2)-hydroxy modification. In RCs containing [3-vinyl]-13(2)-hydroxybacteriochlorophyll a the primary rate is reduced by a factor of 10.

Full text

PDF
9514

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. P., Feher G., Yeates T. O., Komiya H., Rees D. C. Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5730–5734. doi: 10.1073/pnas.84.16.5730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnoux B., Ducruix A., Reiss-Husson F., Lutz M., Norris J., Schiffer M., Chang C. H. Structure of spheroidene in the photosynthetic reaction center from Y Rhodobacter sphaeroides. FEBS Lett. 1989 Nov 20;258(1):47–50. doi: 10.1016/0014-5793(89)81612-6. [DOI] [PubMed] [Google Scholar]
  3. Bocian D. F., Boldt N. J., Chadwick B. W., Frank H. A. Near-infrared-excitation resonance Raman spectra of bacterial photosynthetic reaction centers. Implications for path-specific electron transfer. FEBS Lett. 1987 Apr 6;214(1):92–96. doi: 10.1016/0014-5793(87)80019-4. [DOI] [PubMed] [Google Scholar]
  4. Chan C. K., DiMagno T. J., Chen L. X., Norris J. R., Fleming G. R. Mechanism of the initial charge separation in bacterial photosynthetic reaction centers. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11202–11206. doi: 10.1073/pnas.88.24.11202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang C. H., el-Kabbani O., Tiede D., Norris J., Schiffer M. Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry. 1991 Jun 4;30(22):5352–5360. doi: 10.1021/bi00236a005. [DOI] [PubMed] [Google Scholar]
  6. Finkele U., Lauterwasser C., Zinth W., Gray K. A., Oesterhelt D. Role of tyrosine M210 in the initial charge separation of reaction centers of Rhodobacter sphaeroides. Biochemistry. 1990 Sep 18;29(37):8517–8521. doi: 10.1021/bi00489a002. [DOI] [PubMed] [Google Scholar]
  7. Holzapfel W., Finkele U., Kaiser W., Oesterhelt D., Scheer H., Stilz H. U., Zinth W. Initial electron-transfer in the reaction center from Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1990 Jul;87(13):5168–5172. doi: 10.1073/pnas.87.13.5168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kirmaier C., Holten D. Evidence that a distribution of bacterial reaction centers underlies the temperature and detection-wavelength dependence of the rates of the primary electron-transfer reactions. Proc Natl Acad Sci U S A. 1990 May;87(9):3552–3556. doi: 10.1073/pnas.87.9.3552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Martin J. L., Breton J., Hoff A. J., Migus A., Antonetti A. Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26: Direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8 +/- 0.2 psec. Proc Natl Acad Sci U S A. 1986 Feb;83(4):957–961. doi: 10.1073/pnas.83.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mauzerall D., Chivvis A. A novel cyclical approach to the oxygen producing mechanism of photosynthesis. J Theor Biol. 1973 Nov 15;42(2):387–395. doi: 10.1016/0022-5193(73)90096-9. [DOI] [PubMed] [Google Scholar]
  11. Nabedryk E., Leonhard M., Mäntele W., Breton J. Fourier transform infrared difference spectroscopy shows no evidence for an enolization of chlorophyll a upon cation formation either in vitro or during P700 photooxidation. Biochemistry. 1990 Apr 3;29(13):3242–3247. doi: 10.1021/bi00465a015. [DOI] [PubMed] [Google Scholar]
  12. Nagarajan V., Parson W. W., Gaul D., Schenck C. Effect of specific mutations of tyrosine-(M)210 on the primary photosynthetic electron-transfer process in Rhodobacter sphaeroides. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7888–7892. doi: 10.1073/pnas.87.20.7888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Parson W. W., Chu Z. T., Warshel A. Electrostatic control of charge separation in bacterial photosynthesis. Biochim Biophys Acta. 1990 Jun 26;1017(3):251–272. doi: 10.1016/0005-2728(90)90192-7. [DOI] [PubMed] [Google Scholar]
  14. Parson W. W., Clayton R. K., Cogdell R. J. Excited states of photosynthetic reaction centers at low recox potentials. Biochim Biophys Acta. 1975 May 15;387(2):265–278. doi: 10.1016/0005-2728(75)90109-7. [DOI] [PubMed] [Google Scholar]
  15. Struck A., Cmiel E., Katheder I., Scheer H. Modified reaction centers from Rhodobacter sphaeroides R26. 2: Bacteriochlorophylls with modified C-3 substituents at sites BA and BB. FEBS Lett. 1990 Jul 30;268(1):180–184. doi: 10.1016/0014-5793(90)81003-7. [DOI] [PubMed] [Google Scholar]
  16. Vermeglio A., Breton J., Paillotin G., Cogdell R. Orientation of chromophores in reaction centers of Rhodopseudomonas sphaeroides: a photoselection study. Biochim Biophys Acta. 1978 Mar 13;501(3):514–530. doi: 10.1016/0005-2728(78)90118-4. [DOI] [PubMed] [Google Scholar]
  17. Wasielewski M. R., Norris J. R., Shipman L. L., Lin C. P., Svec W. A. Monomeric chlorophyll a enol: Evidence for its possible role as the primary electron donor in photosystem I of plant photosynthesis. Proc Natl Acad Sci U S A. 1981 May;78(5):2957–2961. doi: 10.1073/pnas.78.5.2957. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES